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Biomimicking properties 
of cellulose nanofiber 
under ethanol/water mixture
Abdul Halim1,3,4*, Kuan‑Hsuan Lin1 & Toshiharu Enomae2*

The two types of cellulose nanofiber (CNF) surface characteristics were evaluated by oil contact 
angle under ethanol–water solution at several concentrations as well as in air. Wood pulp-based 
2,2,6,6-tetramethylpiperidine-1-oxylradical (TEMPO)-oxidized cellulose nanofiber (TOCNF) sheets 
and bamboo-derived mechanical counter collision cellulose nanofiber (ACC-CNF) sheets were 
fabricated by casting followed by drying. The CNF shows underwater superoleophobic mimicking fish 
skin properties and slippery surface mimicking Nepenthes pitcher. The underwater superoleophobic 
properties of CNF was evaluated theoretically and experimentally. The theoretical calculation and 
experimental results of contact angle showed a large deviation. The roughness, zeta potential, 
and water absorption at different concentrations were key factors that determine the deviation. 
Antifouling investigation revealed that CNF was a good candidate for antifouling material.

Fish skin have been already known for its properties to repel a liquid and solid fat from its surface. The properties 
known as a superoleophobic surface come from the hydrophilic protein of fish skin that absorbs much water. The 
water moieties on the surface will repel any non-polar liquid such as oil1,2. A cellulose nanofiber with abundant 
of hydroxyl groups on the surface is a candidate for underwater superoleophobicity. A numerical study on the 
oleophobic characteristics of hydroxyl functional groups clarified that hydroxyl groups showed strong under-
water oleophobicity than other functional groups3. The hydroxyl group of cellulose will absorb much water and 
produce a water layer that repel oil.

The underwater superoleophobicity of a surface is generally measured in terms of the underwater oil con-
tact angle. This contact angle is known to be predicted from modified Young’s equation, Wenzel equation or 
Cassie–Baxter equation, depending on the condition of the surface and attached oil droplets (see theoretical 
section in detail). However, the chemical properties and roughness of cellulose sheet surfaces are susceptible 
to an underwater environment. For instance, carboxylic groups of wood pulp-based 2,2,6,6-tetramethylpiperi-
dine-1-oxylradical (TEMPO)-oxidized cellulose nanofiber (TOCNF) dissociate in underwater conditions. This 
tendency leads to an error of prediction. Even though the prediction of underwater contact angle have been 
reported4–6, there are few studies dealing with a numerical prediction characteristic of underwater oleophobicity 
of cellulose. Previous studies on the oleophobic property of cellulose mainly focused on filter applications7–13.

Herein, we report the contact angle prediction of cellulose nanofiber-coated surfaces under several concen-
trations of ethanol–water solutions and compare it to the experimental results. Two kinds of CNF: chemically-
modified TEMPO-oxidized CNF (TOCNF) and mechanically modified CNF (ACC-CNF) are characterized and 
compared. Contrary to ACC-CNF containing only hydroxyl groups, TOCNF contains carboxylic groups on its 
surface. The effect of hydroxyl and carboxylic groups contained by CNF was clarified. The method of predicting 
the under-water contact angle using ethanol–water solutions is successfully established as an important informa-
tion for designing an antifouling filters.

Theory.  In in-air condition, on a smooth surface, contact angles are predicted by Young’s equation14:

(1)cosθOA =
γSA − γOS

γOA
,

OPEN

1Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki  305‑8572, 
Japan. 2Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki  305‑8572, 
Japan. 3Department of Pulp and Paper Technology, Institute of Technology and Science Bandung, Jl. Ganesha 
Boulevard Lot‑A1 Kota Deltamas, Cikarang Pusat, Bekasi, Bekasi  17530, Indonesia. 4Department of Chemical 
Engineering, Universitas Internasional Semen Indonesia, Jl. Veteran, Sidomoro, Kebomas, Gresik  61122, 
Indonesia. *email: abdul‑halim.xm@alumni.tsukuba.ac.jp; enomae.toshiharu.fw@u.tsukuba.ac.jp

