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Spontaneous gait phase 
synchronization of human 
to a wheeled mobile robot 
with replicating gait‑induced upper 
body oscillating motion
Satoshi Yagi1,2, Yoshihiro Nakata1,3*, Yutaka Nakamura1,4 & Hiroshi Ishiguro1

Synchronization between humans is often observed in our daily lives, for example in breathing, in 
hand clapping in crowds, and in walking. It has been reported that pedestrian gait synchronization 
maximizes walking flow efficiency. As increasingly more mobile robots are being developed for 
practical use, it is important to consider how robots may impact pedestrian flows. While there is 
research on synchronization phenomena between humans and robots, gait synchronization between 
humans and robots has yet to be studied, particularly synchronization occurring with wheeled 
humanoid robots while moving. In this paper, we investigated the gait phase synchronization between 
humans and a wheeled mobile humanoid robot, which moved its upper body in three distinct types 
of motion patterns: (1) no‑motion, (2) arm‑swinging (as is common for typical mobile humanoids), 
and (3) arms‑swinging in addition to periodic vertical‑oscillation similar to the human upper body 
movement while walking. Rayleigh test was performed on the distribution of the obtained gait phase 
differences under each condition and a significant distributional bias was confirmed when participants 
were walking with the robot that performed both arm‑swinging and vertical‑oscillation of the upper 
body. These results suggest that humans can spontaneously synchronize their gaits with wheeled 
robots that utilize upper body oscillating. These findings can be important for the design of robot‑
integrated urban transportation systems, such as train stations and airports, where both humans and 
robots are mobile and a highly efficient flow is required.

Although robots designed to be integrated into factories are widely used in an industrial setting, it has been 
challenging to place robots in human living environments. This issue has been actively  researched1,2. Previous 
robotics research has contributed to navigation methods to predict surrounding people’s trajectories and avoid 
 collisions3–11.

These technologies are one-directional solutions from the robot’s perspective on how to perceive human 
action and act accordingly. The other direction is how humans recognize the robot’s actions and intentions 
accurately. There has been research on methods for communicating the robot’s movement  intentions12–17; how-
ever, the people around the working robot may disregard them and instead feel that the robot is an  obstacle18. 
Therefore, the effort of people required to recognize the robot’s action and intention should be minimized, and 
ideally, the level of effort should be  unconscious19.

It is known that humans walking in large crowds can walk collectively, as they unconsciously synchronize 
their gait with the surrounding  pedestrians20–22. This pedestrian synchronization is induced by a various factors 
such as hand-holding23, vibrations transmitted via a  bridge24, and ambient  music25. Even a small cognitive load, 
such as listening to a story when walking, enhances a gait  synchronization26. Previous studies on pedestrian gait 
synchronization have reported that gait phase synchronization is more likely to occur in high-density groups 
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and that pedestrian synchronization also maximizes the walking flow  efficiency27,28. Additionally, it has been 
reported that there is a psychological aspect to synchronized side-by-side walking, as it improves the people’s 
impression of each  other29.

Various studies have reported the importance of motion synchronization between robots and  humans30–34. In 
research on gait, there has been a study on a walking assist device that enables a pedestrian to synchronize their 
gait by listening to the footsteps of a CG avatar displayed on a  screen35. Another synchronization method found 
in another study is by vibrating a treadmill device in the vertical direction for the participant to synchronize gait 
through the  shaking36. However, it is still not clear whether humans can synchronize their gaits through walking 
motion expressed by an actual mobile robot. If humans can synchronize a gait phase with robots, we can imagine 
applications with smooth robot–human mobility in our daily lives. In particular, if both the bipedal robots and 
the more common wheeled robots can synchronize gait phases by utilizing upper body motions, robots can 
move by taking advantage of the human ability to walk skillfully in the crowd. In order to utilize the benefits 
of pedestrian synchronization in wheeled mobile robots, we developed a wheeled humanoid that can perform 
pedestrian-like moving motions, including upper body oscillating induced by a gait.

