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Highlights Lay summary

� We evaluated the impact of SERPINA Pi*MZ in a

compensated cirrhosis cohort.

� SERPINA1 Pi*MZ was associated with an increased
risk of decompensation vs. Pi*MM.

� Pi*MZ was associated with an increased risk of
liver-related death or liver transplant.

� Findings were robust across several sensitivity
analyses.
https://doi.org/10.1016/j.jhepr.2022.100483
There is a mutation in the gene SERPINA1 called Pi*MZ
which increases risk of liver scarring (cirrhosis);
however, it is not known what effect Pi*MZ has if
someone already has cirrhosis. In this study, we found
that people who had cirrhosis and Pi*MZ developed
complications from cirrhosis faster than those who
did not have the mutation.
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Background & Aims: Alpha-1 antitrypsin deficiency is caused by mutations in SERPINA1, most commonly homozygosity for
the Pi*Z variant, and can present as liver disease. While heterozygosity for Pi*Z (Pi*MZ) is linked to increased risk of cirrhosis,
whether the Pi*MZ genotype is associated with an increased rate of decompensation among patients who already have
compensated cirrhosis is not known.
Methods: This was a retrospective study of Michigan Genomics Initiative participants with baseline compensated cirrhosis.
The primary predictors were Pi*MZ or Pi*MS genotype (vs. Pi*MM). The primary outcomes were hepatic decompensationwith
ascites, hepatic encephalopathy, or variceal bleeding, or the combined endpoint of liver-related death or liver transplant, both
modeled with Fine-Gray competing risk models.
Results: We included 576 patients with baseline compensated cirrhosis who had undergone genotyping, of whom 474 had
Pi*MM, 49 had Pi*MZ, and 52 had Pi*MS genotypes. Compared to Pi*MM genotype, Pi*MZ was associated with increased rates
of hepatic decompensation (hazard ratio 1.81; 95% CI 1.22-2.69; p = 0.003) and liver transplant or liver-related death (hazard
ratio 2.07; 95% CI 1.21-3.52; p = 0.078). These associations remained significant after adjustment for severity of underlying
liver disease, and were robust across subgroup analyses based on etiology, sex, obesity, and diabetes status. Pi*MS was not
associated with decompensation or death/transplantation.
Conclusions: The SERPINA1 Pi*MZ genotype is associated with an increased rate of hepatic decompensation and decreased
transplant-free survival among patients with baseline compensated cirrhosis.
Lay summary: There is a mutation in the gene SERPINA1 called Pi*MZ which increases risk of liver scarring (cirrhosis);
however, it is not knownwhat effect Pi*MZ has if someone already has cirrhosis. In this study, we found that people who had
cirrhosis and Pi*MZ developed complications from cirrhosis faster than those who did not have the mutation.
© 2022 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
Alpha-1 antitrypsin (A1AT) deficiency is estimated to affect
around 100,000 people in the United States and usually presents
as chronic obstructive pulmonary disease or chronic liver dis-
ease, which ranges from asymptomatic liver enzyme elevations
to chronic hepatitis and cirrhosis with portal hypertensive
complications.1,2 A1AT deficiency is caused by SERPINA1 muta-
tions, the most clinically relevant of which are the Pi*Z (E366K;
rs28929474-T) and Pi*S (E288V; rs17580-A) alleles, while Pi*M
corresponds to wild-type A1AT. Pi*ZZ carries the most severe
phenotype, is characterized by severe A1AT deficiency (10-20%
normal), and is associated with the highest risk of liver and lung
disease. Up to 13% of patients with the Pi*ZZ genotype die of liver
disease and 55% of lung disease.3 In contrast, Pi*MZ, Pi*SZ, and
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Pi*SS have a milder phenotype with higher levels of A1AT (30-
60% normal) and lower risk of cirrhosis. Notably, liver disease in
A1AT deficiency is not caused by protein deficiency per se, but
rather by misfolding of the A1AT protein induced by specific
SERPINA1 mutations (most notably Pi*Z) which results in accu-
mulation in the endoplasmic reticulum and decreased secretion
of the protein from hepatocytes.4

While clinically diagnosed A1AT deficiency is relatively un-
common, the Pi*Z and Pi*S alleles are relatively common with
estimated minor allele frequency of 0.037 and 0.016, respectively,
in Caucasians; this discrepancy may be due to low penetrance and
disease awareness.2,5 Given this, there are a number of individuals
carrying the Pi*Z or Pi*S allele who are unaware of this genotype
yet may have increased risk of disease, even if penetrance is low.6