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-78100-z&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2020) 10:21070  | https://doi.org/10.1038/s41598-020-78100-z

www.nature.com/scientificreports/

where γ is the surface tension, θ is Young’s contact angle and subscripts O , A , and S refer to oil, air and solid, 
respectively. The surface tension of oil is usually lower than that of water. According to Young’s equation, the 
contact angle of oil is lower than that of water; therefore, in air, a hydrophilic surface (water contact angle 
< 90°) is also oleophilic (oil contact angle also < 90°), and an oleophobic surface (oil contact angle > 90°) is also 
hydrophobic (water contact angle > 90°)15. For a rough surface, the interaction between the liquid and solid is 
emphasized. The contact angle of the liquid on a rough surface is described by Wenzel’s equation16:

where θWOA is the Wenzel contact angle of a liquid on a rough surface. r is the roughness defined as a ratio of the 
apparent surface area ( Aa ) to the projected area ( As ) as represented by equation:

This condition is called the Wenzel state. If an inert fluid fills the void of a rough surface, the interaction 
between the liquid and solid is reduced. In this case, the contact angle is predicted by Cassie–Baxter’s equation17:

where θCBOA is the Cassie–Baxter contact angle of a liquid on a rough surface. fso is the fraction of liquid–solid 
contact area to the total surface area and Rf  is the roughness of only the wetted area of the solid. In a water envi-
ronment, Eq. (1) is complemented by relationships:

where subscript W refers to water. Rearrangement of Eqs. (1), (5) and (6) leads to Eq. (7)18:

From Eq. (7), we could predict the underwater contact angle of the liquid if the in-air contact angle is given 
and Eqs. (2) and (3) are applied to calculate Wenzel’s and Cassie–Baxter’s contact angles, respectively, corre-
sponding to the roughness condition.

Results and discussion
Surface structure of cellulose nanofiber.  Figure 1 shows that ACC-CNF and TOCNF have different 
textures and apparent surface roughness levels in the same area (2 µm × 2 µm) scanned by AFM. The apparent 
surface area ( Aa ) for ACC-CNF and TOCNF are 4.253 µm2 and 4.005 µm2, respectively. The projected area ( As ) 
for ACC-CNF and TOCNF both are 4 µm2. Therefore, the r values of ACC-CNF and TOCNF were 1.071 ± 0.01 
and 1.002 ± 0.001, respectively. The difference of roughness is relatively small even though the feature of ACC-
CNF and TOCNF is quite different as shown in Fig. 1 because the apparent surface area is relatively similar. 
The calculation and illustration of this phenomena are described in Figure S1. This difference in r is due to the 
fiber dimensions. Previous reports mentioned that ACC-CNF is 15–20 nm and ca.1 µm in diameter and length, 
respectively while TOCNF is 3–4 nm and < 3 µm19,20.

FTIR spectra are depicted in Fig. 2. The absorption band at 3000–3600 cm−1 is due to hydroxyl groups of cel-
lulose and water adsorbed on the cellulose. At the absorption band of 1610 cm−1, TOCNF shows an absorption 

(2)cosθWOA = rcosθOA,

(3)r =
Aa

As
.

(4)cosθCBOA = fso(Rf cosθOA + 1)− 1,

(5)γSA = γWS + γWAcosθWA

(6)γSW = γOS + γOWcosθOW,

(7)cosθOW =
γOAcosθOA − γWAcosθWA

γOW

Figure 1.   AFM images of ACC-CNF (a) and TOCNF (b) thin films.
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peak assigned to the C=O stretching band of COONa. This bond is generated only on TOCNF during neutrali-
zation with sodium hydroxide19. The chemical reaction of TOCNF fabrication is described in the Figure S2.

