
micromachines

Article

Anti-Reflectance Optimization of Secondary
Nanostructured Black Silicon Grown on
Micro-Structured Arrays

Xiao Tan 1,2,3 ID , Zhi Tao 1,2,3, Mingxing Yu 1,2,3, Hanxiao Wu 1,2,3 and Haiwang Li 1,2,3,*
1 School of Energy and Power Engineering, Beihang University, Beijing 100191, China;

by1404143@buaa.edu.cn (X.T.); tao_zhi@buaa.edu.cn (Z.T.); yumingxing1314@126.com (M.Y.);
hanxiao_wu_buaa@163.com (H.W.)

2 National Key Laboratory of Science and Technology on Aero Engine Aero-Thermodynamics,
Beijing 100191, China

3 The Collaborative Innovation Center for Advanced Aero-Engines of China, Beijing 100191, China
* Correspondence: 09620@buaa.edu.cn; Tel.: +86-010-82-314-379

Received: 3 July 2018; Accepted: 31 July 2018; Published: 2 August 2018
����������
�������

Abstract: Owing to its extremely low light absorption, black silicon has been widely investigated
and reported in recent years, and simultaneously applied to various disciplines. Black silicon is,
in general, fabricated on flat surfaces based on the silicon substrate. However, with three normal
fabrication methods—plasma dry etching, metal-assisted wet etching, and femtosecond laser pulse
etching—black silicon cannot perform easily due to its lowest absorption and thus some studies
remained in the laboratory stage. This paper puts forward a novel secondary nanostructured black
silicon, which uses the dry-wet hybrid fabrication method to achieve secondary nanostructures.
In consideration of the influence of the structure’s size, this paper fabricated different sizes of
secondary nanostructured black silicon and compared their absorptions with each other. A total of
0.5% reflectance and 98% absorption efficiency of the pit sample were achieved with a diameter of
117.1 µm and a depth of 72.6 µm. In addition, the variation tendency of the absorption efficiency is
not solely monotone increasing or monotone decreasing, but firstly increasing and then decreasing.
By using a statistical image processing method, nanostructures with diameters between 20 and 30 nm
are the majority and nanostructures with a diameter between 10 and 40 nm account for 81% of
the diameters.

Keywords: absorption; black silicon; secondary nanostructures

1. Introduction

High reflectance, or so-called low absorption, badly limits the applications of silicon-based
photon sensitive and optical devices. Since 1995, in order to reduce the reflectance of silicon surfaces,
black silicon was studied with SF6/O2 plasma and was proposed as a tool to identify the optimal
conditions for vertical silicon deep etching [1]. Since then, three methods for black silicon fabrication
were developed, which were plasma dry etching, metal-assisted wet etching, and femtosecond laser
pulse etching.

As for plasma dry etching, Zaidi et al. studied a solar cell textured by reactive ion etching
(RIE), but paid little attention to the secondary nanostructures [2]. The plasma dry etching method
is now popular in increasing the bactericidal efficiency due to high density nanostructures [3,4].
Temperature is an important parameter that influences the growth conditions of nanostructures in dry
etching. While black silicon can generally be fabricated at low (−40 to −30 ◦C) [5] or even cryogenic
temperatures [6], Pezoldt et al. presented nanostructure fabrication at temperatures between 20 and
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30 ◦C [7]. However, fabrication at temperatures between −30 and 20 ◦C, i.e., the operating temperature
for a normal RIE machine or ICP (inductively coupled plasma), is rarely reported.

