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Abstract

Objective: Diabetes is a heterogeneous disease and a precise diagnosis of diabetes subgroups is necessary to initiate 
proper early treatment and clinical management of the disease. Circulating small RNAs (sRNAs) are potentially 
diagnostic biomarkers in diseases, including diabetes. Here we aimed to examine whether profiles of circulating sRNAs 
differed between patients with autoimmune and non-autoimmune diabetes and non-diabetic controls.
Design: This cross-sectional case–control study included participants from the third survey of the HUNT study.
Methods: We performed sRNA sequencing in serum from adult-onset type 1 diabetes (n = 51), type 2 diabetes (n = 50) 
and latent autoimmune diabetes in adult (LADA, n  = 51), as well as non-diabetic HUNT3 participants as control group 
(n = 51). Differential expression analysis of the sRNAs was performed in R using limma-voom.
Results: We identified differences in sRNA expression between autoimmune (type 1 diabetes and LADA) and non-
autoimmune diabetes (type 2 diabetes) and between patients with diabetes and non-diabetic controls. Focusing 
on miRNA, we identified 10 differentially expressed mature miRNAs and 30 differentially expressed miRNA variants 
(isomiRs). We also identified significant changes within other sRNA classes, including a pronounced downregulation 
of a tRNA fragment in patients with diabetes compared to non-diabetic controls. We created cross-validated sRNA 
signatures based on the significant sRNAs that distinguished patients with diabetes from non-diabetic controls, and 
autoimmune from non-autoimmune diabetes, with high specificity and sensitivity. sRNA profiles did not distinguish 
between type 1 diabetes and LADA.
Conclusions: Circulating sRNAs are differentially expressed between patients with diabetes and non-diabetic controls 
and between autoimmune and non-autoimmune diabetes.
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Introduction

Most individuals with diabetes are classified as having 
type 1 or type 2 diabetes. Type 1 diabetes is basically an 
autoimmune disease. Autoimmunity is also present in 
patients with a phenotype of type 2 diabetes but with 
detectable autoantibodies against pancreatic beta-cells (1, 2, 
3, 4, 5). This form of diabetes, latent autoimmune diabetes 
in adults (LADA), constitutes 4–10% of what was formerly 
regarded as type 2 diabetes (6, 7). The diagnosis of LADA is 
generally based on the presence of autoantibodies (mainly 
GAD autoantibody) at diabetes diagnosis, age >30 years old 
at diabetes onset and at least 6 months between the time of 
diagnosis and initiation time of insulin treatment.

A high GADA level in LADA has been associated with 
earlier insulin initiation, lower BMI and type 1 diabetes-
associated genes, for example, being more type 1 diabetes-
like both phenotypically and genotypically (7, 8, 9). 
Conversely, low GADA levels have been associated with a 
more type 2 diabetes-like phenotype and genotype.

Overall, both the pathophysiology and the genetic 
characterization of LADA are far less understood than its 
counterparts, type 1 and type 2 diabetes. While LADA and 
type 2 diabetes today are easily separated by measurements 
of pancreatic autoantibodies like GADA, LADA and adult-
onset type 1 diabetes are primarily separated by time 
of insulin initiation and are therefore subjected to the 
clinicians’ decisions. Individuals with adult-onset type 
1 diabetes more often have elevated levels of two or more 
autoantibodies than those having LADA, although LADA 
patients may also be positive for other autoantibodies like 
Islet antigen 2 (IA-2) and Zink transporter 8 (ZnT8) (10). 
The C-peptide concentration would also be low or not 
detectible in type 1 diabetes, but usually normal or low 
in LADA. More precise differentiation between LADA and 
adult-onset type 1 diabetes is therefore a relevant clinical 
issue and biomarkers that can differentiate between the 
subgroups of diabetes are needed for more precise diagnosis. 
Ketosis-prone diabetes (KPD) is an intermediate form of 
diabetes that shares features of both type 1 and 2 diabetes, 
highlighting the complexity of diabetes diagnostics 
(11). KPD differs from LADA in that LADA is generally 
not prone to diabetic ketoacidosis (12). To improve the 
characterization of LADA and better distinguish LADA 
from type 1 (especially adult-onset type 1 diabetes) and 
type 2 diabetes, new roads need to be explored. 

