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Microbiome-derived Gram-negative bacterial lipopolysaccharide (LPS) has been shown

by multiple laboratories to reside within Alzheimer’s disease (AD)-affected neocortical

and hippocampal neurons. LPS and other pro-inflammatory stressors strongly induce a

defined set of NF-kB (p50/p65)-sensitive human microRNAs, including a brain-enriched

Homo sapien microRNA-30b-5p (hsa-miRNA-30b-5p; miRNA-30b). Here we provide

evidence that this neuropathology-associated miRNA, known to be upregulated in

AD brain and LPS-stressed human neuronal-glial (HNG) cells in primary culture

targets the neurofilament light (NF-L) chain mRNA 3’-untranslated region (3’-UTR),

which is conducive to the post-transcriptional downregulation of NF-L expression

observed within both AD and LPS-treated HNG cells. A deficiency of NF-L is

associated with consequent atrophy of the neuronal cytoskeleton and the disruption

of synaptic organization. Interestingly, miRNA-30b has previously been shown to be

highly expressed in amyloid-beta (Aβ) peptide-treated animal and cell models, and Aβ

peptides promote LPS entry into neurons. Increased miRNA-30b expression induces

neuronal injury, neuron loss, neuronal inflammation, impairment of synaptic transmission,

and synaptic failure in neurodegenerative disease and transgenic murine models. This

gut microbiota-derived LPS-NF-kB-miRNA-30b-NF-L pathological signaling network: (i)

underscores a positive pathological link between the LPS of gastrointestinal (GI)-tract

microbes and the inflammatory neuropathology, disordered cytoskeleton, and disrupted

synaptic signaling of the AD brain and stressed brain cells; and (ii) is the first

example of a microbiome-derived neurotoxic glycolipid having significant detrimental
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miRNA-30b-mediated actions on the expression of NF-L, an abundant neuron-specific

filament protein known to be important in the maintenance of neuronal cell shape, axonal

caliber, and synaptic homeostasis.

Keywords: neurofilament, microbiome and dysbiosis, lipopolysaccharide (endotoxin), Alzheimer’s disease (AD),

miRNA-30b-5p, neurofilament light (NF-L), NF-kB (p50/p65)

INTRODUCTION

The gastrointestinal (GI) tract of Homo sapiens contains
a complex, dynamic, and highly interactive community of
microorganisms collectively known as the GI-tract microbiome
possessing a staggering complexity and diversity. Composed of
about ∼1015 microorganisms from many thousands of different
microbial species, the vast majority of human GI-tract microbes
are composed of anaerobic or facultative anaerobic bacteria
with aerobic bacteria, fungi, protozoa, Archaebacteria (an
ancient intermediate microbial group between the prokaryotes
and eukaryotes), viruses, and other microorganisms making
up the remainder (1–3). Increasing research evidence has
demonstrated that the composition of the GI-tract microbiome
can significantly affect normal physiological homeostasis and
contribute to the pathogenesis of diseases ranging from
various types of inflammatory bowel disease to cancer to
neurodegenerative disorders such as Alzheimer’s disease [AD;
(3–7)]. Gut microbiota can interact with the central nervous
system (CNS) through the microbiota-gut-brain axis and
through interactions mediated by metabolic and hormonal
signaling, neural stimulation, and microbial secretions that
both enhance and disrupt neurophysiology and neurological
health. Deleterious microbial secretions are composed of
neurotoxins, such as microbial amyloids, small bacterial RNAs,
and endotoxins, such as fragilysin and lipopolysaccharide (LPS)
that together represent some of the most pro-inflammatory
and neurotoxic substances known (6–12). Together, complex
mixtures of GI-tract-derived neurotoxins damage both colonic
epithelial and neurovascular barriers, in part by inducing
cleavage of the zonula adherens protein E-cadherin and
other cell-cell adhesion molecules, thereby disrupting cell-
cell adhesion, and enabling the translocation of these potent
neurotoxins across aged or damaged plasma membranes, and
into the systemic circulation, into CNS and PNS compartments
and across the plasmamembrane of brain cells (3–12). Onemajor
class of microbiome-derived neurotoxin is the Gram-negative
bacteria-derived lipoprotein glycoconjugate lipopolysaccharide
(LPS) that has been reported by several independent research
groups to reside within the brain cells and CNS tissues
of aged patients affected with AD and in AD murine
models (10–15). Many different variations of LPS are derived
from different human microbiome-resident Gram-negative
bacteria; for example, species such as the anaerobic bacterium
Bacteroides fragilis are capable of secreting particularly pro-
inflammatory and neurotoxic forms of LPS, such as BF-
LPS, which penetrate physiological barriers, including brain
cell plasma membranes (8–18). Importantly, Aβ peptides, one
neuropathological hallmark for AD, have recently been shown to