The metal-assisted wet etching method typically uses Ag or Au for nanoparticle catalysis and
HF for etching substances [8–12], paying little attention to secondary nanostructures like plasma dry
etching. Apart from the early references, recent papers have also rarely investigated secondary
nanostructures [13–17]. Jia et al. considered that a better surface structure would increase the
performance of black silicon and thus they smoothed the surface with NaOH after wet etching [18].
As a result, the smoothed surface indicated the lowest reflectance among the samples. In addition to
alkaline treatment, acid treatment after wet etching was investigated but showed a higher reflectance
than the no acid treatment sample [19]. Those two studies noticed that surface modification could
influence the reflectance of black silicon. However, they did not find the importance of secondary
nanostructures. The metal-assisted wet etching method is a simple and quick approach for producing
a large amount of nanostructure grass layers. However, the wet etching method may cause large
area defects and is less stable than the dry etching method. Hsu et al. investigated the fabrication
and characteristics of black silicon for solar cell applications before 2014 and wrote an overview
of them [20]. In the same year, Liu reviewed the properties of solar energy applications using
black silicon [21]. Both studies recognized black silicon as being promising for energy conservation
and collection. In addition to optical applications [22–24], other fields, including heat transfer [25],
photoelectrochemical [26], electroosmotic flow in microchannel [27], etc., also began to take full
advantage of black silicon.

Lv et al. reviewed the recent achievements and applications of black silicon with femtosecond
laser pulses [28]. In this review, black silicon was applied to many fields, such as photodiodes [29–32],
photodetectors [33–37], solar cells [38–49], field emission [50–53], luminescence [54,55], hydrophobic
surface [56–58], etc. They pointed out that the laser-irradiated process is relatively slow compared to
other methods and that the laser-irradiated process needs to be studied further. Liu et al. reported
that the micro-ripple and micro-bead structures with femtosecond laser pulses in a nitrogen (N2)
atmosphere could increase the absorption of N-doped silicon with wavelengths from 1.1 to 2.5 µm [59].
Zhan et al. studied the porous microstructures fabricated in the air and increased the absorption by
changing the scan parameters [60]. Liu fabricated non-doped black silicon in an argon (Ar) atmosphere
and increased the absorption of it by changing the energy of the laser [61].

Kim et al. reported a secondary structure of black silicon with nanostructures on the bottom of
the micro trenches and no grass in the profiles [62]. However, they cared more about the heat transfer
characteristics rather than optical properties. Although various methods for nanostructure fabrication
have been investigated in detail over the past few decades, rarely have articles paid attention to
the secondary structures. Therefore, this paper focuses on the fabrication of micro-nano secondary
structures and their reflectance values. In addition, micro-nano secondary structures are beneficial for
absorbing the infrared spectrum of solar radiation, from which a solar cell can absorb more thermal
energy. Such an absorption may also reduce the forbidden gap of silicon because a negative correlation
exists between temperature and the forbidden gap value. In this paper, secondary structures with
size optimization showed a better performance (lower reflectance) than single structures using the
same etching method [63]. The results of using hybrid structures indicated that the reflectance kept
low and stable from 300 nm–1000 nm, but that of using single structures in others may show that the
reflectance increased for small wavelengths [64–66].

Kanmin et al. developed a unique nano- and microwire hybrid structure by selectively modifying
only the tops of microwires using metal-assisted chemical etching [67]. The proposed nano/micro
hybrid structure not only minimizes surface recombination but also absorbs 97% of incident light
under AM 1.5 G illumination, demonstrating outstanding light absorption compared to that of planar
(59%) and microwire arrays (85%). Kwang-tae et al. reported a combined wire structure, made up of
longer periodic Si microwires and short nanoneedles, which was prepared to enhance light absorption
using one-step plasma etching via lithographical patterning [68]. The combined wire array exhibited
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light absorption of up to ≈97.6% from 300 to 1100 nm without an anti-reflection coating. The shape
of the combined wire arrays was cylindrical with a high ratio of depth and width that was not be
fabricated easily. In-Ji et al. investigated how silicon nanowires affected the photovoltaic performance
of silicon solar cells with a pyramid textured surface [69]. They obtained a high absorption surface
with a 95% efficiency of absorption. This paper investigated secondary structures based on these three
papers with further size optimization.

Reflectance for normal incidence was measured on a UV3600 spectrophotometer (Shimadzu,
Kyoto, Japan). The morphology and structures of the samples were characterized by a scanning
electron microscope (SEM), from SEC (Suwon, Gyeonggi-do, Korea) and the Zeiss Company
(Oberkochen, Germany).

