
Wide space sowing achieved high
productivity and effective nitrogen use of
irrigated wheat in South Shanxi, China
Qiang Wang1,2, Hafeez Noor1,2, Min Sun1,2, Aixia Ren1,2, Yu Feng1,2,
Peng Qiao1,2, Jingjing Zhang1,2 and Zhiqiang Gao1,2

1 College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
2 State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University,
Taiyuan, Shanxi, China

ABSTRACT
Wheat (Triticum aestivum L.) is a staple crop worldwide, and its yield has improved
since the green revolution, which was attributed to chemical nitrogen (N) fertilizer
application. However, regular N application decreases N use efficiency (NUE, the
ratio of grain dry matter yield to N supply from soil and fertilizer). Various practices
have been implemented to maintain high crop yield and improve NUE. Nowadays,
the enhanced sowing method, i.e., wide space sowing (WS), has improved the
productivity of wheat crops. However, how the sowing method and N application
rate affect N use and yield productivity has not been fully elucidated. Field
experiments with treatments using two sowing methods (WS, and drill sowing, DS)
and four N application rates (0, 180, 240, and 300 kg ha−1, represented as N0, N180,
N240, and N300, respectively) were conducted from 2017 to 2019. The results
showed that grain yield under WS was 13.57–16.38% higher than that under DS.
The yield advantage under WS was attributed to an increased ear number. Both the
higher stem and productive stem percentage accounted for the increased ear number
under WS. Higher total N quantity and larger leaf area index at anthesis under WS
contributed to higher dry matter production, resulting in higher grain yield. Higher
dry matter production was due to pre-anthesis dry weight and post-anthesis dry
weight. The wheat crop under WS had a 12.44–15.00% higher NUE than that under
DS. The increased NUE under WS was attributed to higher N uptake efficiency (the
ratio of total N quantity at maturity to N supply from soil and fertilizer), which was
the result of greater total N quantity. The higher total N quantity under WS was due
to both higher pre-anthesis N uptake and post-anthesis N uptake. Remarkably,
compared to DS with 240 kg N ha−1, WS with 180 kg N ha−1 had almost equal grain
yield, dry matter, and total N quantity. Therefore, wheat crops under WS could
achieve both high NUE and grain yield simultaneously with only moderate N
fertilizer in South Shanxi, China.
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INTRODUCTION
With the current growth rate, the global population is expected to reach approximately 10
billion by 2050 (United Nations Department of Economic & Social Affairs/Population

How to cite this article Wang Q, Noor H, Sun M, Ren A, Feng Y, Qiao P, Zhang J, Gao Z. 2022. Wide space sowing achieved high
productivity and effective nitrogen use of irrigated wheat in South Shanxi, China. PeerJ 10:e13727 DOI 10.7717/peerj.13727

Submitted 20 January 2022
Accepted 22 June 2022
Published 11 July 2022

Corresponding author
Zhiqiang Gao, gaosxau@163.com

Academic editor
Yuriy Orlov

Additional Information and
Declarations can be found on
page 18

DOI 10.7717/peerj.13727

Copyright
2022 Wang et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj.13727
mailto:gaosxau@�163.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.13727
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/


Division, 2017). Increasing crop yields to maintain food security while reducing the
environmental impacts of agriculture is a dual challenge for humans in the future
(Manschadi & Soltani, 2021). Wheat is a staple food that feeds approximately 30% of the
world’s population (Fahad, Abdul & Adnan, 2018). China is the largest producer of wheat
in the world. The North China Plain (NCP) is one of the most vital cereal production
regions in China, accounting for 25% of national food production (Duan et al., 2019; Fan
et al., 2019). Thus, future productivity of wheat will have a greater influence on China and
global food security.

Nitrogen (N) is a major driver of crop production, as it directly influences the dry
matter production of crop plants by influencing the leaf area, radiation interception, and
photosynthetic efficiency (Duan et al., 2019; Manschadi & Soltani, 2021; Li et al., 2022).
Crop yield and quality depend considerably on N application (Zhang et al., 2016). In many
parts of the world, a large increase in N fertilizer input is required to increase crop yield
(Manschadi & Soltani, 2021). However, the increase in crop yield did not match the
increase in N fertilizer input. For example, from 1980 (9.3 Mt) to 2012 (24 Mt), a 158%
increase in N fertilizer input was associated with a 70% increase in China’s crop yield
(321–547 Mt) (Yang et al., 2017). In addition, excessive N input significantly reduces crop
yield and N use efficiency (NUE; the ratio of grain dry matter yield to N supply, which is
the sum of N from soil and fertilizer) (Nehe et al., 2020; Manschadi & Soltani, 2021).
Furthermore, excessive N input also leads to N fertilizer residue, which causes many
environmental problems, such as soil acidification, N2O emissions, and decreased soil
microbial activity (Zhang et al., 2015; Duan et al., 2019). Therefore, it is widely recognized
that improving NUE can alleviate hazards to the environment of crop production systems
and improve their economic and environmental performance (Yang et al., 2017).