In this paper, we investigated the synchronization of gait phases between a human and a wheeled humanoid 
robot. We implemented a periodic upper body motion in a wheeled child-like android robot (Fig. 1a), which 
oscillates its upper body vertically while moving (Fig. 1b), and measured the gait phase difference between the 
robot and a human walking behind the robot. In the experiment, participants walked in a circle behind the robot 
in a line (Fig. 1c), and their gaits were captured by a camera to obtain the phase difference between the two. For 
comparison, we conducted paired walking under four conditions: participants walking behind a human instead 
of the robot (“HU condition”), behind the robot with No-Motion (“NM condition”), behind the robot that its 
Arms-Swinging (“AS condition”), behind the robot that its Arms-Swinging adding Vertical-Oscillation of the 
upper body (“AS + VO condition”). After the experiment, we analyzed the bias in the phase difference distribu-
tions measured at each gait cycle. We then verified whether the gait phase synchronization occurred under each 
of the four conditions.

Before explaining the results, we must explain how we assess gait phase synchronization and the statistical 
analysis used in this paper. A human gait is periodic, with one walk cycle consists of one foot landing on the 
ground, swing in the air, and then landing on the ground again. Traditionally, one cycle of the gait phase φ 
(0–360 deg) is described as follows based on the right foot: heel-strike (0), middle-stance (90), pre-swing (180), 
middle-swing (270), and then back to the first heel-strike (360)37. As synchronization is a state in which two 
or more human gait cycles repeat oscillations while maintaining a certain angle, when two pedestrians’ gaits 
synchronize, the gait phase difference �φ remains constant regardless of the walking time. This is called phase 
locking. Conversely, when they are not synchronized, their gait phases increase independently, and �φ increases 
or decreases monotonically along the time. That causes the distribution to �φ become uniformly distributed. 

Figure 1.  Overview of the experiment: (a) ibuki: a child mobile android robot with a human-like appearance. 
(b) a vertical-oscillation mechanism (VOM) of ibuki’s mobility unit which actuates its upper body vertically 
while moving, similar to the way the human upper body oscillates while walking. (c) The experimental setup: 
every participant walked behind a human (HU)/the robot with three types of upper body motion patterns 
(NM, AS, and AS+VO) (d) One of the representative obtained time-series phase difference graphs under four 
condition (Participant 3 in Fig. 3). The horizontal axis shows the measurement time (s) and the vertical axis 
shows the phase difference (deg). Yellow: HU, green: NM, blue: AS, and red: AS+VO condition.
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Therefore, we analyzed that the measured gait phase differences �φ were not uniformly distributed to validate 
whether the gait phases were synchronized. We used two analyses, Rayleigh test and Phase Locking Index (PLI) 
calculation. Rayleigh test is a method to test under which motion conditions synchronization occurs in the robot 
by testing whether the obtained circular data of �φ is uniformly distributed. The PLI calculation is to further 
check the degree of synchronization under each participant in every condition.

Results
Figure 1d shows one of the representative participants who spontaneously synchronized their gait phase with the 
human/robot under both the HU and AS+VO conditions. The horizontal axis shows the measurement time (s), 
and the vertical axis shows the gait phase difference (deg). No synchronization, no constant phase locking, was 
observed for NM (Fig. 1d, green) and AS (Fig. 1d, blue) conditions. The gait phase difference decreased mono-
tonically in every gait cycle. Interestingly, for AS+VO (Fig. 1d, red) condition, we can observe synchronization 
between the human and the robot, similar to HU condition (Fig. 1d, yellow). The average gait phase difference 
was M = 127.6 ± SD 16.4 deg (Mean ± Standard Division) under HU condition and M = 70.2 ± SD 15.8 deg 
under AS+VO condition. As can be seen in Fig. 1d, when the gait phase synchronization occurs under a certain 
condition, the distribution of the gait phase difference is biased. In contrast, when the synchronization does not 
occur, the gait phase difference is uniformly distributed.