2. Fabrication

The aim of this study is to fabricate a kind of black silicon with a high light-abortion efficiency.
Two kinds of samples were fabricated and their size details were different, as shown in Figure 1
and Table 1 below. These structures were actually secondary structures and they were designed
to absorb more light than the wafers with single micro- or nanostructures. In these experiments,
4-inch silicon wafers with a N-doped crystal orientation of 100, a thickness of 500 µm, and silicon
oxide with a thickness of 1 µm were used. Fabrication included two steps. The first step used
high-energy, high-density plasma for isotropic etching with SF6/O2 (130 sccm/13 sccm) to manufacture
microstructures, tips, and pits. As shown in Figure 1, the first step was to fabricate the microstructure,
including the micro tips and pits. The details of the first-class structure’s process flow are as below:
(a) piranha (H2SO4/98%:H2O2/30% = 3:1) washing for 10 min, (b) spin coat photoresist, S1813,
at 3000 rpm and prebake for 30 min in a nitrogen atmosphere oven, (c) pattern photoresist with
10 mJ/cm2 ultraviolet light for 3 s and post bake for 15 min in a nitrogen atmosphere oven, (d) using
a buffer oxide etching fluid (HF:NH4F = 1:5) to etch silicon oxide without the destruction of photoresist,
(e) piranha (H2SO4/98%:H2O2/30% = 3:1) washing for 10 min to remove the photoresist, and finally
(f) after 5 min of supersonic treatment in acetone and ethanol, the silicon wafers with micro tips or
pits were fabricated. After first-class-structure fabrication, the samples were fabricated using the
metal-assisted catalyst etching method, with the aim of growing secondary nanostructures on the
first-class structures. In the second step, the nanostructures were fabricated on the tips and pits, as well
as on a flat sample for comparison. Two types of secondary nanostructured samples and two flat
samples were fabricated. It was performed to obtain microstructures with tips, pits, and a flat surface.
The wet etching method process in the second step was as follows: (g) piranha (H2SO4/98%:H2O2/30%
= 3:1) washing for 10 min, (h) solution (AgNO3/0.02-mol/L: HF/5-mol/L) configuring and soaking
for 80 min, and (j) solution (HNO3/65%) configuring and soaking for 70 min.

Table 1 shows the group number and size details. One kind of sample mask was filled with array
tips as shown in Figure 2a, and another was filled with array pits as shown in Figure 2b. In Figure 2a,b,
black patterns denote mask layers that can hardly be etched by plasma and the white patterns denote
areas with no masks. d1 and d2 denote the diameter of the patterns, and a1 and a2 denote the distance
between the two circles. Every group of three neighboring circles made up an equilateral triangle.

Table 1. The size details of the tips mask and pits mask.

Number
Tips Pits

a1 (µm) d1 (µm) a2 (µm) d2 (µm)

1 100 100 30 4.2
2 200 100 60 8.4
3 300 100 120 16.8
4 400 100 180 33.6
5 500 100 240 50.4
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Figure 1. The process flow of secondary structures. (a) Piranha washing for 10 min, (b) spin coat 
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(j) solution (HNO3/65%) configuring and soaking for 70 min. 

Figure 1. The process flow of secondary structures. (a) Piranha washing for 10 min, (b) spin coat photoresist,
and prebake 30 min in nitrogen atmosphere oven, (c) pattern photoresist and post bake for 15 min in
a nitrogen atmosphere oven, (d) using a buffer oxide etching fluid to etch silicon oxide, (e) piranha washing
for 10 min to remove the photoresist, (f) silicon dioxide removed, (g) solution preparation, (h) solution
(AgNO3/0.02-mol/L: HF/5-mol/L) configuring and soaking for 80 min, and (j) solution (HNO3/65%)
configuring and soaking for 70 min.

Micromachines 2018, 9, x FOR PEER REVIEW  4 of 15 

 

Table 1 shows the group number and size details. One kind of sample mask was filled with array 
tips as shown in Figure 2a, and another was filled with array pits as shown in Figure 2b. In Figure 2a, 
b, black patterns denote mask layers that can hardly be etched by plasma and the white patterns 
denote areas with no masks. d1 and d2 denote the diameter of the patterns, and a1 and a2 denote the 
distance between the two circles. Every group of three neighboring circles made up an equilateral 
triangle. 