NUE can be defined as the grain dry matter yield (kg ha−1) divided by the supply of
available N from soil and fertilizer (kg N ha−1;Moll, Kamprath & Jackson, 1982). NUE was
calculated as the product of two subcomponents: (i) N uptake efficiency (total N at
maturity/N supply from soil and fertilizer; NUpE), and (ii) N utilization efficiency (grain
dry matter yield/total N quantity at maturity; NUtE). In addition to NUE and its
components, agronomic N use efficiency (AEN), N recovery efficiency (REN), and partial
factor productivity of applied N (PFPN) have been used to evaluate the efficiency of N use.
AEN is defined as the difference in grain yield in the N treatment minus the grain yield in
the blank N treatment divided by the N supply from the N fertilizer, which indicates grain
yield produced per unit of supplied N fertilizer (Zhang et al., 2015). REN is defined as the
difference in total N in the N treatment minus the total N in the blank N treatment divided
by the N supply from the N fertilizer, which indicates the percentage of fertilizer N
absorbed by plants (Yang et al., 2017). PFPN is the ratio of grain yield to the fertilizer N
supplied, which indicates the grain yield produced per unit of fertilizer applied (Cox,
Qualset & Rains, 1986). According to the current agricultural production situation, N
fertilizer input is a common management strategy to achieve high crop yields (Duan et al.,
2019; Li et al., 2022). Increasing N fertilizer application can significantly improve crop
yields but inevitably reduce NUE according to the above definition of N use-related
efficiencies (Chen et al., 2016; Yang et al., 2017). It may seem impossible to achieve both a

Wang et al. (2022), PeerJ, DOI 10.7717/peerj.13727 2/21

http://dx.doi.org/10.7717/peerj.13727
https://peerj.com/


high yield and NUE simultaneously. Nonetheless, solving this issue is crucial to enhance
grain production.

An important factor in improving wheat yield is the sowing method, which influences
the spatial distribution and growth of plants (Fan et al., 2019; Liu et al., 2020). Compared
to the traditional sowing method, drill sowing (DS), the wide space sowing (WS) alters
the former sowing width from 2–3 cm to 5–8 cm in addition to changing the seed
distribution by separating single grains from each other instead of planting all the seeds in
a line while using the same seeding rate (Zhao et al., 2013). It was reported that a high
winter grain yield of 12.4 t ha−1 was achieved under WS in North China (Liu et al., 2020).
Other studies have added further evidence to indicate that WS is useful for improving crop
productivity in China (Fan et al., 2019; He, 2020). Liu et al. (2017) showed that the ear
number of wheat under WS was significantly higher than that under DS, accounting for
the greater grain yield under WS than DS. It has been reported that the increased ear
number is attributed to the stem number rather than the productive stem percentage (Chu
et al., 2018). It has also been reported that wheat plant under WS had a higher NUE than
that under DS (Chu et al., 2018; Liu et al., 2021a). However, it remains unclear whetherWS
can achieve both high yield and NUE simultaneously.

South Shanxi is located in the NCP and supplies more than 50% of the winter wheat
produced in China. However, excessive N application is common in this region, which
causes decreased NUE. Considering the demand for achieving a high yield, high NUE and
environmental protection are urgently needed in this region. Thus, we conducted a 2-year
field experiment to examine the effects of sowing method and N application on winter
wheat production and NUE. The main objectives of this study were to (1) clarify the effects
of N application rate under WS on population development and yield formation, and (2)
determine whether WS could help improve both yield and NUE simultaneously.

MATERIALS AND METHODS
Site description
Field experiments were conducted in a farmer’s field in Shangyuan Village, Hougong
Township, Wenxi County, Shanxi Province, China (35�24′N, 111�26′E) in 2017–2018
and repeated in a nearby field in 2018–2019. This site has a typical semi-arid warm
temperature and continental monsoon climate (Köppen classification) with an average
daily temperature of 8.6 �C, average precipitation of 190.5 mm, and 3015.6 MJ m−2 of total
solar radiation during the wheat growing season (from mid–October to early June) from
2005 to 2015. Soil samples from the upper 20 cm layer were randomly collected with five
replicates for soil analysis before wheat was sown in 2017 and 2018. The soil type was
classified as calcareous cinnamon soil according to Chinese soil taxonomy with a pH of
8.47–8.61, organic matter of 13.61–14.31 g kg−1, total N of 1.01–1.05 g kg−1, alkaline N
of 40.05–44.07 mg kg−1, Olsen P of 10.71–11.25 mg kg−1, and available K of 188.87–200.24
mg kg−1 in 2017–2018 and 2018–2019 (Table 1). The cropping pattern of the experimental
site is a winter wheat–summer maize double–cropping system. The climate parameters in
2017–2018 and 2018–2019 were collected from a weather station (Watchdog 2000 Series;
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Spectrum Technologies Inc, Aurora, IL, USA) approximately 200 m from the experimental
field.

Experimental design and crop management
The experiment was arranged in a split-plot design with the sowing method as the main
plot and N application rate as a subplot with three replicates. Two sowing methods (Fig. 1),
wide space sowing (WS, sowing and row width were 8 and 25 cm, respectively) and drill
sowing (DS, sowing and row width were 3 and 20 cm, respectively), and four N application
rates, 0, 180, 240, and 300 kg ha−1 (represented as N0, N180, N240, and N300, respectively)
were applied in this study. DS was performed using a drill sowing machine (2BXF-12;
NonghahaMechanical Co. Ltd., Shijiazhuang, China), andWS was performed using a wide
space sowing machine (2BMYF-10/5; Yuncheng Gongli Co. Ltd., Heze, China).

Each subplot was 8 m in length and 4 m in width. A widely planted wheat cultivar,
Liangxing99, was planted on 25th October and 11th October 2017 and 2018. The expected

Table 1 Soil basic fertility before sowing at the experimental site in 2017–2018 and 2018–2019.

Year pH Organic matter
(g kg−1)

Total N
(g kg−1)

Alkaline N
(mg kg−1)

Olsen P
(mg kg−1)

Available K
(mg kg−1)

2017–2018 8.61 13.61 1.06 44.07 10.71 188.87

2018–2019 8.47 14.31 1.01 40.05 11.25 200.24

Figure 1 The sketch maps of wide space sowing (A) and drill sowing (B) used in this study. The plant
densities at the three-leaf stage were 295 and 312 plant m-2 in 2017 and 2018, which was quite same
under the two sowing methods. Full-size DOI: 10.7717/peerj.13727/fig-1
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plant density was approximately 300 plants m−2 for both sowing methods. The plant
densities at the three-leaf stage (Zadoks code 13) were 295 and 312 plants m−2 in 2017 and
2018, respectively, and there was no significant difference between WS and DS.