Figure 2 shows the gait phase difference distributions of 1960, 1993, 2000, and 1989 gait cycles in total from 
26 participants in HU, NM, AS, and AS+VO condition, respectively. The circle histogram shows the proportions 
of obtained gait phase differences at every 5 deg. The height in radius direction shows the normalized range of 

Figure 2.  The circle histograms of four conditions which show the proportion of obtained gait phase differences 
at every five deg. The height in radius direction shows the normalized range of 0–12both HU (p < 0.0001) and 
AS + VO (p = 0.0485) conditions. At the same time, there was no significant distribution bias for NM (p = 
0.9566) and AS (p = 0.0919) conditions.
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0–12 condition (Fig. 2a), the distribution seems to be biased to the directions of 0 and 180 deg, indicating that 
the gait phases were synchronized in-phase and anti-phase. In the same way, in the AS + VO condition, the 
distribution seems to be biased to the upper-right and lower-left directions. To test the distributional bias of the 
gait phase differences, we performed Rayleigh test for each condition. We set the p-value to less than 0.05 to be 
statistical significance and confirmed that the distributional bias was significant (gait phases were synchronized) 
for both HU (z = 20.0663, p < 0.0001) and AS+VO (z = 3.0261, p = 0.0485) conditions. At the same time, there 
was no significant distribution bias (gait phases were not synchronized) for NM (z = 0.0443, p = 0.9566) and AS 
(z = 2.3873, p = 0.0919) conditions.

Figure 3 shows a heatmap of PLI. PLI is a dimensionless value which indicates the ratio the observed degree 
of synchronization to the maximum possible degree of synchronization. The PLI calculation was performed to 
confirm participants who were synchronized. The four conditions are indicated in rows from top to bottom, 
and the participants in columns from left to right (in order of higher PLI under HU condition). It can be seen 
that some participants in AS+VO condition gave a high PLI as well as HU condition. Especially, there were 11 
whose PLI was higher than 0.5 in HU and 5 participants whose PLI was higher than 0.5 in the AS+VO condition.

Discussion
In this paper, we investigated the synchronization of gait phases between humans and the wheeled humanoid 
robot. We implemented a periodic upper body motion in the wheeled child-like android robot and measured the 
gait phase difference between the robot and a human walking behind the robot under four conditions. We then 
analyzed the bias in the gait phase difference distribution under each condition by Rayleigh test. As a result, we 
confirmed the gait phase synchronization under the condition with human walking behind a robot with vertical-
oscillation of the upper body. Interestingly, the gait phase synchronization was not observed in AS condition, in 
which the robot simply swing its arms, however, was observed in AS + VO condition, in which a simple vertical 
motion was added to the motion of AS.

Although we observed the gait phase synchronization in AS+VO condition, the distribution in Fig. 2d is seen 
to be tilted to the upper right direction. Since we did not align the phases of the robot joints in the experiment, 
we confirmed the control delay which was about 0.2 s in the displacement of the VOM relative to the left shoulder 
joint. Considering that we set the robot’s natural angular frequency ω0 = 207 deg/s (see f in Table 1), there was 
a phase delay of 207 x 0.2 = 41.4 deg between the shoulder joint and the VOM. Instead of the left upper arm as 
the way of Fig. 2d, we redrew the distributions of the gait phase differences using the robot gait phase based on 
the VOM displacement at Fig. 4b. For a clear comparison, Fig. 4 shows the distributions of only participants 

Figure 3.  Heatmap of Phase Locking Index (PLI) for different participants (columns) in four conditions (rows). 
The number in a cell shows the PLI with the participant in each condition.

Figure 4.  The circle histograms of the synchronized participant are only (PLI > 0.5) in HU and AS+VO 
conditions which show the proportion of obtained gait phase differences at every five deg. The height in radius 
direction shows the normalized range of 0–16% proportionally.
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whose PLI was higher than 0.5 under each condition. Both distributions have modes to the directions of 0 and 
180 deg, indicating that the gait phases were synchronized in-phase or anti-phase. This result indicates that 
participants were synchronizing their gaits based more on the VOM than on the arm swing. This is consistent 
with the previous research which claimed the importance of the upper body swing during human interpersonal 
 coordination38–40 and this is why the mode of the distribution shown by the synchronization in Fig. 2d is tilted 
to the upper-right (lower-left) direction.