 
Figure 2. The schematic diagram of the mask size parameter of the two samples. (a) Array tips sample 
mask. (b) Array pits sample mask. 

As shown in the figure below, the micro tips array is indicated in Figure 3a and this picture was 
filmed by SEM in a low magnification view. The micro pits array is indicated in Figure 3b and this 
picture was filmed by SEM in a low magnification view. Figure 3c, d indicate that silicon dioxide, as 
the mask layer, remained in the surface after dry etching. The numbers of a1, a2, d1, and d2 are shown 
in Figure 3, coming from the No. 2 and No. 5 samples. 

 
Figure 3. The schematic diagram of parameters d1, a1, d2, and a2 in the SEM view. (a) a1, the distance 
between the two center point of tips masks is 240 μm, that is, the No. 5 tip sample, (b) a2, the distance 
between the two center point of pits masks is 100 μm, that is, the No. 1 pit sample, (c) d1, the distance 
between the two center point of tips masks, is 33.6 μm, that is, the No. 2 tip sample, (d) d2, the distance 
between the two center point of pits masks is 100 μm, that is, the No. 2 pit sample. 

As shown in Figure 1e, the tips or pits were etched under the protection of a silicon dioxide 
mask. In order to fabricate hemispherical shape pits and volcanic shape tips, etching gas and high 
energy density SF6/O2 plasma should not only react with the silicon in the vertical direction but also 
in the horizontal direction. In previous work, the etching rate ratios in the vertical direction and 

Figure 2. The schematic diagram of the mask size parameter of the two samples. (a) Array tips sample
mask. (b) Array pits sample mask.

As shown in the figure below, the micro tips array is indicated in Figure 3a and this picture was
filmed by SEM in a low magnification view. The micro pits array is indicated in Figure 3b and this
picture was filmed by SEM in a low magnification view. Figure 3c, d indicate that silicon dioxide,
as the mask layer, remained in the surface after dry etching. The numbers of a1, a2, d1, and d2 are
shown in Figure 3, coming from the No. 2 and No. 5 samples.

As shown in Figure 1e, the tips or pits were etched under the protection of a silicon dioxide mask.
In order to fabricate hemispherical shape pits and volcanic shape tips, etching gas and high energy
density SF6/O2 plasma should not only react with the silicon in the vertical direction but also in the
horizontal direction. In previous work, the etching rate ratios in the vertical direction and horizontal
direction were measured by considering the different pattern sizes of the masks [70,71]. Therefore,
the sizes of the masks were designed according to the results of the etching rate ratio. In fact, the No. 1
to No. 5 tip samples and the No. 1 to No. 5 pit samples were designed in one chrome photomask and,
thus, ten samples (No. 1 to No. 5 tip samples and No. 1 to No. 5 pit samples) were patterned in one
silicon wafer at one time. That is to say, ten samples were present in one wafer with different sizes and
they can be recognized by the number order that is near them.
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Figure 3. The schematic diagram of parameters d1, a1, d2, and a2 in the SEM view. (a) a1, the distance
between the two center point of tips masks is 240 µm, that is, the No. 5 tip sample, (b) a2, the distance
between the two center point of pits masks is 100 µm, that is, the No. 1 pit sample, (c) d1, the distance
between the two center point of tips masks, is 33.6 µm, that is, the No. 2 tip sample, (d) d2, the distance
between the two center point of pits masks is 100 µm, that is, the No. 2 pit sample.

Different depths of first-class structures also influenced the absorption of black silicon since deeper
trenches may indicate higher absorption efficiencies. Therefore, four kinds of depth were designed,
as shown in Table 2. Because the masks were different, the etching rate of the pits was different in the
four different depths. Therefore, the design depth would be different in the same row. #1–#4 denote the
four numbers of the different depths and 1–5 denote the five numbers of the different masks. In order
to distinguish the size parameters shown in Table 1, the depth parameters are named No. #1 to No. #8.
In fact, each group among No. #1 to No. #8 denote one etch process at one time. However, due to
the different sizes of masks shown in Table 1, the No. 1 to No. 5 tip and pits samples might show
different results of depth, which were studied in previous research [70,71]. Therefore, Table 2 indicates
the design number of the depths of each sample in Table 1.

