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Abstract

Pancreatic cancer (PC) accumulates multiple genetic mutations, including activating KRAS
mutations and inactivating TP53, SMAD4 and CDKNZ2A mutations, during progression. The
combination of mutant KRAS with a single inactivating TP53, SMAD4 or CDKN2A mutation
in genetically engineered mouse models (GEMMs) showed that these mutations exert dif-
ferent synergistic effects in PC. However, the effect of the combination of TP53, CDKN2A
and KRAS mutations on the trajectory of PC progression is unknown. Here, we report a
GEMM that harbors KRAS (Kras®'2P), TP53 (Trp5371721%), CDKN2A (Ink4"*) and Ptf1/
p48-Cre (KPIC) mutations. Histopathology showed that KPIC mice developed adenocarci-
noma that strongly resembled the pathology of human PC, characterized by rich desmoplas-
tic stroma and low microvascularity. The median survival of KPIC mice was longer than that
of LSL-Kras®"?P; Ink4"oX. ptf1/p48-Cre mice (KIC) (89 vs 62 days) and shorter than that
of KRAS (Kras®'?P), TP53 (Trp537"72*) and Ptf1/p48-Cre (KPC) mice. Moreover, the neo-
plastic cells of KPIC mice were epithelial, highly proliferative tumor cells that exhibited ERK
and MAPK pathway activation and high glucose uptake. Isolated neoplastic cells from spon-
taneous KPIC tumors showed all molecular profiles and cellular behaviors of spontaneous
KPIC tumors, including epithelial-mesenchymal transition (EMT) under drug stress as well
as tumorigenic, metastatic and invasive abilities in immunocompetent mice. Furthermore,
orthotopic and metastatic tumors of KPIC cells almost recapitulated the pathology of sponta-
neous KPIC tumors. These data show that in addition to spontaneous KPIC tumors, KPIC
cells are a valuable tool for preclinical studies of locally invasive and metastatic PC.

Introduction

PC is a uniformly lethal malignancy with extremely poor outcomes [1]. The progression of PC
is a multistep process, and the tumor accumulates different tumorigenic mutations during the
different stages [2]. Early PC progression activates KRAS mutations and telomere attrition and
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subsequently inactivates the tumor suppressor genes p16™*, p14**¥, TP53, and/or SMAD4
[2-4]. Therefore, human PC often harbors high frequencies of multiple mutations, including
KRAS (>90%),p161”k4“ (>60%), p53 (>50%) and SMAD4 (50%) gene mutations [1, 5].
GEMMs not only provide a powerful tool to dissect the roles of these mutations in PC progres-
sion but reveal the synergistic effects of these mutations in disease trajectory, providing a
model to test chemotherapeutic drugs in preclinical trials [6, 7].

The combinations of oncogenic Kras“'?" with Trp53, Cdkn2a or Smad4 mutations success-
fully delineated the role of these genes in PC and showed that the synergistic effects of inactivat-
ing mutations of tumor suppressor genes with Kras“'*” on PC progression depend on the
specific inactivating mutation [8-11]. GEMMs that harbor Kras“'?", Trp53%'”*" and Pdx-1Cre
(known as KPC) recapitulated the pathological and metastatic characteristics of human PC and
are widely used in preclinical trials [8, 12, 13]; GEMMs that harbor Pdx1-Cre, LSL-Kras“"?P and
Ink4a/Arf*"* (known as KIC) form extremely aggressive PC tumors that result in a median sur-
vival of approximately 8 weeks [9]; PC mouse models that harbor Kras™" 2P+ Dpcd*¥/1o and
p48-Cre (known as KDD) form MCN early on and later develop aggressive, local invasive and
widely metastatic PC characterized by a survival period of 8 months [10]. Furthermore, Pdx1-Cre;
LSL-Kras“"?"; Ink4a/Arf** mice developed PC that resulted in a mean survival of 34.2 weeks.
The deletion of the TP53 gene (null heterogenic) in Pdx1-Cre; LSL-Kras®'??; Ink4a/Arf*”* mice
dramatically shortened the mean survival to approximately 20 weeks [11]. Moreover, mutant
P53, such as R175H and R273H, exhibits gain-of-function activities, including enhancing tumor
invasion, metastasis and chemotherapy resistance [14, 15]. However, how Trp53R172H, which
reportedly elevates H-RAS activity in head and neck squamous cell carcinomas [16] and is a
gain-of-function mutation [17], affects the trajectory of KRAS and CDKN2A mutations in PC has
not yet been reported.