Next, we validate the factors of participants whose gait phases were synchronized in the HU and AS+VO 
conditions. Figure 5 shows the relationship between PLI and the natural angular frequency difference of the lead-
ing human/robot (leader) and each following participant (follower) |ω0,l − ω0,f | under HU (yellow) and AS+VO 
(red) conditions. The average natural angular frequency of the human leader ω0,l in the HU condition was M 
= 226.2 ± SD 13.3 deg/s and ω0,l of the robot in the AS+VO condition was 207 deg/s. In addition, the average 
natural angular frequency of the follower ω0,f  , which was calculated based on the data when a participant walked 
alone, was M = 261.9 ± SD 35.4. There were significant negative correlations between PLI and the natural angular 
frequency difference for both conditions (r = – 0.438, p = 0.0252 for HU, r = – 0.481, p = 0.0128 for AS+VO). 
Therefore, the participants who had a closer natural angular frequency to that of the human/robot leader, which 
means a smaller  detuning41, synchronized their gaits more frequently. Considering that the difference between 
the angular frequency of the robot and participants was 54.9 on average, it is necessary to control the robot’s 
gait motion to fill this gap to synchronize the gait phase with more people. In the experiment, the robot moving 
ahead of participants did not obtain any information about the gait phases of the human who was following, 
however in practical use, it is important to synchronize the gait phases with more people by providing feedback 
on the gait cycles of people walking around the robot. Note that, the robot only needs to perceive and match the 
human gait cycle and the remaining adjustment of the gait phase can be left to the human side.

We would like to reiterate the importance of gait phase synchronization based on the experimental data 
obtained in this paper. At the result analysis, we observed gait interference of synchronized-participants at NM 
condition. While synchronized-participants walked in step with the robot in the AS + VO condition, in order 
to avoid colliding with the robot, their steps seemed to be disturbed. As a reference, we approximate the energy 
consumption ratio at NM to AS + VO condition for two group, non-synchronized and synchronized participants 
(PLI > 0.5 at AS + VO). As a result, the synchronized participants were consuming 1.51 times much more energy 
of walking under NM than that of AS+VO in average. The average for all participants was 1.23. See the Method 
section about the detail of the calculation η . Gait phase synchronization by expressing the robot’s human-like 
walking motion may be effective not only in improving the efficiency of the pedestrian flow, but also in reducing 
the walking energy consumed by the human side.

Methods
Participant. 26 participants (Mean age 24.1 ± SD 7.9, 11 females and 15 males) were recruited for the experi-
ment. All participants gave written informed consent. The protocol was approved by the ethics committee for 
research involving human subjects at the Graduate School of Engineering Science, Osaka University (#R1-6) and 
the methods were carried out in accordance with the approved guidelines.

Robot. Figure 1a shows the child-like mobile android that we developed called ibuki42, which is comprised 
of two parts: a mobility unit (lower part) and the human-like upper body. ibuki is designed based on the dimen-
sions of a 10-year-old Japanese boy and has a silicone skin-covered face and hands. The mobility unit, ibuki 
has a vertical-oscillation mechanism (VOM) which actuates its upper body vertically while moving (Fig. 1b)43. 
When a human moves two steps forward in one gait cycle, in each single support phase, the ankle and knee 

Figure 5.  Scatter plot which shows the relationship between Phase Locking Index (PLI) [–] and the natural 
angular frequency difference |ω0,l − ω0,f | [rad/s] under HU (yellow) and AS+VO (red) conditions. The dotted 
lines indicate the estimated PLI for |ω0,l − ω0,f | . The shaded regions represent 95% confidence intervals.



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:16275  | https://doi.org/10.1038/s41598-022-20481-4

www.nature.com/scientificreports/

joints of each support leg flex and then extend, the human body oscillates twice on the sagittal plane in one gait 
 cycle44. VOM mimics this upper body vertical oscillation induced by a human gait. This gait-like movement of 
the robot’s upper body driven by the VOM in the wheel-driven mobility unit is called “gait-induced upper body 
motion” in this paper.