miRNA are found to be useful as biomarkers for both the 
development and progression of many diseases including 
type 1 and type 2 diabetes. Studies have shown that miRNAs 
are stable and readily detectable in serum from biobanks 

and therefore can be used for biomarker discovery several 
years after collection (13). A study by Zampetaki et al. found 
that using an expression profile of the five most significant 
miRNAs (miR-15a, miR-126, miR-320, miR-223 and miR-
28-3p) could identify 70% of the patients with type 2 diabetes 
(14). These miRNAs were altered before diabetes diagnosis and 
could also predict about 50% of those who later developed 
type 2 diabetes. Knowledge on miRNAs in LADA is sparse. 
Two recent studies, Seyhan et al. and Yu et al., suggested that 
miRNAs could be useful biomarkers to distinguish between 
subtypes of diabetes; however, the number of LADA patients 
in these two studies was limited (15, 16). Thus, it is still not 
clear whether miRNAs profiles can identify individuals at 
risk of developing LADA and if characterization of miRNAs 
could lead to a better differentiation between LADA, type 1 
and type 2 diabetes. This study aimed to explore the notion 
that circulating small RNAs (sRNAs) in serum could be 
differentially expressed between three main subgroups of 
diabetes, including adult-onset type 1 diabetes and LADA as 
autoimmune diabetes and non-autoimmune type 2 diabetes 
and between the subgroups of patients with diabetes and 
non-diabetic controls. For this purpose, we used the data 
from the Trøndelag Health Study (HUNT).

Methods

Study population

In this cross-sectional case–control study, we included 
participants from the third HUNT survey (HUNT3, 2006–
2008, n  = 50 800, response rate 54.1%). Details about 
HUNT3 are available elsewhere (17). Study participants 
were categorized into four groups, including three groups 
with self-reported diabetes: LADA (n = 51), adult-onset type 
1 (n = 51) and type 2 diabetes (n = 50), and one group with 
self-reported non-diabetic participants serving as controls 
(n = 51). The clinical characteristics of the four groups 
are shown in Table 1. More information regarding the 
selection of study population and diabetes classification 
is described in Supplementary methods (see section on 
supplementary materials given at the end of this article). 
Power calculations using RnaSeqSampleSize in R showed 
that with group sizes of 50, our sequencing data has a 
power of 0.91 when using a minimum fold change of 1.5 
and a false discovery rate threshold of 0.05.

RNA isolation and sequencing

Total RNA was isolated from 100 µL of serum using the 
miRNeasy Serum/Plasma Kit (Qiagen, Cat. No./ID: 217184). 
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The serum samples were stored at −80°C at the HUNT 
biobank prior to RNA isolation and the RNA was isolated 
immediately prior to sequencing.

Small RNA library preparation was performed using 
the NEXTflex sRNA-seq kit v3 (Bio Scientific, Austin, TX, 
USA) using 10.5 µL total RNA. In the first ligation step, ten 
calibrator RNAs were mixed with the RNA to control for 
technical variation during the data analysis.

Single read sequencing (sRNA-seq) was performed for 
51 cycles on one HiSeq4000 flow cell, according to the 
manufacturer's instructions. (Illumina, Inc., San Diego, 
CA, USA). More detailed information regarding RNA 
isolation, library preparation and sequencing are described 
in Supplementary methods.

Data processing

The raw sequencing data were processed as previously 
described (18), in addition to removing the random 
nucleotides associated with the NEXTFLEX sRNA library 
preparation kit. For more information on how this was 
performed see Supplementary methods. The databases 
miRBase (19) and RNACentral (20) were used for miRNA 
and other small ncRNAs, respectively.