N fertilizer was applied as urea (46% N), with 60% of the N fertilizer being applied
before sowing, and 40% as topdressing fertilizer during jointing (Zadoks code 32); 150 kg
P2O5 ha

−1 in the form of calcium super-phosphate (16% P2O5) and 90 kg K2O ha−1 in the
form of potassium chloride (52% K2O) were applied before sowing. Each plot was
irrigated thrice, with 60 mm (1.92 m3/plot) water at wintering (Zadoks code 26), jointing
(Zadoks code 32), and anthesis (Zadoks code 65). Irrigation water was supplied by a movable
sprinkler system, and the amount of water applied was measured using a flow meter.
The field was kept free of diseases, pests, insects, and using pesticides as needed. Weeds were
well-controlled with herbicide administration two or three times in each experimental year.

Sampling and measurements
The stem number (sum of main stems and tillers) of wheat plants was counted in a typical
and central row of 1 m length at jointing, at which the wheat plants had the maximum
stems number (Lu et al., 2021). The productive stem percentage was calculated as the ratio
of ear number to the maximum stem number. During each growing season, the wheat
plants were sampled in a row of 0.5 m length at anthesis and maturity (Zadoks code 91).
At anthesis, all green leaves were separated and measured using a leaf area meter
(LI–3100C, LI–COR, Lincoln, NE, USA) to calculate the leaf area index. All samples were
then divided into ear and vegetative parts (stems, sheaths plus leaves). At maturity, after
counting the ear number, the samples were divided into grain and straw (stems, sheaths,
leaves, chaff plus rachis). All separated samples were oven dried at 105 �C for 30 min
and weighed after further drying at 70 �C to a constant weight. The grain number per ear
and 1,000-grain weight were calculated using the grain samples described above. The yield
was determined from a 10 m2 area at maturity in the center of each plot and adjusted to a
standard moisture content of 0.125 g H2O g−1 fresh weight. The grain moisture content
was measured using a digital moisture tester (PM8188A; Kett Electric Laboratory, Tokyo,
Japan).

After the dry matters of all separated sample plants at anthesis and maturity were
weighed, all the samples were shredded using a plant ball mill pulverize (Jxfstprp-11;
Jingxin Co Ltd, Shanghai, China) for N concentration measurement. The N concentration
in the samples was determined using the standard indophenol-blue colorimetric method
(Novamsky et al., 1974).

Soil samples were collected from 0–20, 20–40, 40–60, 60–80, and 80–100 cm soil depths
in each plot, and were analyzed for total mineral N content (NO−

3 -N and NHþ
4 -N) using

the method described by Wagner (1974) and Benesch & Mangelsdorf (1972).

Statistical analysis and calculations
The experimental data were statistically analyzed using Microsoft Excel 2016 and Statistix
8.0 (Analytical Software, Tallahassee, FL, USA), and figures were generated using Origin
Lab Pro 2021b (OriginLab Corporation, Northampton, MA, USA). All data are presented
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as the means of three replicates (n = 3). Comparisons among multiple groups were
performed using Tukey’s honestly significant difference (HSD) test. Differences were
considered statistically significant at P < 0.05. Statistix 8.0 software was used for the
variance analysis.

The accumulation, partitioning, and translocation of dry matter and N were calculated
using the following equations (Laza et al., 2003; Cox, Qualset & Rains, 1986):

Post�anthesis dry matter production ðDMpost; t ha
�1Þ

¼ total dry weight at maturity � TDWas
(1)

Harvest index ð%Þ ¼ grain dry weight
total dry weight at maturity

(2)

Post�anthesis accumulated N ðNpost; kg ha
�1Þ ¼ TN� TNas (3)

N harvest index ðNHI;%Þ ¼ GN=TN (4)

where TDWas (t ha
−1) is the total dry weight at anthesis. TN (kg ha−1) and TNas (kg ha

−1)
are the total N quantity at maturity and anthesis, respectively. GN (kg ha−1) is grain N
content.

N use-related traits were calculated using the following equations (Moll, Kamprath &
Jackson, 1982; Foulkes et al., 2009):

N uptake efficiency ðNUpE;%Þ ¼ TN=soil N ðpre�sowing soil mineral NþNf Þ (5)

N utilisation efficiency ðNUtE; kg kg�1Þ ¼ grain dry weight=TN� 1;000 (6)

N use efficiency ðNUE; kg kg�1Þ ¼ NUpE� NUtE (7)

Agronomic N use efficiency ðAEN; kg kg�1Þ ¼ ðYN � Y0Þ=Nf � 1;000 (8)

N recovery efficiency ðREN;%Þ ¼ ðTNN � TN0Þ=Nf (9)

Partial factor productivity of applied N ðPFPN; kg kg�1Þ ¼ Yield=Nf � 1;000 (10)

where YN and Y0 are the yield (t ha−1) in the N fertilization and N0 treatments,
respectively. TNN and TN0 are the total N quantity at maturity (kg ha−1) in the N
fertilization and N0 treatments, respectively. Nf is the total input of N fertilizer (kg ha−1).

RESULTS
Weather conditions and crop growth duration
Seasonal precipitation was 51.2 mm greater in 2017–2018 than that in 2018–2019 due
to the greater rainfall from jointing to booting and from anthesis to maturity in the former
growing season (Table 2). However, there was a higher mean temperature, more
accumulated temperature, and greater incident solar radiation during all growing periods
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in 2018–2019 than those in 2017–2018, especially from jointing to booting and from
anthesis to maturity.