Motion generation. We extracted characteristic joint amplitudes and frequencies from a human gait to 
implement the robot’s gait-induced upper body motion. The author (176 cm) filmed himself walking on a tread-
mill at 0.83 m/s (3.0 km/h) treadmill speed for three minutes in 30 frames per second. At this speed, we con-
firmed beforehand that the robot was able to stably and safely move indoors with a human.

From the recorded video, joint position time series data was obtained by human pose recognition software 
 MediaPipe45. After that, we calculated a time-series joint angle of the neck, the right shoulder and the right 
elbow in the pitch axis, the waist in the yaw axis, and a vertical displacement of the waist’s center position. It 
is known that human gait motions can be well described by the sum of sinusoidal functions using fast Fourier 
 transformation46. Therefore, after all the data were filtered with a 3.3 Hz low-pass filter, we used fast Fourier 
transformation on these time-series data to acquire Fourier coefficients up the second terms for the amplitudes 
and frequencies. As the result, the robot’s joints θ(t) at time t were controlled by the following Eq. (1), where α 
was set as 0 or π depending on the right or left body and the averages of the original joint angles θ̄ were added 
as the baselines.

Table 1 shows the calculated parameters for the gait-induced upper body motion. The left column shows 
the body joints which we controlled and each row shows parameters including amplitudes, frequencies, a phase 
difference, and a center angle of oscillation. The rotation directions of the pitch and yaw axes coincide with the 
rotations around the y and z-axes in Fig. 1a.

For each condition, we controlled the following joints for the robot motions. At NM condition, we did not 
operate any joints. At AS condition, we operated both sides of the shoulders and elbow joints. At AS + VO 
condition, we operated the neck, waist, and VOM in addition to the shoulders and elbows. In all conditions, the 
wheels were driven at 0.83 m/s by a velocity control.

Procedure. The experiment consisted of five walking sessions. In order, (1) the participant walked behind a 
human (HU condition), (2) the participant walked alone (this was not an experimental condition but for meas-
uring a gait cycle when walking freely for Fig. 5), (3) the participant walked behind the robot with no motion 
(NM condition), (4) the participant walked behind the robot with the arms swinging (AS condition), (5) the 
participant walked behind the robot with the Arm-Swing adding Vertical-Oscillation of the upper body (AS + 
VO condition).

Each walking session (condition) lasted 2 min. Participants (as followers) walked the experiment room with 
following the human/robot (leader) ahead of them as shown in Fig. 1b. There was a fixed base in the experiment 
room with a rotatable lightweight beam at the center. The beam ensured that the distance between the center of 
rotation and the leader was kept 2.3 m for all conditions. Furthermore, it held the rotating camera in order to 
record the human gait. The camera was connected and controlled by a single board computer to capture photos 
of a human gait ( 480× 680 pixels, 30 fps) with time information during the experiment. We also recorded the 
robot’s joint reference angles and measured angles on 10 Hz in conditions with the robot.

In HU condition, participants walked behind a human (the author), leading and pushing the beam with 
the attached camera. In the free-walking session, participants walked alone and freely without any constraints, 
except for the author filming with the camera attached to the manually controlled beam. In NM, AS, and AS 
+ VO conditions with the robot, participants walked behind the robot. In these sessions, the beam was con-
nected to the robot’s mobile unit. The order of these three sessions was changed for every participant to ensure 
counterbalancing.

The human gait synchronization can be influenced by the surrounding  sounds25,47. In order to eliminate 
the influence of the motor drive noise while the robot was moving, the participants wore noise-cancelling 

(1)θ(t) = A cos(2π tf + α)+ θ̄

Table 1.  The calculated parameters of each joint θ , the amplitude A, frequency f, phase difference α , and 
baseline θ̄ for the gait-induced upper body motion.