Table 2. The design table of four kinds of depth of tips and pits.

Tip Sample Number #1 (Depth) µm #2 (Depth) µm #3 (Depth) µm #4 (Depth) µm

No. 1 24 32 40 48
No. 2 24 32 40 48
No. 3 24 32 40 48
No. 4 24 32 40 48
No. 5 24 32 40 48

Pit Sample Number #5 (Depth) µm #6 (Depth) µm #7 (Depth) µm #8 (Depth) µm

No. 1 20 21 22 23
No. 2 30 32 34 36
No. 3 40 43 46 49
No. 4 50 56 62 68
No. 5 60 68 76 84

During the process, some problems occurred in the bottom of the pits. Figure 4a illustrates
the nanostructures on the micro pits obtained using the wet etching method. In contrast to the tips,
the nanostructures were hardly observed on the bottom of the pits, although some silver was deposited
on the bottom, as shown in Figure 4b. Figure 4c shows a high-magnification SEM image, indicating
the nanostructures on the bottom surface of the pits. During fabrication, many bubbles were observed
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and remained in the pit area rather than diffusing away. It is possible that nanostructures were not
formed easily on the bottom of the pits because the bubbles hinder or slow the chemical reaction since
the etching end product is SiF4, a type of gas that requires air for diffusion.Micromachines 2018, 9, x FOR PEER REVIEW  6 of 15 
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Figure 4. The nanostructures on the micro pits obtained using the wet etching method: (a) The top
view of the low-magnification micrograph, (b) silver on the bottom surface of the pits, and (c) the
high-magnification SEM image of nanostructures on the bottom surface of the pits.

The bottom-left inset of Figure 5 indicates that the diameter of the nanostructures was variable
and the SEM images of the nanostructures are also shown in the same figure. By using a statistical
image processing method, the frequency and the number distribution are plotted in the distribution
histogram. The nanostructures with diameters between 20 to 30 nm were in the majority and diameters
increasing from 30 nm had an ever-decreasing frequency. Nanostructures with a diameter between
10 to 40 nm accounted for 81% of all diameters.
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Figure 5. The nanostructures SEM image and frequency, and the number distribution histogram of
the nanostructures.

What is more, it can be inferred that the etching reaction was extremely slow or even stopped in very
small mask holes: the No. 1 sample of pits. This may be interpreted by the principle shown in Figure 6.
During the etching process, SiFx will be produced and pumped out from the small hole. Since the diameter
of the small hole (D in the figure) reaches the scale of electromagnetic wavelength, plasma may occur in
a phenomenon that is similar to diffraction, as the dotted yellow line shown in Figure 6.
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Figure 6. The schematic of the reaction in a microhole.

Both plasma and the reaction gas flow through the small hole called the throat of the channel.
After diffraction and collision with the small hole, the total energy would be consumed to an extended
value. Therefore, the total energy can be calculated by Equation (1).

Etotal =
∫ π

2

− π
2

αEθdθ (1)

where Etotal denotes the total energy of plasma, Eθ denotes the direction energy component in the θ

angle, and α denotes the coefficient of energy loss after diffraction and collision.
Because of the throat effect, the reaction gas may not be pumped out immediately and it may stay

in the trench, which results in more collisions and, thus, causes more energy loss. This may be why the
etching rate is so slow with a small hole mask. Therefore, the eventual plasma with enough energy to
reach the silicon surface can be described by Equation (2).

Ereaction =
∫ π

2

− π
2

αEθ − Eθrdθ (2)

where Ereaction denotes the energy of the plasma that could react, Eθ denotes the direction energy
component in the θ angle, Eθr denotes the direction component of the loss energy in the θ angle, and α

denotes the coefficient of energy loss after diffraction and collision.
Therefore, the throat effect not only influences the etching rate ratios in the vertical direction and

horizontal direction but may also stop the etching process to a certain depth. As shown in Table 3,
the depth and width of the trench remained at 18.2 µm and 18.5 µm, respectively.