further support the translocation of LPS into neurons, probably
via transient channel formation through the neuronal plasma
membrane (6–12).

This “Perspectives” paper ties together several recent
observations linking increased LPS and LPS-induced NF-kB
signaling with increases in a pathogenic human CNS-enriched
NF-kB-sensitive microRNA-30b. We provide the first evidence
that increased miRNA-30b is capable of targeting the 3’-
UTR of the neuron-specific neurofilament light (NF-L) chain
messenger RNA (mRNA), thus linking this action to the
decreased expression of NF-L, a cytoskeletal element known to
be downregulated within CNS neurons in AD affected brain,
in stressed HNG cells in primary culture and in transgenic
murine models of AD (14–21). In doing so, NF-L depletion
disrupts normal neuronal cell shape, cytoarchitecture, and
synaptic organization. This is the first example of a microbiome-
initiated pathogenic pathway linking LPS, an abundant
microbial glycolipid neurotoxin, with the miRNA-mediated
downregulation of an essential neuron-specific cytoskeletal
component normally required to maintain the cytoarchitecture
and signaling functions of the neuron.

NEUROFILAMENT LIGHT CHAIN PROTEIN
AND AD

The neuron-specific neurofilament light (NF-L) chain protein
of the neurofilament (NF) triplet bundle consisting of NF-L,
neurofilament medium, and heavy chains (NF-M, NF-H): (i)
is normally the most abundant neurofilamentous structural
element in neurons; (ii) is a key scaffolding component of
the axoskeleton of healthy neurons, to which other neuronal
cytoskeletal proteins attach; and (iii) interacts directly with
multiple synaptic-phosphoproteins to support and coordinate
neuronal cell shape, cytoarchitecture, neurotransmission,
synaptogenesis, and inter-neuronal synaptic signaling (19–24). A
remarkably high number of neurological disorders exhibit NF-L
degradation and the liberation of NF-L from neuron-specific
compartments, mobilization, and enrichment into pathological
biofluids in the periphery; this may be due to deficits in plasma
membrane barrier’s integrity and pathological transport and/or
vesicle-mediated trafficking dysfunction of this highly stable
61,517 Da filament protein from diseased neurons [(19–28);
https://www.genecards.org/cgi-bin/carddisp.pl?gene=NEFL; last
accessed 24 April 2022]. Originally thought to be a specific
blood-borne biomarker for AD, NF-L abundance in the CSF and
other circulating biofluids has more recently been considered
an easily quantifiable and promising peripheral biomarker
for all-cause neurodegeneration in both clinical and research
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settings (20–26). Although NF-L may not be a disease-specific
peripheral biomarker, its presence in the blood and CSF has
aided in the early detection, diagnosis, prognosis, and prediction
of time-to-symptom onset in all-cause dementia, including
frontotemporal dementia (FTD), amyotrophic lateral sclerosis
(ALS), Huntington’s disease, Parkinson’s disease (PD), human
prion disease (PrD) and AD (20–25). It is somewhat paradoxical
that NF-L abundance is increased in peripheral biofluids in
multiple forms of neurodegeneration while being significantly
downregulated within CNS neurons, however molecular-genetic
mechanisms involving altered NF-L trafficking in AD and
other neurodegenerative diseases and the utilization of cellular
exosomes (EXs), extracellular microvesicles (EMVs) and other
altered translocation mechanisms for NF-L have recently been
proposed to clarify this perplexing observation (18, 20–23).