θ [Unit] A f α θ̄

Neck (pitch) [deg] 0 – – −28.3

Shoulder (right, pitch) [deg] 13.4 0.575 π −14.1

Shoulder (left, pitch) [deg] 13.4 0.575 0 −14.1

Elbow (right, pitch) [deg] 5.47 0.575 π −28.6

Elbow (left, pitch) [deg] 5.47 0.575 0 −28.6

Waist (yaw) [deg] 6.76 0.575 π 0

VOM [mm] 18.7 1.15 π
2

0
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headphones and listened to white noise while walking. In addition, a participant’s gait was considered to be 
symmetrical for the  analysis48.

Analysis. One cycle of the gait phase (0–360 deg) is defined as follows: heel-strike (0 deg) in which the right 
heel touches the ground, middle-stance (around 90 deg) in which the right foot supports the upper body and 
the left foot swings forward, pre-swing (180 deg) in which the left heel touches the ground and the right foot 
leaves the ground, middle-swing (around 270 deg) in which the left foot supports the upper body and the right 
foot swings forward, and then back to the first heel-strike (360 deg) where the right heel touches the  ground37.

For the analysis, we calculated the gait phase difference �φ between the leader and follower for every gait 
cycle to determine if the two gaits were synchronized or not. In this paper, we defined the gait phase difference 
�φ given by Equation 2. Here tn,f  is the time when the follower’s gait phase reaches φn,f  = 180 deg. Indexes n, f 
mean n-th gait cycle of the follower. tn′ ,l is the time when the leader’s gait phase reaches φn′ ,l = 180 deg in n′-th 
gait cycle. Note that, n′ was the closest gait cycle to n, which takes |tn − tn′ | minimum.

To obtain tn of a human, the gait phase is calculated using the left leg angle from the captured human gait 
images. Firstly, two positions of a participant’s left waist and left knee were estimated by using image pose recog-
nition (Mediapipe) in every frame to obtain the time-series with the left leg angle against the vertical direction. 
Next, a 3.3 Hz low-pass filter was applied to remove high-frequency noise from the time-series data. After that, 
we set tn the time when the angle value took minimum, which was a pre-swing phase φn = 180 deg of the n-th 
gait cycle.

To obtain tn of the robot the robot’s gait-induced upper body motion was generated based on a programmed 
gait phase which increases from 0 to 360 deg along with the real time. For NM condition, we simply used the time 
when n-th gait phase φn reached 180 deg on the program as tn . On the other hand, for AS and AS + VO condi-
tions, we had to consider that there was a small time delay between the moment when φn reaches 180 deg on the 
program and the actual time when the current flows to the motor and reaches the desired joint angle. Therefore, 
we decided to reference the sensor measurement of the robot’s left upper arm angle to obtain tn . Specifically, we 
set tn the time when the left upper arm angle took minimum (pre-swing phase of the n-th gait cycle φn = 180 
deg). For Fig. 4b, we calculated a time tn when the VOM displacement took a minimum value and we adjusted 
the gait phase difference by 207 deg/s ×− 0.2 s = – 41.4 deg.

The natural angular frequency ω0 of a human was defined as ω0 = �ωn� , here the angular frequency ωn of 
n-th gait cycle was calculated as 360

tn−tn−1
 . As we controlled the robot by the frequency f = 0.575 (see Table 1), we 

set the natural angular frequency ω0 as 360 × 0.575 = 207 deg/s for the robot.
To determine the degree of synchronization for each participant and condition, we calculated the Phase 

Locking Index (PLI)49,50. PLI is defined by Eq. (3) using N phase difference data. The value of PLI falls between 
0 and 1, with 0 being completely unsynchronized and 1 being perfectly synchronized.

To approximate the energy consumption ratio η during walking in NM to AS + VO condition by Eq. (4). I as 
the representative inertia of the body joints, the kinetic energy which the walking follower had was 1

2
I ωn

2 . Here 
we assume all the body joints move at the same angular velocity and neglect the difference of the translational 
kinetic energy between two conditions. When we assume that followers consumed energy in the same way both 
when they increase or decrease the walking speed, the energy consumption from n-1-th gait cycle to n-th one 
was calculated as 1

2
I |ωn

2 − ωn−1
2| . The sum of the energy consumption obtained during the 120-s measure-

ment in the experiment was taken as 
∑

n.
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