Table 3. The actual etching data table of the four kinds of depth and width of the tips and pits.

Tips #1 (Depth) µm #2 (Depth) µm #3 (Depth) µm #4 (Depth) µm

1 24.2 32.2 40.1 47.9
2 24.3 32.3 40.2 47.6
3 24.1 32.2 40.2 47.8
4 24.4 32.3 40.1 47.6
5 24.2 32.1 40.3 47.7

Pits #5 (width/depth) µm #6 (width/depth) µm #7 (width/depth) µm #8 (width/depth) µm

1 18.2/17.9 18.3/18.1 18.5/18.2 18.5/18.2
2 22.2/23.0 27.8/31.1 26.8/33.0 32.8/33.6
3 56.9/35.2 46.6/42.2 51.7/44.8 69.3/46.7
4 87.4/52.0 96.3/61.3 107.9/63.7 117.1/72.6
5 109.7/55 127.3/69.3 140.9/80.0 148.9/83.7
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3. Experimental

The actual etching data are shown in Table 3. Apart from the depth data, there are width data
from the pits part. The pits’ trenches were difficult to control since they have very small mask holes,
ranging from 4.2 to 50.4 µm. During the etching process, reactive plasma would be grabbed from small
trenches to big ones due to the faster reaction and mass transfer in bigger reaction spaces. In addition,
the etching rate ratios in the vertical direction and horizontal direction would decrease with the
diameter reduction of the mask hole, as shown in Table 3.

In this paper, nanostructures were fabricated on microstructures with different profiles: tip and pit.
The microstructures were dry etched in SF6/O2 plasma using an ICP (inductively coupled plasma) from
the SPTS Company (Newport, UK). Black silicon nanostructures were fabricated by the metal-assisted
wet etching method, where silver is used as a catalyst. After the black silicon nanostructures were
grown, the samples were observed by a photometer for reflectivity tests. As shown in Figure 7,
four figures are presented, and the reflectivity values of the samples are illustrated. These samples
were fabricated with #1–#4 sizes as shown in Table 3. No. 1–No. 5 denote the results of reflectance with
different distances in the same depth, as shown in Table 3. In the four figures, the reflectance rapidly
dropped from wavelengths of 220 nm to 600 nm, maintained a relatively low value from wavelengths of
600 nm to 1050 nm, and reached the lowest value at a wavelength of 1000 nm. However, the reflectance
sharply jumped at a wavelength of 1050 nm. A fluctuation could be seen near the wavelengths of
880 nm, which may have been caused by instrument vibration.
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Figure 7. The hemispherical reflectance spectra of black silicon micro-nano hybrid structures obtained
for different tips size structures. (a) The reflectance results of the five samples with #1 depth size, (b) the
reflectance results of the five samples with #2 depth size, (c) the reflectance results of the five samples
with #3 depth size, and (d) the reflectance results of the five samples with #4 depth size.

As shown in Figure 8, four graphs are presented, and the reflectivity values of the samples are
illustrated. These samples were fabricated with #5–#8 sizes, as shown in Table 3. No. 1–No. 5 denote
the results of reflectance with different distances in the same depth, as shown in Table 3. In the four
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graphs, the reflectance dropped from wavelengths of 220 nm to 400 nm, maintained a relatively low
value from wavelengths of 400 nm to 1050 nm, and sharply jumped at a wavelength of 1050 nm.
However, the lowest value of reflectance could not be distinguished easily since the values of low
reflectance remained equable. A fluctuation could also be seen near a wavelength of 880 nm, which may
have been caused by instrument vibration.
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obtained for the different pits size structures. (a) The reflectance results of the five samples with #5
depth size, (b) the reflectance results of the five samples with #6 depth size, (c) the reflectance results of
the five samples with #7 depth size, and (d) the reflectance results of the five samples with #8 depth size.