One study from a Swedish national registry of 1,595 individuals
with the Pi*ZZ genotype found that 26% had persistently elevated
liver enzymes, while 7% developed cirrhosis during follow-up.7

Pi*ZZ appeared to interact with established risk factors such as
viral hepatitis and diabetes as these patients were at higher risk of
developing liver disease.7 Another multinational European study
found that Pi*ZZ was associated with an odds ratio of 16.3 for liver
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stiffness measurement >−10 kPa on vibration-controlled transient
elastography (VCTE) compared to Pi*Z non-carriers.8 Pi*ZZ was
also associated with an increased risk of severe hepatic steatosis
based on controlled attenuation parameter measured by VCTE
(odds ratio 2.1 for severe steatosis).8

The associations between Pi*MZ or Pi*SZ and liver disease
appear to be weaker. One study of the UK Biobank found
modestly increased risk of liver fibrosis/cirrhosis with Pi*MZ
(odds ratio 1.7) and Pi*SZ (odds ratio 3.1) relative to Pi*MM.9 We
also reported a dose-dependent increase in risk of cirrhosis based
on Pi*Z dosage in a UK Biobank and a United States cohort.5 Of
note, whether the participants with more advanced liver disease
all had other underlying liver diseases was not reported, so it is
uncertain whether Pi*MZ is sufficient to cause cirrhosis on its
own. One Austrian study evaluated 596 individuals with Pi*MM or
Pi*MZ genotypes and cirrhosis, and found that Pi*MZ carriers
were at an increased risk of ascites and hepatic encephalopathy
and a higher model for end-stage liver disease (MELD) score, with
no significant difference in transplant-free survival.10 Taken
together, the existing data suggest that Pi*ZZ is the most delete-
rious variant, followed by Pi*SZ, then Pi*MZ. Pi*SS and Pi*MS have
not been consistently shown to increase risk of liver disease.9

The literature to date has been primarily based in Europe,
with relatively little literature from the United States. Further,
most studies determined presence or absence of liver disease but
not rate of disease progression based on SERPINA1 genotype.
There is also minimal literature on the impact of A1AT deficiency
in patients who already have baseline compensated cirrhosis. In
this study, we sought to characterize the impact of the A1AT
Pi*MZ and Pi*MS variants on the rate of hepatic decompensation
using time-to-event survival analyses in patients with estab-
lished cirrhosis.
Patients and methods
Ethics
Michigan Genomics Initiative (MGI) participants provided writ-
ten informed consent approved by the Institutional Review
Board of the University of Michigan (Ann Arbor, MI), which also
approved all research conducted in this study.

Cohort and genotyping
MGI is a prospective cohort with ongoing enrollment and at time
of analysis included >70,000 individuals. MGI recruits primarily
from patients undergoing elective surgery at Michigan Medicine
(Ann Arbor, MI) as well as from other selected outpatient pop-
ulations such as patients with diabetes followed in endocri-
nology clinics. Participants underwent genotyping of whole
blood on an Illumina HumanCoreExome v.12.1 array, a combined
genome-wide association study and exome array consisting of
>500,000 single nucleotide polymorphisms.11 Imputation was
performed based on the Haplotype Reference Consortium
(release 1 for chromosomes 1-22 and 1.1 for X).12

A1AT Pi*Z was defined as rs28929474-T and Pi*S by rs17580-
A, while Pi*M was defined by the absence of either rs28929474-T
or rs17580-A. Other SERPINA1 genotypes were not evaluated in
this analysis.

Liver phenotypes
We screened for cirrhosis based on a combination of diagnostic
codes for cirrhosis and portal hypertension (Table S1), endo-
scopic evidence of varices, VCTE liver stiffness measurement >16
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kPa, imaging evidence of cirrhosis, or liver biopsy reports
showing cirrhosis. We obtained data on presence of varices with
an automated algorithm that screened for the terms “varix”,
“varic”, “GOV1”, “GOV2”, “IVG1”, and “IGV2” in upper endoscopy
reports. Reports that included any of these terms without a
negative term (e.g., “no”) or an assessment term (e.g., “rule out”)
in the same sentence were flagged as representing cirrhosis.
VCTE reports at our institution are standardized to report liver
stiffness measurement in a designated field, and these values
were extracted using an automated algorithm, with a cut-off of
16 kPa for cirrhosis chosen to maximize specificity.13 Imaging
and liver biopsy reports were screened for evidence of cirrhosis
with an algorithm near-identical to the one we previously re-
ported except that instead of assigning patients as cases vs.
controls, herein, we were only interested in identifying cases.5