Within neocortical neurons of the degenerating AD brain
is observed a significant loss of NF-L mRNA and protein that
cannot be explained by neuronal loss alone (26–28). Decreased
NF-L abundance is also observed in other forms of both acute and
chronic neuronal injury and LPS-stressed human neuronal-glial
(HNG) cells in primary co-culture (18–22, 27, 28). NFs are highly
critical and stable scaffolding components of the axoskeleton
of healthy neurons interacting directly with multiple synaptic
phosphoproteins to support and coordinate neuronal cell shape,
cytoarchitecture, synaptogenesis, and neurotransmission (18–
23). In multiple forms of human age-related neurological
disease are observed a pathological shift of NF-L from an
intracellular neuronal cytoplasmic location into various biofluid
compartments, and NF-L is currently categorized as a peripheral
biomarker for the diagnosis, prognosis, time-to-symptom,
and response-to-drug-treatment of all-cause dementia (18–26).
Downregulated NF-L within neurons strongly correlates with
the observed axonal and neuronal atrophy, neurite deterioration,
reduction in axonal caliber, and synaptic disorganization in
tissues affected by AD and other progressive and age-related
neurological diseases, but the molecular-genetic mechanism
for decreased NF-L abundance has, up until now, not been
explored. Dysregulated brain-abundant microRNA abundance,
speciation, and complexity have been strongly implicated in
the molecular-genetic mechanism of AD and other forms of
progressive neurodegeneration of the human brain and CNS
(29–33). Recent evidence continues to support the idea of
a human brain-abundant pathology-associated miRNA-30b in
various disease states and the targeting of the NF-L mRNA 3’-
UTR that may account, in part, for this decreased output of
NF-L mRNA, protein, and expression in LPS-stressed neurons,
and have relevance to the altered neuronal signaling capabilities
characteristic of AD-affected neurons.

miRNAs UNDER NF-kB-REGULATION

The term “microRNA” (miRNA) denotes a species of ∼22
nucleotide (nt), small non-coding RNA (sncRNA) that, via base-
pair complementarity, recognizes and binds to target messenger
RNAs (mRNAs) to shape the transcriptome of the cell (33–39).
The major mode of action of miRNAs is accomplished by the
recognition and binding of these sncRNAs to the 3’-untranslated

region (3’-UTR) of their target mRNAs, and by inhibiting
the expression of genetic information encoded by that mRNA
negatively regulates the posttranscriptional expression of genes
(33–36). This miRNA-mRNA regulatory and modulatory system
is highly complex and interactive as different miRNAs can
target a single mRNA, and single mRNAs may be targeted by
more the one miRNA (32–36). Interestingly, the total number
of miRNAs in Homo sapiens currently numbers about ∼2,650,
although the number of abundant and easily detected miRNAs
in the human brain and CNS only numbers about 45–50,
many of which are under NF-kB regulatory control [(33–40);
https://lcsciences.com/services/microarray-services/mirna/; last
accessed 24 April 2022].

A small subset of NF-kB-regulated miRNAs has been
identified and characterized in the AD neocortex and
hippocampal CA1 region, and in reactive-oxygen species
(ROS)-, cytokine interleukin 1-beta (IL-1β), amyloid-beta
42 (Aβ42) peptide, and/or lipopolysaccharide-(LPS) stressed
human neuronal-glial (HNG) cells in primary co-culture (36–
49). Overall these findings suggest that the upregulation of this
same small miRNA family orchestrates a pro-inflammatory
and pathogenic gene expression program, which may explain
many of the pathological aspects of AD onset and propagation
including: (i) the failure of the microglial-mediated clearance of
end-stage peptides from brain cells and amyloidogenesis; and
(ii) a significant downregulation in the production of essential
cytoskeletal components and synaptic signaling elements.