The growing durations in each period (sowing to jointing, jointing to booting, and
anthesis to maturity) were longer in 2018–2019 than those in 2017–2018; thus, the total
growing durations were longer in 2018–2019 (Table 3). It should be noted that the wheat
crop was sowed late (by approximately 10 days) in 2017–2018 because of the continuous
rainy weather before sowing.

Yield and yield related attributes
The sowing method and N application rate significantly affected grain yield (Table 4).
The wheat crop under WS produced higher grain yield by 16.38% and 13.57%, averaged
across N application rates, than that under DS in 2017–2018 and 2018–2019, respectively.
There were significant increases in yield when the N application rate increased from 0 to
180 kg ha−1 and then to 240 kg ha−1 under both sowing methods and during the two
growing seasons. The sowing method and N application rate had a significant combined
effect on grain yield. Grain yield improved slightly with an increase in the N application
rate (from 240 to 300 kg ha−1) underWS in both growing seasons, whereas significant yield
reductions (11.78% in 2017–2018 and 7.21% in 2018–2019) were observed under DS
(lodging occurred during grain filling under DS with 300 kg N ha−1 applied). In addition,
the wheat crop under WS treated with 180 kg ha−1 N produced a commensurate yield
compared with that under DS with 240 kg N ha−1 applied in both growing seasons.

Table 2 The climate parameters in 2017–2018 and 2018–2019.

Year Period Precipitation Daily mean temperature Total accumulated temperature Incident radiation
mm �C �C d MJ m−2

2017–2018 S-J 35.3 3.2 654.7 1395.1

J-B 47.5 11.9 226.1 303.9

B-A 27.1 18.1 344.7 360.8

A-M 44.3 20.9 753.1 708.1

Whole season 154.2 7.9 1,978.6 2,767.9

2018–2019 S-J 48.9 3.7 732.8 1,588.0

J-B 20.7 13.2 304.5 338.1

B-A 22.7 18.6 371.4 370.0

A-M 10.7 21.8 871.6 738.5

Whole season 103.0 8.7 2,280.3 3,034.5

Note:
S-J, from sowing to jointing; J-B, from jointing to booting; B-A, from booting to anthesis; A-M, from anthesis to maturity.

Table 3 Growth durations in winter wheat growing season in 2017–2018 and 2018–2019.

Year S-J J-B B-A A-M Whole season (d)

2017–2018 155 19 19 36 229

2018–2019 162 23 20 40 245

Note:
S-J, from sowing to jointing; J-B, from jointing to booting; B-A, from booting to anthesis; A-M, from anthesis to maturity.
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The positive effect of WS on grain yield was mainly because of the increased ear number
per hectare (Table 4). Averaged across N application rates, the wheat crop under WS
exhibited a 20.36% and 18.95% higher ear number per hectare than that under DS in
2017–2018 and 2018–2019, respectively. There was little or no difference in the grain
number per ear and 1,000-grain weight between sowing methods. With an increase in the
N application rate, although it was observed that the ear number increased under both
sowing methods. The rates of ear number increased under WS with improved N
application rate (from 180 to 240 kg ha−1 and from 240 to 300 kg ha−1) were significantly

Table 4 Grain yield and yield components of winter wheat under different sowing method and N treatment in 2017–2018 and 2018–2019.

Year Sowing method N
treatment

Yield
(t ha−1)

Ear number
(106 ha−1)

Grain number
per ear

1,000-grain weight (g)

2017–2018 DS N0 3.88 d 2.59 d 28.5 c 44.1 a

N180 6.31 b 4.08 c 33.3 a 41.2 b

N240 6.79 a 4.33 b 33.2 a 40.9 b

N300 5.99 c# 4.53 a 30.4 b 38.2 c

Mean 5.74 B 3.88 B 31.3 A 41.1 A

WS N0 4.43 c 3.41 d 25.8 c 43.0 a

N180 6.86 b 4.60 c 32.9 a 40.1 b

N240 7.64 a 5.01 b 32.7 a 40.0 b

N300 7.79 a 5.65 a 29.9 b 39.1 c

Mean 6.68 A 4.67 A 30.3 B 40.6 A

2018–2019 DS N0 5.02 c 3.56 d 27.0 c 44.6 a

N180 7.47 b 4.77 c 32.8 a 42.0 b

N240 8.04 a 5.19 b 32.8 a 41.9 b

N300 7.46 b# 5.49 a 29.4 b 40.2 c

Mean 7.00 B 4.75 B 30.5 A 42.2 A

WS N0 5.51 c 4.30 d 24.8 c 44.3 a

N180 8.23 b 5.36 c 31.7 a 42.3 b

N240 8.95 a 6.10 b 30.8 a 41.9 b

N300 9.12 a 6.82 a 28.9 b 40.4 c

Mean 7.95 A 5.65 A 29.0 B 42.2 A

ANOVA

Year (Y) ** ** ** ** **

Sowing (S) ** ** ** ** ns

N rate (N) ** ** ** ** **

Y × S ns ns ns ns ns

Y × N ns ns ns ns ns

S × N ** ** ** ** **

Y × S × N ** ** ** ** **

Notes:
# Lodging occurred during grain filling.
** Significant at 0.01 probability level.
DS, drill sowing; WS, wide space sowing. Within a column for each growing season, means followed by different uppercase letters are significantly different according to
Tukey’s HSD test (a = 0.05) between two sowing methods. Within a column for sowing method, means followed by different lowercase letters are significantly different
according to Tukey’s HSD test (a = 0.05) among four N treatments. ns, not significant at 0.05 probability level.
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larger than those under DS (8.91–13.81% vs. 4.62–8.81%). However, with an increase in the
N application rate, a decreasing trend in grain number per ear and 1,000-grain weight was
recorded under both sowing methods and in the two growing seasons.