Statistical analysis

The correlation of clinical variables with the diabetes 
groups was examined using the manova function in R 
combined with summary.aov to extract the P-values. The 
P-values were adjusted for multiple testing using the 
Bonferroni method.

Differentially expressed sRNAs between the groups 
were detected using the limma-voom procedure in R (21). 
Calibrator RNAs were used for normalization by using 
the CalcNormFactors from on the calibrator matrix. For 
the differential expression analysis, a design matrix was 
created with the groups being compared, as well as the 
variables age, sex and BMI as additional covariates. An 
example of the limma-voom procedure for isomiR is show 
in Supplementary methods.

Small RNAs with a benjamini-hochberg adjusted 
P-value < 0.05 were considered as differentially expressed. 
For mature miRNAs, we required an expression of at least 
1 count-per million (cpm) in all the samples. For isomiRs 
and other small ncRNAs, we required an expression of at 
least 1 cpm in 50% of the samples. The reason for the less 
conservative filter for the isomiRs and sRNAs is that isomiRs 
by definition are less expressed than their corresponding 
mature miRNAs, since the mature miRNAs are the sum of 
all corresponding isomiRs. Furthermore, sRNAs are also 
less expressed than the miRNAs since our protocols aim 
for miRNAs. Applying too strict filters will risk removing 
true positive sRNAs that are for instance absent in one 
particular sample. The heatmaps were created using the 
pheatmap function in R for which the expression values 
were normalized first by cpm-log2 normalization followed 
by z-score normalization. The leave-one-out cross-
validation (LOOCV) on the signatures was conducted in R 
by performing feature selection in limma for each iteration 
followed by selecting the significant sRNAs after benjamini-
hochberg adjustment, which was then used to predict the 
left-out sample. The predicted values were then used as 
input to the roc function in R from the pROC package. The 

Table 1 Descriptive statistics of study participants. The P-values represent the statistical differences between the groups for the 
specific variables after multivariable adjustment. Data are presented as mean ± s.d. or as median (IQR).

Variable Non-diabetic controls Type 2 diabetes LADA Type 1 diabetes P-value

n 51 50 51 51
Males, n (%) 24 (47) 28 (56) 27 (53) 28 (55) 1
Age at participation (years) 52.8 ±15.7 63.7 ± 11.2 67.9 ± 9.3 59.8 ± 11.8 0.8
Age at diabetes diagnosis (years) NA 55.9 ± 10.9 55.1 ± 10.1 44.9 ± 11.7 0.04
Diabetes duration (years) NA 5.8 (3.2–10.7) 12.6 (4.8–20.3) 13.1 (6.9–22.6) 0.008
BMI (kg/m2) 27.9 ± 4.2 30.6 ± 4.8 29.0 ±4.5 27.4 ± 3.6 0.3
Waist circumference (cm) 96.8 ± 13.5 103.6 ± 12.4 100.4 ± 11.6 94.4 ± 9.2 0.1
Systolic blood pressure (mm Hg) 129 ± 19 140 ± 19 137 ± 22 133 ± 16 1
Cholesterol (mmol/L) 5.4 ± 1.1 5.1 ± 0.9 4.9 ± 0.8 4.7 ± 1.0 0.4
HDL cholesterol (mmol/L) 1.3 ± 0.4 1.2 ± 0.3 1.3 ± 0.4 1.4 ± 0.3 0.3
Triglycerides (mmol/L) 1.6 ± 0.8 2.4 ± 1.2 2.1 ± 1.6 1.2 ± 0.7 0.003
Non-fasting glucose (mmol/L) 5.4 ± 0.9 8.5 ± 2.8 9.9 ± 4.1 9.8 ± 4.8 1
HbA1c (% HbA1c) NA 7.2 ± 1.4 7.3 ± 1.2 8.2 ± 1.2 0.07
HbA1c (mmol/mol) NA 55 ± 15 56 ± 13 66± 13 0.07
Fasting C-peptide (nmol/L) NA 0.90 ± 0.42 0.60 ± 0.43 0.08 ± 0.14 9e-15
GADA titer (ai) 0.00 (0.00–0.01) 0.00 (0.00–0.01) 0.34 (0.11–1.11) 0.23 (0.02–0.98) 0.0001
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specificities- and sensitivities-vectors from the roc function 
were used to plot the ROC-curves using ggplot2. The 
confidence intervals for the AUC were extracted from the 
ci.auc function and the P-values were calculated from the 
roc.area function. The LOOCV model is available at https://
github.com/MjelleLab/Leave-one-out-cross-validation. 
The expression of miRNAs and other sRNAs can be browsed 
in the following shiny app: https://mjellelab.shinyapps.io/
shiny_diabetes_sRNA/.