Oil and water contact angles on CNF surface under in‑air condition.  In air, TOCNF exhibited a 
higher oil contact angle (15.5°) than ACC-CNF (13.3°) as shown in Fig. 3. For TOCNF, hydroxyl groups in the 
cellulose chain were oxidized to carboxylic groups19. Carboxylic groups increase hydrophilicity because this 
functional group brings ionic bonds with sodium. A high element ratio of oxygen to carbon showed that hydro-
philicity of the surface increased21–23. However, it is difficult to justify the contribution of the molecular structure 
of CNF to the contact angle since the contact angle is dependent on several other variables such as roughness. If 
a droplet in the Wenzel state is assumed, Young’s contact angle can be calculated from the roughness of TOCNF 
and ACC-CNF as the AFM result using Eq. (2). For ethanol–water solutions, a higher water content produced 
a higher contact angle because of its higher surface tension, as is consistent with Young’s equation. The surface 
energy of TOCNF and ACC-CNF was 56.96 and 51.81 mJ m−2, respectively, by the Fowkes equation and 43.67 
and 44.14 mJ m−2, respectively, by the Owens–Wendt equation (refer to the Supplementary Information section 
B and Figure S3 in detail). This result agrees with the previous report referring to the cellulose surface energy of 
approximately 33–74 mJ m−2 24.

CNF properties underwater condition.  Water has a higher surface tension than oil and ethanol. Fig-
ure 4a shows the surface tension of water. In the pendant method, the accuracy of measurement was dependent 
on the pendant volume used during measurement. To obtain high accuracy, the pendant volume was increased 
to be large enough immediately before its detachment. A higher content of ethanol more largely decreased the 
surface tension because ethanol molecules break hydrogen bonds among water molecules. The result was in 
good agreement with the previous report25. A high content of ethanol also decreased the interfacial tension 
between oil and ethanol–water solution as shown in Fig. 4b. Ethanol with non-polar groups such as hydrocarbon 
chains presumably interacts with an oil droplet, causing a decrease in the surface energy.

By modifying Young’s equation in-air and underwater as shown in Eqs. (5–7), the underwater oil contact angle 
was calculated as shown in Fig. 5. The surface tension of n-tetradecane is 26.56 mN m−126. The in-air oil contact 

Figure 2.   FTIR spectra of TOCNF and ACC-CNF.

Figure 3.   In-air contact angle of oil (a) and ethanol–water solutions (b) on CNF sheet surfaces with 
photographs. Values in the photographs in (b) refer to water content.
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angle, in-air ethanol–water solution contact angle, and interfacial surface tension between oil and ethanol–water 
solution were obtained from images in Fig. 3. The theoretical calculation of underwater contact angle is shown 
in Fig. 5a,b for TOCNF and ACC-CNF, respectively and its photograph image (Fig. 5c). Higher Rf  will increase 
significantly the contact angle especially at high water contents (further geometry is explained in Supplementary 
Information section C, Figure S4). At 50% water, the contact angle is similar for several Rf  value.

In air, from Young’s equation and as shown in Fig. 3, the hydrophilic surface is also oleophilic due to the 
surface tension of oil usually lower than water. On the Cassie–Baxter state, the hydrophilic surface is possible 
to show high apparent contact angles (> 90°) because that are air fill the void on the rough surface. The air will 
decrease the surface interaction of solid and liquid on the interface. A high Rf  value means high solid–liquid 
interaction. Therefore, under air condition, apparent contact angle will decrease. Underwater condition, the 
hydrophilic surface change to oleophobic because water will fill the void on the rough surface. However, in 
Fig. 5a,b, a higher Rf  value does not show a lower oil contact angle even though the solid-oil interaction is 
stronger. The phenomena might be caused by the oleophobicity of the CNF surface that increases significantly 
with increasing water content and not because of the roughness of surface.

Underwater condition, fso represents the fraction of void filled with water or water–oil interaction on the 
rough surface. A high fso value means a low void fraction or strong solid-oil interaction on the rough surface so 

Figure 4.   Surface tension of ethanol–water solution (a) and underwater interfacial tension of n-tetradecane as 
oil (b).

Figure 5.   Theoretical and measured contact angles from images of oil under ethanol–water solutions on 
TOCNF (a) and ACC-CNF (b) surface with images of oil droplets at each water content (c).
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that high  fso values will produce low oil contact angles as shown in Fig. 4a,b. However, experimental underwater 
oil contact angles were always underwater superoleophobic (> 150°) as shown in Fig. 5a,b. The large difference 
between theoretical calculation and experimental results are derived from the theoretical equation that does not 
consider the change of underwater surface properties chemically or physically.