As shown in Figure 9, six reflectance spectrums were indicated and compared. The black line
indicates that the polished silicon without micro and nanostructures showed the highest reflectance.
The surfaces with microstructures (micro tips or pits) had lower reflectance values, though higher than
those with single nanowires. With hybrid structures, the nano-micro pits and tips showed extremely
low reflectance values. In addition, the former one showed the lowest reflectance.
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4. Results and Discussion

Based on the actual solar radiation energy at the Earth’s surface [72], an approximate curve is
illustrated in Figure 10, which consists of three line segments, to simplify the absorption efficiency of
the six micro-nano hybrid black silicon samples and single microstructures samples. The equation of
the absorption efficiency is given below:

A =
∫ 1100

300
(1 − R(λ))× E(λ) dλ (3)

where A is the absorption efficiency, R(λ) is the reflectance of black silicon at wavelength λ, and E(λ)
is the actual solar radiation energy at the Earth’s surface for black silicon at wavelength λ. For the
range of integration (300−1100 nm), the minimum value was limited by the lowest wavelength value
of the photometer, and the maximum value was limited by the forbidden gap of silicon.
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As shown in Figure 11a, the sample with a distance of 400 µm and a depth of 48 µm exhibited the
highest absorption efficiency among the tip samples, and the sample with a distance of 100 µm and
a depth of 24 µm exhibited the lowest absorption efficiency among the tip samples. The efficiency of
tip samples increased firstly and then decreased as the distance changes. This was because too short of
a distance would cause the nanostructures to hardly grow on the plates between the two tips and too
long of a distance would decrease the number of tips, which would reduce the absorption efficiency.
In general, the efficiency of the tip samples with a high depth was higher than those with a low depth
since a deeper trench denoted a darker screen. The highest efficiency of the samples exceeded the
lowest efficiency of the samples by almost 6.5%. As shown in Figure 11b, it seems like a line. However,
it has four depths (No. #1 to No. #4) lines and 20 points because d1 remains the same value, one that
is different from Figure 11d. However, the maximum and minimum values of different sizes can be
found in Figure 11b. The range was more than 6%.
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Figure 11. The absorption efficiency of the micro-nano hybrid structures obtained for different tip and
pit sizes. (a) The relational graph between the efficiency and diameter of the tips (first designed trench
size) and (b) the relational graph between the efficiency and depth of the tips (first designed trench
size). (c) The relational graph between the efficiency and diameter of the pits (first designed trench size)
and (d) the relational graph between the efficiency and depth of the pits (first designed trench size).

As shown in Figure 11c,d, the diameter and depth values are the first trench size. The sample
with a diameter of 117.1 µm and a depth of 72.6 µm exhibited the highest absorption efficiency among
the pit samples and the sample with a diameter of 18.5 µm and a depth of 18.2 µm exhibited the lowest
absorption efficiency among the pit samples. The efficiency of the tip samples increased firstly and
then decreased as the diameter or depth changes. This was because too small of a diameter would
cause nanostructures to hardly grow on the bottom of the pits and too large of a diameter would
decrease the number of pits, which would reduce the absorption efficiency. The highest efficiency of
the samples exceeded the lowest efficiency of the samples by almost 11%.
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5. Conclusions

This paper formed a novel secondary nanostructured black silicon, which used the dry-wet
hybrid fabrication method to achieve secondary nanostructures. This paper fabricated different sizes
of secondary nanostructured black silicon and compared their absorptions with each other. The best
absorption performance of black silicon came from the combination of micro first-class structures and
nano secondary structures. A 0.5% reflectance and 98% absorption efficiency of the pit sample were
achieved with a diameter of 117.1 µm and a depth of 72.6 µm. In addition, the variation tendency
of the absorption efficiency was not solely monotone increasing or monotone decreasing, but firstly
increasing and then decreasing. By using a statistical image processing method, nanostructures with
diameters between 20 to 30 nm were in the majority and nanostructures with diameters between 10 to
40 nm accounted for 81% of all diameters. The effect of etching stop was interpreted and analyzed.
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