Gene enrichment analysis were performed using 
clusterProfiler in R by using mRNA targets predicted by 
TargetScan. Different context score thresholds from 
TargetScan were tested.

Results

Sequencing statistics and clinical variables

On average, 12 million reads were sequenced across all 203 
samples (Table 1) of which about 1 million aligned to miRNAs 
and 1 million aligned to other sRNAs (Supplementary Figs 
2 and 3). miRNAs were the most abundant class of sRNAs, 
followed by tRNAs and ribosomal RNAs (Supplementary 
Figs 2 and 4). 70 miRNAs and 128 isomiRs were consistently 
expressed in all samples. A multivariable analysis was 
performed to examine differences in the variables between 
groups (Table 1). Mainly GADA, C-peptide and diabetes 
duration differed between the four groups.

Circulating miRNAs and isomiRs expression differ 
between autoimmune and non-autoimmune 
diabetes and between types of diabetes and 
non-diabetic controls

We performed differential expression analysis on both 
miRNAs and isomiRs and observed significant differences 
between the groups. First, we observed differences in 
expression of mature miRNAs between type 2 diabetes and 
controls, between type 2 diabetes and LADA and between 
type 1 diabetes and controls (Fig. 1A and Supplementary 
Table 1). The miRNA miR-22-3p was downregulated 
in controls compared to type 1 diabetes and type 2 
diabetes and lower in LADA compared to controls. Most 
differences were found between type 2 diabetes and LADA 
and between type 1 diabetes and controls with five and 
four differentially expressed miRNAs, respectively. To 
investigate if time from diagnosis to samples collection 
could affect the results for the three diabetes groups, we 
included this variable as a covariate in the analysis. We 

did not observe any major changes in the differentially 
expressed miRNAs after including this covariate, and the 
miRNAs that were significant before were still significant, 
albeit with slightly higher P-values (Supplementary 
Tables 1 and 2). Finally, we tested if the mRNA targets of 
the significant miRNAs were enriched for specific gene 
ontology terms; however, no significant enrichments 
were observed.

Next, focusing on isomiRs, we detected 30 differentially 
expressed isomiRs, originating from 26 different mature 
miRNAs (Fig. 1B and Supplementary Table 2). We observed 
significant differences of five of the comparisons, of which 
type 1 diabetes vs type 2 diabetes showed the largest 
differences with 14 differentially expressed isomiRs. For 
the type 1 diabetes vs type 2 diabetes comparison, 13 of 
the 14 significant isomiRs were higher expressed in type 2 
diabetes compared to type 1 diabetes.