The maximum stem number and productive stem percentage under WS were both
significantly higher than those under DS (Figs. 2 and 3). The improvement in maximum
stem number (14.52–16.09%), rather than productive stem percentage (3.24–3.85%),
mainly accounted for the wheat crop under WS producing more ears per hectare. With an
increase in the N application rate, the maximum stem number of winter wheat

Figure 2 Maximum stem number of winter wheat under different sowing method and N application
rate in 2017–2018 and 2018–2019. DS, drill sowing; WS, wide space sowing. Within each growing
season, different uppercase letters are significantly different according to Tukey’s HSD test (a = 0.05)
between two sowing methods. Within each growing season and sowing method, different lowercase
letters above bars are significantly different according to Tukey’s HSD test (a = 0.05) among four N
application rates. error bar, the standard deviation (± SD). Full-size DOI: 10.7717/peerj.13727/fig-2
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significantly and continuously increased. However, a decreasing trend was recorded in the
productive stem percentage under both sowing methods and in the two growing seasons.

The leaf area index at anthesis under WS was significantly higher by 6.70% and 7.97%,
averaged across N application rates, than that under DS in 2017–2018 and 2018–2019,
respectively (Fig. 4). With an increase in the N application rate, the leaf area index at
anthesis significantly increased under both sowing methods and in the two growing
seasons.

Figure 3 Productive stem percentage of winter wheat under different sowing method and N
application rate in 2017–2018 and 2018–2019. DS, drill sowing; WS, wide space sowing. Within
each growing season, different uppercase letters are significantly different according to Tukey’s HSD test
(a = 0.05) between two sowing methods. Within each growing season and sowing method, different
lowercase letters above bars are significantly different according to Tukey’s HSD test (a = 0.05) among
four N application rates. error bar, the standard deviation (± SD).

Full-size DOI: 10.7717/peerj.13727/fig-3
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The total dry weight at maturity under WS was significantly higher by 13.62% and
15.26%, averaged across N application rates, than that under DS in 2017–2018 and
2018–2019, respectively, whereas no significant difference was observed in the harvest
index between sowing methods (Table 5). The total dry weight at maturity significantly
increased when the N application rate increased from 0 to 180 kg ha−1 and then to 240 kg
ha−1 under both sowing methods and in the two growing seasons. With a further increase

Figure 4 Leaf area index at anthesis of winter wheat under different sowing method and N
application rate in 2017–2018 and 2018–2019. DS, drill sowing; WS, wide space sowing. Within
each growing season, different uppercase letters are significantly different according to Tukey’s HSD test
(a = 0.05) between two sowing methods. Within each growing season and sowing method, different
lowercase letters above bars are significantly different according to Tukey’s HSD test (a = 0.05) among
four N application rates. error bar, the standard deviation (± SD).

Full-size DOI: 10.7717/peerj.13727/fig-4
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in the N application rate (from 240 to 300 kg ha−1), the total dry weight at maturity under
WS slightly improved in both growing seasons, but significant reductions of 6.49% and
7.65% were observed under DS (lodging occurred during grain filling under DS with
300 kg N ha−1 applied) in 2017–2018 and 2018–2019, respectively. The harvest indices
with N fertiliser application were significantly lower than those without N application.
There was no significant difference in the harvest index among treatments with N
application, except that the N application rate of 300 kg ha−1 resulted in significantly lower

Table 5 Total dry weight, harvest index, total dry weight at anthesis, post-anthesis dry matter production of winter wheat under different
sowing method and N treatment in 2017–2018 and 2018–2019.

Year Sowing method N
treatment

Total dry
weight
(t ha−1)

Harvest index
(%)

Total dry weight at anthesis
(t ha−1)

Post-anthesis dry matter production
(t ha−1)

2017–2018 DS N0 6.34 c 51.2 a 4.12 c 2.22 c

N180 12.09 b 46.3 b 8.05 b 4.04 b

N240 12.94 a 45.8 b 8.60 a 4.34 a

N300 12.10 b 43.4 c 8.14 b 3.96 b

Mean 10.87 B 46.7 A 7.23 B 3.64 B

WS N0 7.61 c 49.7 a 4.90 d 2.71 c

N180 12.98 b 46.6 b 8.26 c 4.72 b

N240 14.20 a 46.0 b 9.01 b 5.19 a

N300 14.63 a 45.1 b 9.40 a 5.23 a

Mean 12.35 A 46.9 A 7.89 A 4.46 A

2018–2019 DS N0 9.27 c 46.3 a 6.09 c 3.18 c

N180 14.90 b 43.7 b 9.77 b 5.13 b

N240 16.46 a 43.5 b 10.72 a 5.74 a

N300 15.20 b 42.7 b 10.04 b 5.16 b

Mean 13.96 B 44.1 A 9.16 B 4.80 B

WS N0 10.19 c 46.3 a 6.53 c 3.66 c

N180 16.90 b 42.5 b 10.91 b 5.99 b

N240 18.53 a 42.5 b 11.83 a 6.70 a

N300 18.75 a 42.4 b 12.06 a 6.69 a

Mean 16.09 A 43.4 A 10.33 A 5.76 A

ANOVA

Year (Y) ** ** ** **

Sowing (S) ** ns ** **

N rate (N) ** ** ** **

Y × S ns ns ns ns

Y × N ns ns ns ns

S × N ** ** ** **

Y × S × N ** ** ** **

Notes:
** Significant at 0.01 probability level.
DS, drill sowing; WS, wide space sowing. Within a column for each growing season, means followed by different uppercase letters are significantly different according to
Tukey’s HSD test (a = 0.05) between two sowing methods. Within a column for sowing method, means followed by different lowercase letters are significantly different
according to Tukey’s HSD test (a = 0.05) among four N treatments. ns, not significant at 0.05 probability level.
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values than N application rates of 180 and 240 kg ha−1 under DS (lodging occurred during
grain filling under DS with 300 kg N ha−1 applied) in 2017–2018.