Diagnoses of cirrhosis, varices, and hepatic decompensation
were then verified manually (DAB, IJM, JVD, MJM) and the dates
of diagnosis of cirrhosis and/or complications were recorded.
Cirrhosis was defined based on compatible imaging, biopsy, or
evidence of portal hypertension without an alternative expla-
nation. Hepatic decompensation was defined as (1) ascites severe
enough to require treatment (diuretics, paracentesis, or trans-
jugular intrahepatic portosystemic shunt), (2) hepatic encepha-
lopathy, or (3) variceal hemorrhage. The automated algorithms
for analyzing reports for VCTE, imaging, liver biopsy, or upper
endoscopy all had specificity >98% for their respective criteria for
cirrhosis (n = 72, 505, 127, and 218, respectively). The accuracies
of diagnostic codes for cirrhosis were previously reported to be
high with the exception of codes for ascites.14
Statistics
Quantitative variables were reported as median (interquartile
range). Categorical variables were reported as percentages.
Three-way comparisons of continuous variables were performed
with Kruskal-Wallis statistics, and categorical variables were
compared with a chi-squared statistic.

In survival analyses, the primary predictor was Pi*MZ or
Pi*MS genotype (vs. Pi*MM). The primary outcomes were hepatic
decompensation and a combined outcome of liver transplant or
liver-related death (as an indicator of severe liver disease). For
the outcome of decompensation, we conducted a Fine-Gray
analysis with competing risk of death without decompensa-
tion.15 For the endpoint of liver transplant or liver-related death,
we conducted a Fine-Gray analysis with liver-related death or
liver transplant as the endpoint of interest and non-liver-related
death as a competing risk. All models were adjusted for age, sex,
disease etiology (non-alcoholic fatty liver disease [NAFLD] or
cryptogenic cirrhosis vs. all others, because NAFLD/cryptogenic
disease was the most common), and genetic principal compo-
nents 1-10 to account for ethnic differences. We conducted
several sensitivity analyses in which we adjusted for severity of
baseline liver disease based on albumin level, platelet count,
MELD score, and platelet count and MELD score. We also
generated models stratified by presence of clinically significant
portal hypertension (CSPH), defined by either liver stiffness
measurement >−25 kPa on VCTE or presence of varices or collat-
erals on endoscopy or imaging.17 Pre-specified subgroup ana-
lyses were: sex (female vs. male), etiology (NAFLD/cryptogenic
vs. other), age (>− or <60 years), presence of diabetes, and pres-
ence of severe obesity (class 2-3) vs. not. Heterogeneity between
the subgroups was computed based on the Cochran Q statistic.16
2vol. 4 j 100483



997 patients
with cirrhosis

574 patients

474 patients

A1AT-MM A1AT-MZ A1AT-MS

49 patients 52 patients

•  141 without genetic data
•  61 non-Caucasian ancestry
•  188 with decompensated

disease on presentation

Fig. 1. Study design. A1AT, alpha-1 antitrypsin.
Analyses were conducted using R version 4.0.2 (Vienna,
Austria) with competing risk analyses conducted using the
cmprsk package. A 2-sided p value <0.05 was used to determine
statistical significance throughout.
Results
Cohort
This is a retrospective analysis of patients enrolled in MGI. We
included 574 patients with baseline compensated cirrhosis (i.e.
who had no evidence of decompensation until at least 6 months
after cirrhosis diagnosis) who had undergone genotyping (Fig. 1).
Table 1. Baseline characteristics based on alpha-1 antitrypsin genotype.

Trait Pi*MM, n = 474

Age (years) 58.1 (51.1-65.0)
Male 59.5%
Hypertension 70.3%
Hyperlipidemia 47.9%
Diabetes 53.6%
Coronary artery disease 25.3%
Cerebrovascular disease 6.2%
Body mass index (kg/m2) 31.4 (26.4-36.9)
Smoking history

Never 41.4%
Former 36.3%
Current 22.4%

Illicit drug use history 14.5%
Cirrhosis etiology

Non-alcoholic fatty liver disease or cryptogenic 44.1%
Hepatitis C alone 15.3%
Alcohol alone 18.1%
Hepatitis C and alcohol 9.4%
Other 13.7%

Gastroesophageal varices 47.0%
Clinically significant portal hypertension 48.5%
Laboratory values