miRNA-30b AND NEURODEGENERATION

The NF-kB regulated miRNA-30b is a brain-enriched member of
the miRNA-30 gene family (41–45). The expression of miRNA-
30b is implicated in playing a crucial homeostatic regulatory
role in tissue and organ development and the pathogenesis of
an array of diseases from cancer to progressive inflammatory
neurodegenerative disorders, such as AD (41–46). Multiple
independent reports indicate that the NF-kB-inducible miRNA-
30b: (i) is upregulated in AD and animal models of AD
(43–46); (ii) that the overexpression of miRNA-30b in the
hippocampus impairs basal synaptic transmission, long term
potentiation (LTP), learning, and memory and is associated
with a significant reduction in dendritic spine density (42, 43);
(iii) causes synaptic and cognitive dysfunction in AD and in
AD animal models (https://www.ncbi.nlm.nih.gov/gene/407030;
2022; last accessed 24 April 2022; 42,44); (iv) is significantly
upregulated by lipopolysaccharide (LPS) or protozoan-mediated
infection of human epithelial cells (46); and (v) targets the 3’-
UTR of the mRNA encoding sirtuin 1 (SIRT1), a ubiquitous
deacetylase that regulates numerous cellular functions at the
level of gene expression, including aging, lipid homeostasis,
and inflammatory signaling (48). Because of the abundance
of this NF-kB-upregulated miRNA-30b in the human brain
and CNS neurons, with its significant over-expression in AD
and this miRNA’s known impact on human neurophysiological
effects and pathways relevant to neurodegenerative disease, we
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FIGURE 1 | Analysis of the hsa-miRNA-30b-5p (miRNA-30b) interaction with the Homo sapien NF-L 3’-UTR; (A) representation of the nucleotide complementarity

between the 22 nucleotide (nt) hsa-miR-30b-5p (highlighted in green; encoded at the miRNA-30 gene cluster on human chromosome (chr) 8q24.22; https://www.

genecards.org/cgi-bin/carddisp.pl?gene=MIR30B) and nt position 266–287 of the NF-L mRNA 3’-UTR non-coding region (highlighted in yellow; encoded at human

chr 8p21.1; https://www.genecards.org/cgi-bin/carddisp.pl?gene=NEFL); the microRNA target prediction database (miRDB; http://mirdb.org/cgi-bin/targetdetail.cgi?

targetID=2099169; last accessed April 24, 2022) for miRNA-30b and NF-L (NEFL; NCBI Gene ID 4747; GenBank Accession NM_006158) indicates a very high

miRNA-mRNA target score of 84 and a strong 10 nt ‘seed’ sequence location at 278-287 nt of the NF-L 3’-UTR [see also “(B)” below]; (B) the NF-L 3’-UTR gene

sequence; the inverted red arrow indicates the start of the NF-L 3’-UTR non-coding sequence; last upward pointing red arrow is the end of the NF-L 3’-UTR; note that

additional adenosine groups are present in the mature NF-L mRNA (and 3’ end of the NF-L 3’-UTR); (C) the NF-L-mRNA-3
′

-UTR expression vector luciferase reporter

assay (pLight Switch-3
′

UTR; Cat#S810535; Switchgear Genomics, Palo Alto CA); in this vector, the entire 1,985 nucleotide NF-L 3
′

-UTR was ligated into the unique

Nhe1-Xho1site; not drawn to scale; (D) human neuronal-glial (HNG) cells, 2 weeks in primary culture; neurons (red stain; λmax = 690 nm), DAPI (blue nuclear stain;