Decreased expression of tRNA-gly in diabetes

Having established that several miRNAs and isomiRs were 
differentially expressed between the study-groups, we went 
on analyzing other sRNAs that were detected in the serum 
samples. We detected 18 differentially expressed sRNAs 
across all comparisons (Fig. 2 and Supplementary Table 
3). The highest number of differentially expressed sRNAs 
were found between type 1 diabetes and type 2 diabetes 
and between type 2 diabetes and LADA with ten and 
eight significantly differentially expressed sRNAs for the 
two comparisons, respectively. In total, we detected nine 
differentially expressed tRNAs, four Y-RNAs, two antisense 
RNAs, one snRNA and one lncRNA. The most significant 
sRNA difference across all comparisons was for the tRNA 
URS0000684E4B, which encodes the amino acid glycine. 
The expression of this tRNA was strongly reduced in the 
diabetes groups compared to controls, in particular LADA, 
which showed the lowest expression. We investigated if the 
observed difference could be due to length differences in 
the sequencing libraries between the groups and observed 
only minor fragment-length differences between the 
groups, indicating that the expression differences are 
indeed related to the biology of the groups (Supplementary 
Figs 5 and 6). To further test the possibility that length 
differences could affect the differential expression of the 
tRNA, we updated the limma-voom model by including 
the total read abundance for the fragment lengths 30–33 
nucleotides as a covariate, corresponding to the lengths 
of tRNAs in our data. The updated model showed that 
URS0000684E4B was still significantly downregulated 
in LADA vs controls when adjusting for the abundance 
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Figure 1
(A) Differentially expressed mature miRNAs. Shown are miRNAs that were significantly detected as differentially expressed 
between the groups using limma-voom. The heatmap shows the average z-score normalized expression of the miRNAs within the 
groups. The comparisons for which the different miRNAs were detected as significant are shown as a separate heatmap in which 
red and gray color indicate that the miRNA difference is significant and non-significant, respectively. (B) Similar as in (A) for 
isomiRs. The isomiR-sequence for the different miRNAs is indicated as part of the miRNA ID. See (A) for explanation of the 
heatmaps.
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of tRNAs in the dataset (P = 1.2e-05, benjamini-hochberg 
adjusted).

MicroRNA and sRNA signatures discriminate 
diabetes subgroups and non-diabetic controls

Having shown that multiple miRNAs are differentially 
expressed between different subgroups of diabetes 
and between diabetes and controls, we assessed the 
diagnostic potential of our newly identified miRNA, 
isomiRs and sRNAs. We combined the significant sRNAs 
for each specific group comparison into signatures and 
evaluated their ability to separate the different groups 
in our data set. That is, each signature consists of all the 
sRNAs that were significant for the different comparisons 
using limma-voom. To test the ability of the models to 
correctly classify new samples, we performed LOOCV and 
considered validated signatures with an area under the 
curve (AUC) value above 0.7 to have a predictive value 
(see Methods). In total, we tested three signatures for 
the mature miRNAs, five for isomiRs and five signatures 
for other sRNAs, corresponding to the comparisons for 
which we had significant results. Prior to the LOOCV, 
all the tested signatures showed AUC-values above 0.7. 
After the LOOCV, we identified two miRNA-signatures 
and three isomiR signatures with an AUC above 0.7. The 
two miRNA signatures separated type 2 diabetes from 
LADA (AUC = 0.75 (0.65–0.84), P-value = 1.1 × 10−5) and 
type 2 diabetes from controls (AUC = 0.78 (0.69–0.90), 

P-value = 4.2 × 10−7) (Fig. 3A and B). The three isomiR 
signatures separated type 2 diabetes from LADA (AUC = 0.81 
(0.73–0.9), P-value = 2.5 × 10−8), type 2 diabetes from 
controls (AUC = 0.71 (0.60–81), P-value = 1.5 × 10−4) and 
type 1 diabetes from type 2 diabetes (AUC = 0.75 [0.65–
0.84], P-value = 7.9 × 10−6) (Fig. 3C, D and E).