Here, we present a novel GEMM that harbors mutations KRAS, Trp53%17?" and p16™**,
These mice developed local aggressive adenocarcinoma that is similar to human PC in terms
of pathology. Moreover, isolated neoplastic cells from KPIC tumors maintained the molecular
characteristics of the original in situ tumor and exhibited tumorigenicity and metastatic poten-
tial in immunocompetent C57BL/6 mice in both orthotopic transplantation or intravenous
models. These data show that KPIC is a tool to test drug sensitivity in preclinical trials.

Materials and methods
Ethics statements

All mice were maintained under standard housing conditions at the MD Anderson Cancer
Center (MDACC) animal facilities, and all animal procedures were reviewed and approved by
the MDACC Institutional Animal Care and Use Committee.

All mice had free access to sufficient food and clean water and were visited daily to assess
the availability of food and water and the growth of the tumor. A maximum of 5 mice were
housed per cage, and the veterinarians at the animal facility examined the mice for infection
and fighting injuries after surgery. Tumor-bearing mice were euthanized at or before the
humane endpoint stage in a CO, chamber. The veterinarians at the animal facility assessed the
mice for humane endpoints, which included walking pain, shivering, a loss of appetite or asci-
tes. All KIC, KPIC, and 9 orthotopic mice reached the humane endpoints, and all other mice
were sacrificed before the humane endpoints. LSL-Kras“'??; Ink4"*mice were provided by
Ronald Dephino, and all other mice were purchased from The Jackson Laboratory (Maine.
USA).

Freshly surged tissue samples and paraffin sections of human PC were collected from the
Pancreatic Surgery Unit of Zhongshan Hospital Affiliated to Fudan University. All the
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procedures were approved by the Medical Ethics Committee of Zhongshan Hospital of Fudan
University.

Strains and breeding strategies for LSL-Kras®'?P; LSL-Trp537172*;
Ink4™°* : Ptf1/p48-Cre (KPIC) mice

The mouse strains for breeding KPIC and KIC mice in this work were included the following
alleles: LSL-KRAS"?P mice [18], LSL-Trp53"%72H/* [19], Ink4a"*/*[20] and Ptf1/p48-Cre mice
[21]. To breed LSL-Kras“'??; LSL-Trp53®'7"*; nk4"*; Ptf1/p48-Cre (KPIC) mice, we crossed
LSL-Kras©'?P; LSL-Trp53%"” 2H/* (KP) mice with Ink4/"o*/10%, Pif1/p48-Cre (IC) mice. Alterna-
tively, we crossed LSL-Kras“'?"; LSL-Trp53*'72*; [nk4™* (KPI) mice with Ink4"™"°%; ptf1/
p48-Cr (IC) mice. Moreover, to obtain KIC mice, we crossed Ink4/ox/flox, Ptf1/p48-Cr (IC) mice
with LSL-Kras®'?P; Ink4/™*f°(K1) mice. We obtained 5 KPIC mice from the first breeding
cages and 2 KPIC mice from second cages, and 8-10-week-old immunocompetent C57BL/6
(male) mice were used for orthotopic transplantation or intravenous injections. We used stan-
dard genotyping primers provided by The Jackson Laboratory (Maine. USA).