As shown in Fig. 6a, cellulose sheets absorbed so much water that the surface roughness and hydrophilicity 
increased. TOCNF absorbed more water than ACC-CNF presumably due to its higher hydrophilicity. The thick-
ness and absorption capacity increased exponentially for TOCNF and linearly for ACC-CNF as a function of 
water content. The physical appearance of TOCNF after absorbing water was gel-like, whereas that of ACC-CNF 
after absorbing water was rubber-like. The swelling capacity of TOCNF and ACC-CNF was 2050% and 256%, 
respectively10. However, the absorption capacity did not agree with the contact angle qualitatively, as shown in 
Fig. 6a. It is presumably because at higher water contents, the surface had higher roughness than that at lower 
water contents.

Although the contact angle is macroscopic behavior, the report indicated that the contact angle is affected by 
nanoscale molecularly roughness of surface27. Therefore, another factor possibly affecting the deviation is zeta 
potential of CNF. Zeta potential indicates the surface charge of CNF that affects the contact angle28,29. TOCNF 
had a zeta potential twice as high as ACC-CNF as shown in Fig. 6b because TOCNF contains carboxyl groups. 
In underwater condition, CNF surfaces formed an electric double layer and induced a high zeta potential. For 
TOCNF, the zeta potential decreased after ethanol addition in agreement with the previous report30 as more 
carboxylic groups associated at lower water contents. However, no difference in the dependence of the zeta 
potential on the water content was found for ACC-CNF. This result indicates that the surface charge of ACC-
CNF in ethanol–water solutions was not affected by the water content as ACC-CNF only has hydroxyl groups. 
Considering that an oil droplet has slightly negative charge in water31, the negative zeta potential leads the elec-
trostatic repulsion between a CNF surface and oil; however, this concept is not considered in Eq. (7). Higher 
levels of zeta potential and absorption capacity of TOCNF are supposed to cause higher underwater oil contact 
angle. Underwater, TOCNF showed a property like fish mucus. On fish scales, mucus keeps the fish skin always 
clean even under dirty water32.

Application of superoleophobic properties of cellulose nanofiber sheet.  The ability to keep water 
that mimic a mucus fish scale underwater leads CNF sheets with underwater oleophobic properties seem prom-
ising for antifouling applications7,8,33,34. For prewetting, only a small amount of oil was absorbed as shown in the 
picture of Fig. 7. The oil droplet slid on the surface due to the repellency developing in the porous structure of 
nanocellulose sheets containing a lot of water molecules. Absorbed oil might cause damage to the surface, edge 
or boundary of samples. Without prewetting, the sample absorbed oil yet less than filter paper. This is because 
CNF forms a tighter structure and decreases the porosity. Interestingly, the oil rejection works not only under-
water but also in air. The in-air oil rejection property is similar to that of a Nepenthes pitcher surface35. This indi-
cates that CNF is mimicking not only fish skin but also Nepenthes pitcher. Compared to the Nepenthes pitcher 
mimicking surface reported by Guo et al.36 and Chen et al.37, the CNF surface can be applied as an oil repellant 
material without any further chemical modification.

Materials and methods
Two types of cellulose nanofiber, wood pulp-based 2,2,6,6-tetramethylpiperidine-1-oxylradical (TEMPO)-oxi-
dized cellulose nanofiber with a carboxylate content of 0.016 mmol/g19 (TOCNF, Nippon Paper Industries Co., 
Ltd., Japan) and bamboo derived mechanical counter collision cellulose nanofiber20 (ACC-CNF, Chuetsu Pulp 
& Paper Co., Ltd., Japan), was used. One mL of CNF coated on a glass slide using spin coater (Mikasa Opticoat 
MS-B100) with 60 rpm for 1 min. The glass slide (Matsunami S1111, Japan) was cleaned by immersion in sul-
furic acid for at least for 2 days in advance. The CNF coated glass then dried at 65 °C for 24 h in an oven (Sanyo 
MIR-262, Japan). CNF sheets were fabricated by casting 5, 7, and 10 g of a CNF suspension in a petri dish with 
a diameter of 65.83 mm then drying it at 65 °C for 24 h. 1% weight TOCNF aqueous suspension was stirred 

Figure 6.   Absorption capacity (a) and zeta potential (b) of cellulose nanofiber.
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for at least 24 h until the TOCNF suspension changes from gel-like to a liquid form. 1.35% ACC-CNF aqueous 
suspension was diluted to 1% then stirred for at least 24 h.