Total dry weight at anthesis and post-anthesis dry matter production were both
significantly higher under WS than those under DS in the two growing seasons, which
accounts for the advantage in total dry weight of the wheat crop under WS over DS
(Table 5). Pre-anthesis dry matter production and post-anthesis dry matter production
significantly increased when the N application rate increased from 0 to 180 kg ha−1 and
then to 240 kg ha−1 under both sowing methods and in the two growing seasons. When the
N application rate further increased (from 240 to 300 kg ha−1), pre-anthesis dry matter
production and post-anthesis dry matter production under WS exhibited an increasing or
unchanging trend in both growing seasons, but significant reductions of 5.35–6.34% and
8.76–10.10% were recorded under DS (lodging occurred during grain filling under DS with
300 kg N ha−1 applied) in 2017–2018 and 2018–2019, respectively.

N uptake, utilization, and related efficiencies
There was no significant difference in grain N concentration between the sowing methods,
averaged across N application rates, in the two growing seasons (Table 6). Among the N
treatments, there was no significant difference in grain N concentration under DS.
However, significant improvements (5.02–5.98%) were recorded at 300 kg N ha−1 under
WS in the two growing seasons. The grain N content under WS was significantly higher
than that under DS by 18.67% and 15.24% in 2017–2018 and 2018–2019, respectively.
The grain N content significantly increased when the N application rate increased from 0
to 180 kg ha−1 and then to 240 kg ha−1 under both sowing methods and in the two growing
seasons. When the wheat crop received more N fertiliser (300 kg ha−1), the grain N content
under WS significantly and continuously improved in both growing seasons; however,
significant reductions of 9.78% and 6.22% were observed under DS (lodging occurred
during grain filling under DS with 300 kg N ha−1 applied) in 2017–2018 and 2018–2019,
respectively.

The wheat crop under WS had a higher total N quantity at maturity and N harvest
index, averaged across N application rates, than those under DS in both growing seasons
(Table 6). With an increase in the N application rate, the total N quantity at maturity
significantly and consistently increased under both sowing methods and in the two
growing seasons, whereas the N harvest index exhibited a decreasing trend. Pre-anthesis N
uptake and post-anthesis N uptake were both significantly higher under WS than those
under DS in the two growing seasons, which accounts for the advantage in total N quantity
at maturity under WS over DS. With an increase in the N application rate, both
pre-anthesis N uptake and post-anthesis N uptake significantly and continuously increased
under both sowing methods and in the two growing seasons. In addition, total N
(including pre-anthesis N uptake and post-anthesis N uptake, and total N quantity at
maturity) under DS with 240 kg N ha−1 applied was commensurate with that under WS
with 180 kg N ha−1 applied.

The wheat crop under WS exhibited a higher NUE by 15.00% and 12.44%, averaged
across N rates, than that under DS in 2017–2018 and 2018–2019, respectively (Table 7).
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The recorded NUE decreased with increases in N fertiliser administration. NUpE under
WS was significantly higher by 11.98% and 10.15%, averaged across N rates, than that
under DS in 2017–2018 and 2018–2019, respectively, whereas there was no significant
difference in NUtE during the two growing seasons. The higher NUE under WS largely
resulted from the advantage of NUpE over DS.

The AEN under WS was significantly higher by 16.51% and 21.05%, averaged across N
application rates, than that under DS in 2017–2018 and 2018–2019, respectively (Table 7).

Table 6 Grain N concentration and content (GNC% and GN) at maturity, total N quantity at maturity (TN), N harvest index (NHI), total N
quantity at anthesis (TNas), post-anthesis accumulated N (Npost) of winter wheat under different sowing method and N treatment in
2017–2018 and 2018–2019.

Year Sowing method N
treatment

GNC%
(%)

GN
(kg ha−1)

TN
(kg ha−1)

NHI
(%)

TNas

(kg ha−1)
Npost

(kg ha−1)