λmax = 470 nm) and glial fibrillary associated protein (GFAP; glial-specific green stain; λmax = 520 nm); the HNG cell culture is about 60% confluent and at 2 weeks

of culture contains about 70% neurons and 30% astroglia (7, 14, 18, 39, 40, 49); human neurons do not culture well in the absence of glia; neurons also show both

extensive cytoarchitecture and display electrical activity (unpublished; Lonza Research and Development, Walkersville MD, USA); 40X magnification; HNG cells

transfected with the NF-L-mRNA-3
′

-UTR expression vector luciferase reporter were treated exogenously with LPS (20 ng/ml cell culture medium, 48 hr), a stabilized

miRNA-30b, a scrambled control miRNA-30b (miRNA-30b-sc) or control miRNA-183; see (14, 18, 39, 49) and text for further details on all reagents and methods

used in these experiments; (E) compared to control, HNG cells transfected with a scrambled (sc) control pLightSwitch-3’-UTR vector, the NF-L-mRNA-3
′

-UTR vector

exhibited decreased luciferase signal to a mean of 0.18-fold of controls in the presence of exogenous LPS and 0.11 in the presence of miRNA-30b; this same vector

exhibited no change in relative luciferase yield in the presence of a control miRNA-30b-sc or miRNA-183; for each experiment (using different batches of HNG cells) a

control luciferase signal was generated that included separate controls with each analysis; in addition a control vector β-actin-3
′

-UTR showed no significant effects on

the relative luciferase signal yield after treatment with either miRNA-183 or miRNA-30b (data not shown); a dashed horizontal line set to 1 is included for ease of

comparison; N = 5; *p < 0.01 (ANOVA); values represent mean +/- 1 standard deviation (S.D.); Microsoft Excel Analysis ToolPak, Excel for Microsoft 365; https://

support.microsoft.com/en-us/office/use-the-analysis-toolpak-to-perform-complex-data-analysis-6c67ccf0-f4a9-487c-8dec-bdb5a2cefab6. The results suggest a

(Continued)
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FIGURE 1 | physiologically relevant miRNA-30b-NF-L-mRNA-3
′

-UTR interaction and a miRNA-30b-mediated downregulation of NF-L expression in HNG cells. This

pathogenic interaction may be related to the downregulation of other immune, inflammatory, and synaptic system genes by upregulated miRNAs in the CNS resulting

in a deficit in cytoskeletal and synaptic organization and trans-synaptic signaling (7, 21, 26, 27, 31, 32, 36, 38–40, 50).

further examined miRNA-30b as a potential regulator of NF-L
gene expression.

RECENT STUDIES ON miRNA-30b-NF-L
mRNA INTERACTION

Using miRBase (mirbase.org Release 22.1) and the miRDB
database search engine (http://mirdb.org/cgi-bin/search.cgi; last
accessed 24 April 2022), it was predicted that the single copy
the human neurofilament light chain gene [NF-L; NEFL, NeFL;
gene 4747; 5767 base pairs (bp) located at human chr 8p21.2;
accession number MIMAT0000420; https://www.genecards.
org/cgi-bin/carddisp.pl?gene=NEFL; last accessed 24 April
2022] encodes a 3,584 nucleotide (nt) A+T-rich linear mRNA
that possesses a 1,985 nt 3’-UTR (NCBI Reference Sequence:
NM_006158.5; Ensembl:ENSG00000277586MIM:162280;
AllianceGenome:HGNC:7739; https://www.ncbi.nlm.nih.gov/
gene?Db=gene&Cmd=DetailsSearch&Term=4747; last accessed
24 April 2022). The NF-L 3’-UTR region has the potential
to be targeted by at least 124 different miRNAs (Figure 1
and Supplementary Table 1). Because of multiple previous
studies verifying its brain involvement on CNS pathology,
the brain-enriched NF-kB-sensitive miRNA-30b and NF-L
3’-UTR interaction was studied further (44–48). To validate
a functional miRNA-30b-NF-L 3’-UTR interaction, we used
HNG cells (at 2 weeks in culture) transfected with a miRNA-
30b-NF-L 3’-UTR expression vector luciferase reporter assay
(pLightSwitch-3