Perfusion of tumor with Lectin-Alexa 633 and 2-NBDG-Alexa 488

Lectin-Alexa 633 and 2-NBDG Alexa 488 were dissolved in 0.01 mM Phosphate Buffered
Saline (PBS). KPIC mice were deeply anesthetized with isofluorane, and the Lectin-Alexa 633
(0.5 mg/mL) and 2-NBDG-Alexa 488 (0.5 mg/mL) mixture was slowly injected into the left
ventricle of the heart with a TB syringe. Ten minutes after injection, the KPIC mice were sacri-
ficed by cervical spine dislocation, and the tissues were fixed with 4% paraformaldehyde (PFA)
for microscopy analyses.

Immunofluorescent staining and immunohistochemistry

Fresh tumor samples were fixed in freshly prepared 4% PFA overnight and cryoprotected in
30% sucrose/PBS solution. Thick sections and cell immunofluorescent staining were stained
and scanned as previously described [22]. The Z-stack scanned images were 3D reconstructed
by the Zen 2009 software using a maximum intensity projection.

Tissues were fixed using freshly prepared 4% PFA, and paraffin sections were prepared fol-
lowing routine histology procedures. Briefly, the sections were deparaffinized in xylene and
rehydrated in a decreasing ethanol gradient. Endogenous peroxidase activity was blocked by
3% H,0, for 10 minutes at room temperature. Heat-mediated antigen retrieval was performed
by placing the slides in a sodium citrate buffer (pH 6.0) and heating them twice in a micro-
wave. Next, the sections were blocked in protein blocking agent (DAKO, USA) at 37°C for 30
minutes. The sections were then incubated with primary antibodies at 4°C overnight, washed
in PBS, incubated with corresponding HRP-labeled secondary antibodies for 30 minutes, and
again washed in PBS. Immunostaining was achieved using 3,3’-diaminobenzidine tetrahy-
drochloride (DAB/H,0,). All tissue sections were counterstained with Hematoxylin. The fol-
lowing antibodies were used in immunohistochemistry and immunofluorescent staining: Sox-
9 (rabbit polyclonal antibody; Abcam), p53 (rabbit polyclonal antibody; Santa Cruz), Phos-
pho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (rabbit polyclonal antibody; Cell signaling),
CD34 (rabbit polyclonal antibody; Abcam), Her2/Erb (rabbit polyclonal antibody; Gene
Tech), Ki67 (rabbit polyclonal antibody; Abcam), pAkt (ser 473) (rabbit polyclonal antibody;
Abcam), E-cadherin (mouse monoclonal antibody; Abcam), pan-Cytokeratin (rabbit poly-
clonal antibody; Abcam), Vimentin (goat; Sigma), anti-rabbit Alexa Fluor 488 conjugated
immunoglobulin G (donkey; Life Technologies), anti-mouse Alexa Fluor 555 conjugated
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immunoglobulin G (donkey; Life Technologies), anti-goat Alexa Fluor 647 conjugated immu-
noglobulin G (donkey; Life Technologies), and DAPI (Sigma).

Isolation of KPIC cells from spontaneous KPIC tumors

After euthanizing KPIC tumor-bearing mice in a CO, chamber at the humane endpoints, tumor
tissues were removed and washed with sterilized PBS to remove blood clots and then transferred
to cell culture dishes containing cell culture medium (DMEM + 10% bovine serum + 2% antibi-
otics). The tissues were sectioned into small pieces with a scalpel and plated in 10-cm dishes with
limited media to ensure tissue attachment. After a sufficient number of cells had extravasated the
tissues, the cells were digested and passaged. We observed that early-passage cells consisted of
two cell types: After the 3rd passage, we obtained a cell line with epithelial characteristics. After
30 passages, the cell morphology and growth were stable.

Chemotherapeutic drug treatment of cells

We treated KPIC and KPC cells with gemcitabine and Abraxane in vitro. Gemcitabine was
dissolved in sterilized PBS to 100mg/mL, and Abraxane was suspended in Sodium Chloride
Injection to 100mg/mL. Briefly, 10x10* cells were plated in each well of a 24-well plate contain-
ing coverslips and allowed to incubate overnight before being treated with different doses of
chemotherapeutic drugs (5 nm/mL-80 nm/mL). After 36 hours, the coverslips were fixed with
4% PFA for immunostaining.