Next, given the pronounced difference in expression of 
other sRNAs between many of the groups, we investigated 
the diagnostic ability of the other sRNAs in classifying 
diabetes. Similar as for miRNAs, sRNAs that were significant 
for the specific group-comparisons were included in 
the signature. We identified two significant signatures 
after LOOCV, one that separated LADA from controls 
(AUC = 0.80 (0.71–89), P-value = 7.7 × 10−8) and one that 
separated type 2 diabetes and LADA (AUC = 0.84 (0.76–91), 
P-value = 3.1 × 10−9) (Fig. 3F and G). The glycine tRNA was 
included in all LOOCV-signatures for the LADA vs controls 
comparison, indicating a diagnostic potential. Taken 
together, these results show that not only miRNAs but 
also other sRNAs, such as tRNAs, can differentiate between 
diabetes subgroups.

Discussion

Our study is the first to perform comprehensive sRNA-
seq on all three major diabetes subgroups simultaneously 
in addition to non-diabetic controls. In this study 
we demonstrate that several sRNAs are differentially 

Figure 2
Differentially expressed other sRNAs. 
Shown are sRNAs that were significantly 
detected as differentially expressed 
between the groups using limma-voom. 
The IDs correspond to the RNACentral 
IDs. The comparisons for which the 
different sRNAs were detected as 
significant are shown as a separate 
heatmap in which red and gray color 
indicate that the sRNA difference is 
significant and non-significant, 
respectively. 
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expressed in serum of diabetes patients and therefore 
might be useful to distinguish between diabetes and 
non-diabetic controls and partly between subgroups of 
diabetes.

The miRNA miR-22-3p was more highly expressed 
in all diabetes groups compared to the control group. A 
study in rats showed that upon 3,5-diiodo-l-thyronine 
(T2) treatment, a drug shown to have beneficial effect on 
glucose tolerance and insulin-resistance, serum levels of 
miR-22-3p decreased compared to rats not receiving T2 
treatment. This finding is in line with our results in the way 
that T2 treated rats and non-diabetic controls in our study 
represent a healthier state, with lower miR-22-3p levels 
(22). In addition to miR-22-3p, the miRNAs miR-423-5p 

and miR-375-3p were also more highly expressed in all 
diabetes groups compared to control, although differences 
in these miRNAs were only significant in type 1 diabetes vs 
controls.

Seyhan et  al. identified up-regulation of miR-375 
in type 1 diabetes compared to LADA and non-diabetic 
controls (15). This finding is in concordance with our 
study; however, other studies have shown downregulation 
or unchanged levels of miR-375 (23), indicating the 
variability of miRNA expression in serum and that different 
methods and study population could affect which sRNAs 
are detected as differentially expressed. Anyway, miR-375 is 
shown to be enriched in human islet cells (24), a regulator 
for insulin secretion (25) and increased miR-375 in the 

Figure 3
ROC-curves for the leave-one-out 
cross-validated models for the miRNA- (A 
and B), isomiR- (C, D and E) and other 
sRNA- (F and G) signatures. Shown are 
only signatures that passed the leave-
one-out cross-validation. The signatures 
include those RNAs that were significant 
for the different group-comparisons after 
adjusting for multiple testing (see 
Methods for details on the leave-one-out 
cross-validation).
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blood is shown to be associated with beta-cell death in 
mice (26).

In general, we observed larger differences between 
type 2 diabetes and LADA than between type 1 diabetes 
and LADA. This could be explained by the fact that both 
type 1 diabetes and LADA are autoimmune diseases and 
that the same sRNAs are affected in both diseases, but also 
lack of power, although our power calculation indicates 
good power with current sample sizes. The only sRNA 
that significantly separated LADA from type 1 diabetes 
was an isomiR of miR-23b-3p which was more highly 
expressed in LADA compared to type 1 diabetes. The miR-
23b-3p is enriched in human beta-cells and shown to be 
downregulated in cytokine (IL-1beta and TNF-gamma) 
treated beta-cells and potentially involved in beta-
cells death (27). This makes the miR-23b-3p a potential 
biomarker for differentiating LADA from type 1 diabetes; 
however, this needs to be tested in future studies with larger 
groups. We were not able to create a predictive signature 
that separated LADA from type 1 diabetes, indicating that 
these groups are too similar with respect to serum sRNA 
expression to be distinguished with high confidence.