CNF-coated filter paper (CNF-FP) was fabricated by immersion of filter paper (Advantec No. 185) in the 
CNF dispersion for 30 min followed by drying at 65 °C for 24 h. To measure the water content, CNF-FP was 
dried at 120 °C for 48 h. Mass of CNF-FP was measured before and after coating. The thickness of the sheets was 
measured with a micrometer (TW-21 Tozai Seiki Co., Ltd., Japan). Fourier Transform Infrared (FTIR) spectra of 
the TOCNF and ACC-CNF sheets were measured to analyze functional groups with a spectrometer (Shimadzu 
IR Prestige 21, Japan).

Oil contact angle (OCA) and water contact angle (WCA) measurements were carried out at CNF coated 
glass surface by the sessile drop method (DropMaster DMs-401, Kyowa Interface Science Co., LTD., Japan). 
The contact angle was measured in air and under ethanol–water solution. n-tetradecane (Wako Pure Chemical 
Industries Ltd., Japan) and deionized water were used for OCA and WCA measurements, respectively. The theo-
retical calculation method of OCA is described in Supplementary Information material section A. The weight 
ratio of water to ethanol (Special grade, Wako Pure Chemical Industries Ltd., Japan) was 0.50, 0.70, 0.85, 0.95, 
0.98 and 1.00. The surface tension of the ethanol water solution and the interfacial surface tension between oil 
and the ethanol–water solution were measured by the pendant drop method (DropMaster DMs-401, Kyowa 
Interface Science Co., LTD., Japan).

Swelling capacity of the CNF sheets was measured by soaking a CNF sheet in ethanol–water solution for at 
least 10 min until saturation and expressed in the contained solution mass on dry cellulose mass in percentage. 
The thickness of swollen CNF sheets was measured from pictures taken with a microscope (SZX10, Olym-
pus, Japan) using open source software ImageJ38. Atomic Force Microscopy (AFM, Hitachi High-Tech Science 
E-Sweep, Japan) was applied to observe the topography and roughness of CNF sheets. The cantilever has a spring 
constant of 125 N/m and vibrated at a frequency ranging 110–150 kHz, 225 µm in height with a probe of ≤ 10 nm 
in tip diameter and 256 resolution was used. The roughness r of the CNF sheets was calculated by Eq. (3). The 
apparent surface area ( Aa ) was obtained from AFM and projected area is equal to scanned area of AFM. The effect 
of scanned area and resolution to the roughness was negligible as previously described by Kozbial et al.39. Zeta 
potential of CNF dispersion was measured by Electrophoresis and Dynamic Light Scattering (DLS) (Zetasizer 
Nano ZS, Malvern Instruments, UK).

Fouling analysis was conducted by dropping 5 ml of tetradecane on a CNF-filter paper (CNF-FP) sheet and 
it was allowed to stand for 30 min with or without a prewetting process that was carried out by immersion of a 
CNF-FP sheet in deionized water for 5 min. The fouling result was evaluated by drying the CNF-FP after fouling 
in oven at 75 °C for 12 h. The samples were weighed before and after drying.

Conclusion
The cellulose nanofiber shows superoleophobic under various concentrations of ethanol water solution. However, 
the experimentally-measured and theoretically-calculated contact angles showed a high deviation presumably 
due to roughness and chemical properties of CNF surfaces that is subject to change in the aqueous solution 
with the length of wetting time. Changes of these properties are not considered in the theoretical calculation. In 
the solution, high water-swelling TOCNF sheets absorbed more water and showed a higher zeta potential than 
ACC-CNF. The amount of absorbed water, that is, accommodation capacity increased exponentially with the 

Figure 7.   Fouling level of CNF-FP sheets with (wp) and without (wop) prewetting with water.
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water content of the solution. Both CNF sheets exhibited in-air oleophobicity like a Nepenthes pitcher surface 
and TOCNF exhibited a mucus like underwater property. These antifouling results imply that CNF is capable of 
repelling oil and promising as an antifouling material.
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