Creatinine (mg/dl) 0.9 (0.7-1.1)
Hemoglobin A1c (%) 6.1 (5.4-7.8)
Alanine aminotransferase (U/L) 43.0 (26.0-73.0)
Aspartate aminotransferase (U/L) 49.0 (33.0-79.5)
Total bilirubin (mg/dl) 0.8 (0.5-1.5)
Alkaline phosphatase (U/L) 119.0 (85.0-172.5)
Albumin (mg/dl) 3.9 (3.4-4.3)
Platelets (K/ul) 129.0 (97.0-194.8)
Model for end-stage liver disease score 8.5 (7.2-11.9)

Three-way comparisons of continuous variables were performed with Kruskal-Wallis st
statistic.
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We also included only Caucasian participants to avoid attributing
effects to these genotypes that may be related to race, as the most
common A1AT deficiency-associated variants, Pi*Z and Pi*S, are
rare in non-Caucasians. Of these 574 patients, 474 had Pi*MM, 49
had Pi*MZ, and 52 had Pi*MS genotypes. In subsequent analyses,
we excluded patients with Pi*ZZ, Pi*SZ, and Pi*SS genotypes due
to the small number of these patients (n = 9 combined). Of the
remaining participants (i.e. with Pi*MM, Pi*MZ, or Pi*MS geno-
types), 278 eventually developed hepatic decompensation, 165
died, and 98 underwent liver transplantation >6 months from
enrollment. First decompensating event was ascites in 107 pa-
tients, hepatic encephalopathy in 101, variceal bleeding in 23, and
multiple decompensations in the remainder. Cause of death was
liver-related in 51% of deaths, cardiovascular in 8%, and unknown/
other in the remainder. Median follow-up was 58.4 months
(interquartile range 29.4 to 99.5 months). Incidence rate for
decompensation was 0.11 per person-year at risk.
Baseline characteristics
Baseline characteristics based on A1AT genotype are shown in
Table 1. In the overall cohort, median age was 58 years and 42%
of patients were female. The most common etiology of liver
disease was NAFLD (45%), followed by alcohol-related liver dis-
ease (18%), hepatitis C virus (14%), and hepatitis C combined with
alcohol (9%). Laboratory values were as expected for a cohort of
baseline compensated cirrhosis, with low to borderline-low
platelet count and low MELD scores. There were no meaningful
differences in laboratory values or comorbidities across the
different A1AT genotypes (Table 1).
Pi*MZ, n = 49 Pi*MS, n = 52 p value

59.5 (43.9-66.2) 57.8 (50.1-67.0) 0.99
49.0% 52.9% 0.20
65.3% 80.4% 0.58
53.1% 56.9% 0.59
63.3% 47.1% 0.25
25.0% 22.0% 1.0
4.2% 6.0% 0.80

30.7 (27.3-38.5) 31.6 (27.5-36.1) 0.69

44.9% 37.3% 0.31
44.9% 39.2%
10.2% 23.5%
8.3% 3.9% 0.34

40.8% 54.9% 0.15
10.4% 13.7%
16.3% 15.7%
4.2% 9.8%

28.6% 5.9%
42.6% 46.0% 0.67
46.8% 46.0% 0.92

0.8 (0.7-1.0) 0.9 (0.8-1.1) 0.36
7.1 (5.9-7.8) 5.8 (5.2-7.2) 0.13

39.0 (28.0-57.0) 35.0 (23.0-51.5) 0.10
54.0 (41.0-71.0) 46.0 (28.0-78.5) 0.48

1.1 (0.7-2.0) 0.8 (0.5-1.5) 0.037
124.0 (90.0-166.0) 109.0 (81.5-138.5) 0.39

3.9 (2.9-4.2) 4.0 (3.5-4.3) 0.76
140.0 (105.0-198.0) 161.0 (97.5-238.0) 0.17

10.0 (7.7-13.1) 8.2 (7.2-13.8) 0.29

atistics, and comparisons of categorical variables were performed using a chi-squared
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Table 2. Effects of Pi*MZ genotype on hepatic decompensation and liver
transplant or liver-related death.