Testing the tumorigenicity and metastatic potential of KPIC cells

Male C57BL/6 mice aged 2-3 months were deeply anesthetized with isoflurane, and KPIC cells
(passage 3 and 6) suspended in sterilized PBS buffer were then injected into the pancreas using
an insulin syringe, as previously described [23]. The pancreas of each mouse (n = 9) was inj-
ected 0.5 million cells. Moreover, KPIC cells were slowly injected orbital veins after deeply
anesthetizing the mice with isoflurane; each mouse was injected 0.1 ml PBS containing 0.2 mil-
lion cells. After surgery, the mice were placed on a warming pad until waking and returned to
the cage after they began to walk freely. All mice had free access to food and water after surgery
and were examined daily by veterinarians for infection and bleeding. All mice were sacrificed
at or before the human endpoint stage in a CO, chamber.

Statistical Analysis

The data were statistically analyzed in GraphPad Prism 5 or SPSS 20. Differences between two
groups were analyzed with Student’s ¢-test, and overall survival was estimated with the Kaplan-
Meier method. All data are presented as the mean + s.e.m unless otherwise specified.

Results

KPIC mice developed local aggressive pancreatic ductal
adenocarcinoma that resulted in a median survival of 3 months

We palpated KPIC mice each week starting at 4 weeks to detect tumors. All KPIC mice exhib-
ited palpable hard masses at approximately 7 weeks, and ultrasound scanning confirmed the
existence of a hard mass. The tumors of KPIC mice grew quickly thereafter, and KPIC animals
developed cachexia, abdominal distension and jaundice at approximately 12 weeks; these char-
acteristics are similar to clinical findings observed in human patients with PC. A gross patho-
logical examination of the anatomy indicated that spontaneous KPIC mice developed locally
invasive tumors that infiltrated the spleen, intestine and kidney (Fig 1A). Consistent with
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Fig 1. KPIC mice formed a local invasive tumor with 3-months mean survival. (A) The gross anatomy of PC in a KPIC mouse showed
cancer in the tail and body of pancreas, and the swelling of small intestine. The KPIC tumor locally invaded the neighboring organs (In, intestine;
ki, kidney; yellow circle, tumor region). (B) Kaplan-Merrier curves of KPIC and KIC mice. Log-rank test. (C) H&E and Mason Trichrome staining
of KPIC and KIC tumors. Both KPIC and KIC tumors showed a character of typical adenocarcinoma that tumor cells grow in a ductal manner. (D)
Mason Trichrome staining showed the dense desmoplastic stroma of KPIC and KIC tumors. (E) Sox-9 immuostaining of KPIC and KIC tumors.
Scale bar, 100um.

https://doi.org/10.1371/journal.pone.0176844.9001

clinical syndromes, the swelling of the small bowel, the distension of the gallbladder and hem-
orrhagic ascites were observed in the abdominal cavities of KPIC mice. These findings are
similar to those made in KPC mice [8]. Moreover, in 1 KPIC mouse, the 2 hind legs were
completely paralyzed at 13 weeks, and histology revealed a tumor in the spinal cord (Figs not
shown). The mean survival of KPIC mice was longer than that of KIC mice (89 vs 62 days)
(Fig 1B). Spontaneous KPC and (KP"””IC ) tumors often developed metastatic lesions [8, 11],
but we did not observe metastatic lesions in the livers of KPIC mice. The histology showed
that 3/5 mice developed typical ductal adenocarcinoma, and 2/5 mice exhibited high-grade
panIN; both the adenocarcinoma and high-grade panIN were rich in desmoplastic stroma,
which are similar to well-differentiated adenocarcinoma in KIC (Fig 1C and 1D). Human PC
of ductal lineage expresses Sox-9 but pancreatic neuroendocrine tumors, acinar cell carcino-
mas and solid pseudopapillary neoplasms rarely express Sox-9 [24, 25]. To determine if the
neoplastic cells in KPIC tumors have the characteristics of ductal lineage, we stained tumor
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tissue with Sox-9 antibody, which showed that these KPIC tumor cells are positive for Sox-9
staining, as shown in KIC tumor (Fig 1E). Taken together, these findings show that spontane-
ous tumors in KPIC mice exhibit characteristics typical of aggressive human PC.