′

UTR; Cat#S810535; Switchgear Genomics, Palo
Alto CA). In this vector, the entire 1,985 nucleotides’ NF-L
3
′

-UTR had been ligated into the unique Nhe1-Xho1site; all
experimental procedures and the use of pLightSwitch-3

′

UTR
luciferase-reporter vectors have been previously described in
detail (18, 39, 49). HNG cells were subsequently treated with
a stabilized miRNA-30b, a scrambled control miRNA-30b
(miRNA-30b-sc), a control miRNA-183 or LPS (EC No: 297-
473-0; MDL No: MFCD00164401; Cat No: L4391; Millipore
Sigma. St Louis MO, USA) at 20 ng/ml cell culture medium
for 48 hr as previously described [(18, 39, 49); Figures 1C,E].
Compared to controls, HNG cells transfected with the NF-L-
mRNA-3

′

-UTR vector exhibited decreased luciferase signal to a
mean of 0.18-fold of controls in the presence of exogenous LPS
(20 ng/ml of HNG cell culture medium), and a mean of 0.11
in the presence of miRNA-30b; this same vector exhibited no
significant change in luciferase signal yield in the presence of the
control sncRNAs miRNA-30b-sc or miRNA-183. In addition,
a control vector β-actin-3

′

-UTR showed no significant effects
on the relative luciferase signal yield after treatment with either
miRNA-30b or miRNA-183 (data not shown). Taken together,
these results suggest a physiologically relevant miRNA-30b-NF-
L-mRNA-3

′

-UTR interaction conducive to the verification of

a miRNA-30b-mediated downregulation of NF-L expression
in HNG cells. This NF-kB-sensitive miRNA-30b-mediated
pathogenic interaction may be related to the downregulation
of other immune, inflammatory, and synaptic system gene
expression by pathological upregulation of miRNAs in the CNS,
thereby resulting in altered cytoskeletal dynamics and neuronal
atrophy as is observed in AD brain and in AD cellular and
animal models associated with the progressive development of
neocortical pathology (18, 33, 37–40, 42, 46–49, 51).

DISCUSSION

The human GI-tract microbiome is a rich and dynamic source of
microorganisms of staggering diversity and complexity. GI-tract
commensal microbes are generally beneficial to global human
metabolism, immunity, and health. However, enterotoxigenic
forms of these same microbes possess significant potential to
secrete some of the most neurotoxic and pro-inflammatory
biopolymers known. These neurotoxins have been found to
significantly disrupt normal gene expression patterns in the
CNS. These include multiple species of Gram-negative bacteria-
derived neurotoxic-glycolipids, such as LPS, long known to be
an inducer of pro-inflammatory, and altered immunological
signaling in infection and human disease (14–18, 47–50, 52, 53).
It should be mentioned that although there has been observed
a significant variability in microbial abundance, speciation and
complexity even amongst healthy individuals and that it has
been difficult to link specific microbial abundance patterns with
any neurological disease, certain GI-tract microbial compositions
appear to be more conducive to the production of secreted
pathological neurotoxins that include LPS (1, 2, 47–50, 52, 53).
It has also been appreciated for some time that the toxins
that include LPS drive pathological pro-inflammatory signaling
programs in neurons in large part via the induction of NF-
kB and the upregulation of NF-kB-sensitive miRNAs. However,
the details of the molecular-genetic mechanisms and signaling
pathways involved still require a more thorough investigation
(4, 40, 46, 47, 50, 52–54).