Model

Hepatic decompensation
Liver transplant or
liver-related death

Hazard ratio p value Hazard ratio p value

Model 1 1.81 (1.22-2.69) 0.0032 2.07 (1.21-3.52) 0.0078
Model 2 1.80 (1.22-2.65) 0.0030 1.86 (1.07-3.23) 0.027
Model 3 1.80 (1.22-2.65) 0.003 1.92 (1.10-3.36) 0.021
Model 4 1.79 (1.19-2.67) 0.0047 1.90 (1.10-3.28) 0.022
Model 5 1.80 (1.22-2.68) 0.0033 1.80 (1.02-3.18) 0.041

Hazard ratios (95% Cl) for Pi*MZ relative to Pi*MM. Model 1 is adjusted for age, sex,
disease etiology (non-alcoholic fatty liver disease or cryptogenic vs. other etiologies),
and principal components 1-10. Model 2 is adjusted for model 1 covariates plus al-
bumin. Model 3 is adjusted for model 1 covariates plus platelet count. Model 4 is
adjusted for model 1 covariates plus model for end-stage liver disease score. Model 5
is adjusted for model 1 covariates plus platelet count and model for end-stage liver
disease score. p value was generated using a Fine-Gray competing risk model.
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Effects of A1AT genotype on hepatic decompensation and
liver-related death or transplant
Compared to Pi*MM, the Pi*MZ genotype was associated with
increased risk of hepatic decompensation in the primary model
with hazard ratio (HR) 1.81 (95% CI 1.22-2.69, p = 0.0032) (Table 2,
Fig. 2). This effect was not meaningfully changed after adjusting
for severity of underlying liver disease based on albumin, platelet
count, and/or MELD score (Table 2). In addition, Pi*MZ genotype
was associated with an increased risk for liver transplantation or
liver-related death with HR 2.07 (95% CI 1.21-3.52, p = 0.0078)
relative to Pi*MM (Table 2). These associations remained signifi-
cant after adjustment for albumin concentration, platelet count,
MELD score, or platelet count and MELD score. In contrast, Pi*MS
was not significantly associated with hepatic decompensation or
the combined outcome of liver transplant or liver-related death
relative to Pi*MM (Table S2, Fig. S1.).

We evaluated the association between the Pi*MZ genotype
and decompensation or liver-related death or transplant in
several subgroups (Table S3). As expected, most of the effects
were less significant in subgroups compared to the overall cohort
due to smaller sample size, but all odds ratios were directionally
consistent. Pi*MZ was significantly associated with hepatic
decompensation in patients with but not without baseline CSPH.
We note that the association between Pi*MZ and decompensa-
tion has greater magnitude in men compared to women, and
may also be greater in older vs. younger individuals, though
heterogeneity was not statistically significant for any comparison
(phet >0.05). In addition, the association between Pi*MZ and
decompensation or liver-related death/transplant was similar
across disease etiologies. Alcohol intake at time of cirrhosis
diagnosis was quantified in only 29% of patients; in a model
adjusting for alcohol intake, Pi*MZ was not significantly associ-
ated with decompensation (p >0.05 for all associations).
Alpha−1 antitrypsin genotype Pi*MM Pi*MZ

Months

N° at risk
Pi*MM
Pi*MZ

465 455 449 447 446 445 444 442 442 442 439
46 45 45 44 43 43 42 42 42 42 41

Fig. 2. Effects of SERPINA1 Pi*MZ genotype on liver-related outcomes. (A)
Fine-Gray competing risk model depicting time to hepatic decompensation,
with competing risk of death without hepatic decompensation. (B) Fine-Gray
competing risk model depicting time to liver-related death or liver transplant,
with competing risk of non-liver-related death. p values are by the Fine-Gray
method.
Effects of A1AT genotype on individual decompensating
events
We evaluated the impact of Pi*MZ on the individual decom-
pensating events, namely ascites, hepatic encephalopathy, and
variceal bleeding (Table S4). The association was significant for
ascites (HR 1.82, 95% CI 1.09-3.05, p = 0.022) and trending toward
significance for hepatic encephalopathy (HR 1.54, 95% CI 0.97-
2.43, p = 0.065), and was directionally consistent for variceal
bleeding though there were few incident events (n = 40 with
incident events >6 months after follow-up).
JHEP Reports 2022
Discussion
We found that compared to A1AT Pi*MM, the Pi*MZ genotype was
associated with increased hepatic decompensation and increased
risk of severe liver disease (defined as liver-related death or liver
transplant) in patients with baseline cirrhosis. This effect was
robust across a number of subgroups and for individual outcomes.
In contrast, Pi*MS was not associated with decompensation or
4vol. 4 j 100483



death/liver transplant. To our knowledge, this is the first study
showing that in patients with compensated cirrhosis, Pi*MZ is
associated with an increased rate of progression to decompensa-
tion or the composite outcome of death/liver transplantation.