2017–2018 DS N0 2.19 b 71.3 c 99.1 d 71.9 a 70.2 d 28.9 d

N180 2.46 a 137.6 b 198.8 c 69.2 b 149.6 c 49.2 c

N240 2.52 a 149.3 a 218.6 b 68.3 b 161.1 b 57.5 b

N300 2.57 a 134.7 b 235.6 a 57.2 c 168.6 a 67.0 a

Mean 2.43 A 123.2 B 188.0 B 66.6 B 137.4 B 50.6 B

WS N0 2.19 c 82.6 d 111.1 d 74.4 a 79.2 d 31.9 d

N180 2.54 b 153.6 c 218.1 c 70.4 b 157.0 c 61.2 c

N240 2.59 b 169.0 b 244.5 b 69.1 b 172.3 b 72.2 b

N300 2.72 a 179.5 a 269.8 a 66.5 c 189.6 a 80.2 a

Mean 2.51 A 146.2 A 210.9 A 70.1 A 149.5 A 61.4 A

2018–2019 DS N0 2.12 b 90.9 c 123.6 d 73.6 a 91.6 d 32.0 d

N180 2.30 a 150.0 b 222.9 c 67.3 b 156.3 c 66.6 c

N240 2.31 a 165.6 a 247.5 b 66.9 b 172.6 b 74.9 b

N300 2.39 a 155.3 b 264.2 a 58.8 c 179.6 a 84.6 a

Mean 2.28 A 140.4 B 214.6 B 66.6 B 150.0 B 64.5 B

WS N0 2.12 c 100.0 d 136.0 d 73.5 a 99.0 d 37.0 d

N180 2.31 b 165.7 c 241.4 c 68.7 b 169.8 c 71.5 c

N240 2.34 b 184.1 b 270.3 b 68.1 b 185.1 b 85.1 b

N300 2.48 a 197.3 a 299.5 a 65.9 c 201.6 a 97.9 a

Mean 2.31 A 161.8 A 236.8 A 69.0 A 163.9 A 72.9 A

ANOVA

Year (Y) ** ** ** ** ** **

Sowing (S) ns ** ** ** ** **

N rate (N) ** ** ** ** ** **

Y × S ns ns ns ns ns ns

Y × N ns ns ns ns ns ns

S × N ** ** ** ** ** **

Y × S × N ** ** ** ** ** **

Notes:
** Significant at 0.01 probability level.
DS, drill sowing; WS, wide space sowing. Within a column for each growing season, means followed by different uppercase letters are significantly different according to
Tukey’s HSD test (a = 0.05) between two sowing methods. Within a column for sowing method, means followed by different lowercase letters are significantly different
according to Tukey’s HSD test (a = 0.05) among four N treatments. ns, not significant at 0.05 probability level.
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AEN significantly decreased when the N application rate increased from 180 to 240 kg ha−1

and then to 300 kg ha−1 under both sowing methods and during the two growing seasons,
except that there was no significant difference between 180 and 240 kg ha−1 under WS in
2017–2018.

A higher REN was observed under WS than that under DS by 11.55% and 9.75%,
averaged across N application rates, in 2017–2018 and 2018–2019, respectively (Table 7).
When the N application rate increased from 180 to 240 kg ha−1 and then to 300 kg ha−1,

Table 7 N use efficiency (NUE), N uptake efficiency (NUpE), N utilization efficiency (NUtE), agronomic N use efficiency (AEN), N recovery
efficiency (REN), partial factor productivity of applied N (PFPN) of winter wheat under different sowing method and N treatment in
2017–2018 and 2018–2019.

Year Sowing method N
treatment

NUE
(kg kg−1)

NUpE
(%)

NUtE
(kg kg−1)

AEN
(kg kg−1)

REN
(%)

PFPN
(kg kg−1)

2017–2018 DS N0 21.0 a 63.9 a 32.8 a – – –

N180 16.7 b 59.3 b 28.1 b 13.5 a 55.4 a 35.0 a

N240 15.0 c 55.4 c 27.1 b 12.1 b 49.8 b 28.3 b

N300 11.5 d 51.8 d 22.3 c 7.0 c 45.5 c 20.0 c

Mean 16.0 B 57.6 B 27.6 A 10.9 B 50.2 B 27.8 B

WS N0 24.4 a 71.7 a 34.0 a – – –

N180 18.1 b 65.1 b 27.7 b 13.5 a 59.5 a 38.1 a

N240 16.5 c 61.9 c 26.7 b 13.4 a 55.6 b 31.8 b

N300 14.5 d 59.3 d 24.5 c 11.2 b 52.9 b 26.0 c

Mean 18.4 A 64.5 A 28.2 A 12.7 A 56.0 A 32.0 A

2018–2019 DS N0 26.4a 76.1 a 34.7 a – – –

N180 19.0 b 65.1 b 29.2 b 13.6 a 55.2 a 41.5 a

N240 17.8 c 61.5 c 29.0 b 12.6 b 51.6 b 33.5 b

N300 14.0 d 57.2 d 24.6 c 8.1 c 46.9 c 24.9 c

Mean 19.3 B 65.0 B 29.4 A 11.4 B 51.3 B 33.3 B

WS N0 29.1 a 83.8 a 34.7 a – – –

N180 21.0 b 70.5 b 29.7 b 15.1 a 58.5 a 45.7 a

N240 19.5 c 67.2 c 29.1 b 14.4 b 55.9 b 37.3 b

N300 17.2 d 64.8 d 26.6 c 12.1 c 54.5 b 30. 4 c

Mean 21.7 A 71.6 A 30.0 A 13.8 A 56.3 A 37.8 A

ANOVA

Year (Y) ** ** ** ** ** **

Sowing (S) ** ** ns ** ** **

N rate (N) ** ** ** ** ** **

Y × S ns ns ns ns ns ns

Y × N ns ns ns ns ns ns

S × N ** ** ** ** ** **

Y × S × N ** ** ** ** ** **

Notes:
** Significant at 0.01 probability level.
DS, drill sowing; WS, wide space sowing. Within a column for each growing season, means followed by different uppercase letters are significantly different according to
Tukey’s HSD test (a = 0.05) between two sowing methods. Within a column for sowing method, means followed by different lowercase letters are significantly different
according to Tukey’s HSD test (a = 0.05) among four N treatments. ns, not significant at 0.05 probability level.
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REN under DS significantly and continuously decreased, but did not decrease under WS in
2017–2018 and 2018–2019, respectively.

The wheat crop exhibited a significantly higher PFPN under WS by 15.11% and 13.51%,
averaged across N application rates, than that under DS in 2017–2018 and 2018–2019,
respectively (Table 7). With an increase in the N application rate, PFPN significantly and
continuously decreased under both sowing methods and in the two growing seasons.

DISCUSSION
The wheat crop under WS produced a higher grain yield than that under DS in the present
study. The yield advantage under WS over DS was attributed to the increased ear number.
Similar effects of WS on grain yield have been reported in previous studies (Zhao et al.,
2013; Fan et al., 2019). The individual wheat plants under WS were more distant from each
other than those under DS (Zhao et al., 2013), which reduced intraspecific competition for
resources and growing space and resulted in more stems being produced (Liu et al., 2017;
Liu et al., 2020). Additionally, WS significantly improved the productive stem percentage.
It could be reasonably assumed that the wheat crop under WS could uptake more N and
water from the soil, and then manufacture more carbohydrates through the canopy
maintaining the growth and differentiation of the huge population of stems. It has been
reported that WS can optimize root distribution and enhance the root absorptive capacity
of wheat compared to DS (He, 2020). Our results also showed that, at the same N
application rate, N uptake was higher under WS than that under DS.