In this Perspectives paper, from recent experiments from
our laboratory and multiple current research reports in the
last several years, we have integrated data and provided
evidence of microbial-derived LPS-mediated induction of NF-
kB and miRNA-30b, whose upregulation appears to target and
downregulate expression of the NF-L-3’-UTR whose mRNA
encodes a critical neuron-specific component of the neuronal
cytoskeleton and cytoarchitecture. Previously, microbial-derived
LPS has been shown to induce NF-kB and NF-kB-sensitive
miRNA-30b signaling (42, 45–47) and pathologically miRNA-
30b is robustly upregulated in the brains of both patients
with AD and in Aβ-peptide over-expressing transgenic murine
models of AD (TgAD), while expression of its multiple mRNA
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FIGURE 2 | LPS, present in brain cells affected with AD, has an inhibitory

effect on NF-L expression; a human microbiome-derived lipopolysaccharide

(LPS)-NF-kB-miRNA-30b-NF-L pathological signaling pathway may be in part

responsible for driving altered cytoskeletal dynamics, neuronal atrophy and

altered trans-synaptic signaling in stressed human neuronal-glial (HNG) cells in

primary culture and in Alzheimer’s disease (AD) brain. LPSs are neurotoxic

glycolipids derived from the outer cell wall of non-capsulated Gram-negative

bacteria; normally they contribute to the integrity of the outer cell wall

membrane and protect the cell against the action of bile salts and lipophilic

antibiotics (50, 52, 53). Both microbial infection and LPS are strong inducers of

NF-kB signaling in neurons and other human cell types. miRNA-30b is under

transcriptional control by NF-kB, and the neuron-specific NF-L chain

mRNA-3’-UTR is a target for miRNA-30b. Other miRNAs may be involved (see

Supplementary File 1). Disruption and insufficiency of NF-L abundance

within the neuron are in part responsible for disturbances in neuronal

cytoarchitecture, atrophy, and synaptic aberrations as is observed in stressed

human brain cells and in AD-affected neocortex.

targets that maintain neuronal structure and synaptic signaling,
such as the NF-L transcript, is significantly downregulated
(42, 45–48). We provide molecular-genetic evidence that LPS
and miRNA-30b in HNG cells in primary culture both target
the NF-L 3’-UTR, a process known to ultimately result in
NF-L downregulation. It is of further interest: (i) that the
overexpression of miRNA-30b in the hippocampus of normal
wild-type mice has been reported to impair synaptic and
cognitive functions, mimicking those seen in TgAD models;
(ii) that, conversely, knockdown of endogenous miRNA-30b in
murine models prevents synaptic and cognitive decline; (iii)
that the expression of miRNA-30b is significantly upregulated

by pro-inflammatory cytokines and Aβ peptides through NF-
κB signaling; (iv) that miRNA-30b, upregulated in the brains of
patients with AD has been found to impair synaptic transmission,
consequently leading to progressive synaptic failure and, thus,
promoting AD development; and (v) that miRNA-30b over-
expression induces neuronal injury, neuron loss, and proliferates
specific biomarkers for neuronal inflammation (41–46). While
both miRNA-30b and NF-L are encoded on the same human
chromosome 8, the significance of this, if any, is currently not
yet understood (see legend to Figure 1).

An improved understanding of the interaction between
the GI tract-CNS axis and the GI-tract microbiome and AD
has considerable potential to lead to new diagnostic and
therapeutic strategies in the clinical management of AD and
other lethal, progressive, and age-related neurodegenerative
disorders. Current findings further support the hypothesis of
an altered miRNA-mRNA coupled signaling network in AD,
much of which is supported by recently described experimental
findings in the scientific literature. Targeting and modulating
GI-tract microbiome LPS-mediated miRNA-30b-regulated NF-L
pathways and other miRNA-mediated gene expression circuitry
should be valuable in the design of future therapeutic strategies
(Figure 2). The overall goals of these strategies are that the
support and maintenance of cytoskeletal structures essential
for synaptic plasticity may more effectively manage the many
neurological diseases in which NF-L gene expression and
abundance play a determinant and defining role. Lastly, dietary-
based modifications of microbial dysbiosis may be an attractive
means to modify the abundance, speciation, and complexity
of enterotoxigenic forms of AD-relevant microbes and their
potential for the pathological discharge of highly neurotoxic
microbial-derived secretions that include LPS (4, 50, 53–57).
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