By performing sRNA-seq, we were able to measure 
other sRNAs in addition to miRNAs. Among the many 
groups of sRNAs, we detected significant sRNA differences 
in several of the comparisons. The most striking difference 
was the pronounced depletion of a glycine tRNA within 
the three diabetes groups. The highest depletion was 
detected in the LADA group; however, all three diabetes 
groups showed significant down-regulation of this tRNA 
compared to the control group. This tRNA is located 
within an intron of the ULK2 gene. No previous literature 
supports a role for this particular tRNA in diabetes; 
however, tRNAs are emerging as a novel group of molecules 
playing a role in diabetes-related processes such as glucose 
metabolism, pancreatic β-cell function, obesity and 
insulin resistance in type 2 diabetes (28). Dysregulation of 
amino acids in diabetes is a known phenomenon where 
for instance glycine has been shown to be reduced in 
patients with diabetic ketoacidosis (29). Indeed, several 
studies have observed reduced levels of plasma glycine 
in patients with obesity and diabetes (30, 31, 32, 33, 34). 
Other studies have reported difference in dysregulation 
of amino acids such as elevated levels of Val, ILe and Leu 
in impaired fasting glucose (IFG) or T2D (35, 36). Patients 
with impaired glucose tolerance and type 2 diabetes are 
shown to have lower levels of certain amino acids such 
as arginine and glutamine (37). Together, dysregulation 
of amino acids appears to be a common phenomenon in 
diabetes and our finding of a dysregulated tRNA coding 

for glycine supports current literature and could explain 
some of the previously observed changes at the amino 
acid level.

One possible limitation of this study is that the diabetes 
diagnosis is based on self-report. However, the self-reported 
diagnosis of diabetes in HUNT has previous been shown to 
have good validity (38). Another limitation is the lack of 
complete clinical measurements for all relevant variables. 
For C-peptide, we only have measurements for 94 patients 
and none of the controls. miRNA that are correlated with 
the missing variables could potentially be false positives. 
However, we do have complete measurement for BMI 
which is considered an important clinical variable in 
diabetes studies. Several studies do not adjust for age, sex 
and BMI in the analysis. BMI may be particularly important 
as this phenotype shares many of the same inflammatory 
responses seen in diabetes and many miRNAs are shown 
to be differentially expressed in obese individuals (39). 
One could argue that we should had adjusted for other 
risk factors for diabetes such as physical activity and diet 
which might also influence the expression of small RNAs. 
However, these risk factors are hard to measure in a valid 
way, and we lack accurate measures of these risk factors in 
HUNT. Nonetheless, much of the excess risk of diabetes 
associated with low physical activity and poor diet is likely 
mediated through BMI.

No consensus on the circulating miRNA profile for 
diabetes has been established and findings between most 
previous studies show little or no overlap. The lack of 
consistency between studies could have several reasons. 
First, the date of sample collection relative to the diagnosis 
date is not the same between studies, meaning that the 
phenotype of the patients, such as the degree of beta-cell 
death, may not be comparable between studies, leading 
to different sets of miRNAs being detected as differentially 
expressed. It should be noted that our serum samples were 
collected several years after diabetes diagnosis (at a median 
time of 7.4 years) and therefore not necessarily reflect 
the differences at the time of diagnosis. Moreover, high-
throughput sequencing like many other technologies, 
such as RT-qPCR and microarray, has different biases that 
could affect the results.

In conclusion, by performing sRNA-seq on serum from 
diabetes patients we identified several miRNAs, isomiRs 
and other sRNAs that are differentially expressed between 
patients with diabetes and non-diabetic controls and 
between LADA and type 2 diabetes. Moreover, we describe 
a novel tRNA fragment encoding for glycine that could 
potentially be used as a diagnostic tool in combination 
with other biomarkers.
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