An N input of 240 kg N ha−1 is a locally recommended application rate which can
produce high yields with acceptable NUE (Chen et al., 2016; Zhang et al., 2016; Duan et al.,
2019). It is worth noting that the wheat crop under WS that were treated with 180 kg ha−1

N produced a commensurate yield compared with that under DS with 240 kg N ha−1

applied. This result indicates that an effective sowing method could compensate for the
yield loss due to a 25% reduction in N input.

This study also found that, compared to the locally recommended N application rate
(240 kg ha−1), even though there was no significant increase in grain yield due to the higher
N application (300 kg ha−1) under WS, an evident increase of approximately 6% in grain N
concentration was recorded. However, a significant yield reduction and no significant
increase in grain N concentration were observed under DS with 300 kg N ha−1 because
stem lodging occurred during grain filling. It was reported that the wheat crop under DS
with a high N application rate had a lower stem bending resistance and a higher wheat
lodging possibility because of the contradiction between population and individual plants
(Liu, Bian & Liu, 2021b; Li et al., 2022), which caused a decline in grain yield and quality
(Foulkes et al., 2011). These results indicated that, even though a large amount of N
fertilizer was applied, the enhanced sowing method, WS, could not only maintain a high
yield level but also improve grain nutrient quality.

Crop yield was determined by dry matter production and harvest index (Yoshida, 1972).
Thus, crop yield can be enhanced by increasing the dry matter accumulation, harvest index
or both (Rivera-Amado et al., 2019). In the present study, higher total dry weight at
maturity was achieved under WS than that under DS, whereas no significant difference in
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harvest index was recorded between the two sowing methods. This result suggests that the
wheat crop under WS exhibited greater total dry weight instead of higher biomass
partitioning efficiency compared to those under DS. Additionally, pre-anthesis dry matter
production and post-anthesis dry matter production were both significantly higher under
WS than those under DS. Similar results were reported in a previous study (Liu et al.,
2017). Dry matter production largely depends on the canopy photosynthetic area and leaf
area index (Man, Yu & Shi, 2017; Fan et al., 2019), meanwhile leaf area growth is affected
by N supply and uptake (Peng & Ismail, 2004). In the present study, the wheat crop under
WS exhibited greater N uptake before anthesis than that under DS, which was attributed to
a higher leaf area index at anthesis under WS over DS. It has also been reported that WS
could increase the photosynthetic rate, delay senescence of flag leaves, and promote
carbohydrate accumulation after anthesis (Fan et al., 2019). Our results also showed that
wheat crops under WS that received 180 kg N ha−1 could produce statistically equal
amounts of dry matter (including pre-anthesis dry matter production and post-anthesis
dry matter production, and total dry weight at maturity) compared to those under DS that
received 240 kg N ha−1, accounting for the same yield under the above-mentioned
treatments.

In the present study, the total N quantity at maturity and N harvest index under WS
were significantly higher than those under DS, which resulted in a higher grain N content
under WS. The main source determining total N at maturity was the amount of N
absorbed before and after anthesis (Dupont & Altenbach, 2003). Our study showed that
wheat crops under WS had both higher pre-anthesis N uptake and post-anthesis N uptake
than those under DS. In addition, the values of pre-anthesis accumulated N and
post-anthesis accumulated N, and total N quantity at maturity under WS with the N
application rate of 180 kg ha−1 were statistically equal to those under DS with 240 kg N
ha−1. These results suggested that the enhanced sowing method caused wheat crop to
exhibit adequate N uptake without high N fertilizer input.

The ability to enhance N uptake is the first step in increasing the NUE (Du et al., 2020).
Our results showed that NUE under WS was significantly higher than that under DS, and
the higher NUE was the result of improvement in NUpE instead of NUtE. Previous studies
have also suggested that the variation in NUE under WS was more closely associated with
NUpE than with NUtE (Chu et al., 2018; Liu et al., 2021a). The higher AEN and REN in
crop plants indicated that crop plants exhibited efficient use of N fertilizer, which
decreased the loss of N fertilizer (Yang et al., 2017). The present study also showed that
AEN and REN under WS were significantly higher than those under DS. These results
indicate that the enhanced sowing method, WS, could not only produce high grain yield
but also decrease the risk of N leaching, ammonia emission, and ground runoff, which
could cause environmental pollution. It is widely recognized that N use-related efficiencies
(e.g. NUE, NUpE, NUtE, REN, AEN, and PFPN) will decrease when the N application rate
increased (Yang et al., 2017;Duan et al., 2019;Manschadi & Soltani, 2021). It is remarkable
that all the above-mentioned efficiencies under WS with the N application rate of 240 kg
ha−1 were comparable to those under DS with 180 kg N ha−1 applied. These results indicate
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that enhancement in the sowing method not only maintained high NUEs but also output
high grain yield under moderate N fertilizer input.

CONCLUSIONS
Compared to DS, WS had a higher grain yield which was mainly attributed to the ear
number. The increased grain yield under WS was dependent on improved total dry weight.
The higher total N quantity under WS was attributed to NUpE, which led to a greater
NUE. The wheat crop under WS received N application of 180 kg ha−1 and produced
commensurate yield, total dry weight, and total N quantity compared with those under DS
with 240 kg N ha−1 applied. Thus, WS with moderate N fertilizer input can help maintain
high N-use efficiencies and output high grain yield.
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