The association between Pi*Z and development of cirrhosis
and/or decompensation in the general population is well-
established, but there are few data on decompensation among
those with established cirrhosis. We are only aware of one other
study evaluating effects of Pi*MZ on decompensation focusing on
those with cirrhosis. That study included 540 individuals with
Pi*MM or Pi*MZ genotypes and found that Pi*MZ carriers had
increased odds of ascites and hepatic encephalopathy and a
higher MELD score, with no overall difference in transplant-free
survival.10 It differed from our study in that it was cross-sectional
and therefore was unable to evaluate whether Pi*MZ patients
were simply presenting at a later timepoint in their disease. Our
study, in contrast, identified patients at a similar disease stage,
all compensated at baseline, and found that Pi*MZ was associ-
ated with increased risk of incident outcomes. Therefore, our
study offers information in terms of disease trajectory even for
patients at a similar initial disease stage.

The clinical implications of this study are that A1AT Pi*MZ can
be treated as a second risk factor for disease progression. In our
cohort, 8% of Caucasian patients with cirrhosis had the Pi*MZ risk
allele. Notably, the Pi*Z allele frequency is higher in those with
cirrhosis than in the general population because Pi*MZ is also
associated with increased risk of cirrhosis. It is worth comparing
the effects of the Pi*MZ genotype with that of diabetes, the
metabolic comorbidity most strongly linked to cirrhosis and
hepatic decompensation.18 Among the few studies on diabetes or
impaired glucose tolerance as a risk factor for decompensation in
compensated cirrhosis, the HR for decompensation was 1.4-
1.7,19,20 which is comparable in magnitude to the observed effect
of A1AT Pi*MZ. Of note, the Pi*MZ allele is known to interact with
other risk factors such as diabetes and obesity to increase the risk
of incident cirrhosis,9 implying that treatment of these modifi-
able comorbidities may mitigate the non-modifiable genetic risk
factor of Pi*MZ. While missing data prevented us from assessing
the interaction of alcohol consumption and Pi*MZ, strict alcohol
abstinence may be even more important in Pi*MZ patients with
cirrhosis. Whether treatment of other liver diseases such as viral
hepatitis or obesity decreases risk of decompensation in Pi*MZ
carriers with established cirrhosis more than in Pi*MM carriers is
unknown but plausible.
JHEP Reports 2022
Limitations of this study include that it was a single center
study. In addition, even with manual chart review, it is difficult
to know precisely when decompensation developed in a
retrospective study. The prevalence of diabetes and obesity was
high in this cohort, suggesting that many of our patients may
have had underlying undiagnosed NAFLD, and this may limit
generalizability to populations with lower levels of metabolic
comorbidities. We included only Caucasian patients because
the Pi*Z and Pi*S alleles are very rare in other races and we
wanted to avoid confounding our findings with other effects of
race including social determinants of health. While this
exclusion limits generalizability to other races, the Pi*Z and
Pi*S alleles are very rare in non-Caucasian populations, so at a
population level they are unlikely to be as important. Alcohol
intake from time of cirrhosis diagnosis was not quantified in a
large proportion of patients, which limited our ability to
determine how Pi*MZ may interact with alcohol intake.
Decompensation rates were higher than would be expected,
likely due to the high prevalence of diabetes and obesity and
the retrospective nature of this study which may have included
a higher number of patients who were followed for longer and
therefore had more events. However, the design of MGI did not
select for patients with advanced liver disease or those with
more frequent encounters with our hospital, as most of the
patients in this study were recruited at the time of elective
surgery. Finally, since this was a retrospective study, it is
possible that some patients had decompensation at baseline
but were not coded as such. However, the miscoding would be
identified by our chart review and would also occur in patients
with Pi*MM and Pi*MS, not just those with Pi*MZ. Further-
more, most decompensating events occurred more than 3 years
after the initial diagnosis of cirrhosis. Strengths of our study
include detailed phenotyping with manual chart review and
robust statistical analyses including a 6-month lead time for
outcomes and adjustment for relevant covariables including
ethnicity via principal components.

In conclusion, the A1AT Pi*MZ genotype is associated with
increased risk of hepatic decompensation and transplant/liver-
related death in a cohort of patients with compensated
cirrhosis at baseline. Further multicenter studies to validate
these findings and determine whether more aggressive inter-
vention can decrease the risk of adverse outcomes in Pi*MZ
carriers are warranted.
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