The molecular characteristics of KPIC tumor cells are typical of PC

PC is an epithelial tumor that is positive for E-cadherin and cytokeratin (CK) [26]. To further
characterize the neoplastic cells of KPIC tumors, we immunofluorescently double-stained the
tumors with E-cadherin and CK antibodies and found that neoplastic cells of KPIC tumors are
positive for E-cadherin and CK staining (Fig 2A). Mutant p53 often causes the abnormal accu-
mulation of P53 protein in neoplastic cells [27]. Moreover, Kras“'?" constitutively activates
GTPase, which consequently strongly activates Raf/mitogen-activated protein kinase /mito-
gen-activated protein kinase (Raf/MEK/ERK) [28]. To assess spontaneous KPIC tumors for
the presence of p53 and Kras gene mutations, we measured the expression of p53, phosphory-
lated (p)MAPK and Her2 in KPIC tumors by double-staining the tumors with E-cadherin
antibody combined with p53, pMAPK (Thr202/Tyr204) or Her2/Erb2 antibodies. We found
that the neoplastic cells of KPIC tumors expressed high level of p53, pMAPK and Her2 (Fig
2B-2D). Furthermore, p53 gene mutation in pancreatic cells is known to increase drug resis-
tance and aggressive behaviors [27], and drug resistance and local invasion is often linked to
epithelial-to-mesenchymal transition (EMT) in neoplastic cells in PC [29]. The local invasion
of KPIC tumors into the surrounding organs suggested that the neoplastic cells in KPIC mice
are capable of EMT. To assess the EMT status in KPIC tumors, we triple-immunostained the
KPIC tumor with E-cadherin, CK and vimentin antibodies. We found that the neoplastic cells
of KPIC tumors contained a few E-cadherin- and vimentin-positive and CK-negative cells (Fig
2E), and these cells were also positive for Her2 (Fig 2F). CDKN2/INK4a binds to cdk4, which
acts upstream of Rb to cause G1 arrest [30], and neoplastic cells in Ink4a-mutated tumors are
highly proliferative [9]. To test the proliferating status of KPIC tumor cells, we stained the tis-
sues with an antibody against Ki67, which is a cell proliferation marker, and found a high per-
centage of Ki67-positive cells in the neoplastic cells of the KPIC tumor (>50%) (Fig 3A). These
data show that KPIC tumors recapitulated the typical molecular profiles, proliferative ability
and EMT characteristics of human PC.

Human PDAC and spontaneous KPC tumors are characterized by a rare and "hairy" micro-
vasculature, with poor perfusion and high glucose uptake [22, 31, 32]. To characterize the
microvasculature of the KPIC tumor, we stained the microvasculature with CD34 antibodies
and found that microvessels rarely branched, and basal microvilli grew on these vessels, as
observed in human PC (Fig 3B). To test the glucose uptake ability of KPIC tumors, we injected
2-NBDG-Alexa 488, a fluorescent glucose analog, and Lectin- Alexa 633 into the left ventricles
of mice. Surprisingly, the KPIC tumor cell not only accumulated large amounts of 2-NBDG
but also fluorescent lectin in tumor cells (Fig 3C). PC cells with Kras gene mutation often
show a stronger macropincytic ability [33], the accumulations of Lectin-Alexa 633 in the KPIC
malignant cells are consistent with a stronger macropinocytic ability of Kras- mutated cells.
However, we only observed few 2-NBDG and lectin accumulation in KIC tumor cells (Fig
3D). These data show that glucose uptake is higher in KPIC tumors than in KIC tumors and
that KPIC tumors better physiologically resemble human PC than KIC tumors.

Neoplastic cells isolated from KPIC tumors exhibit chromosome
instability and rapid proliferation

To characterize the neoplastic cells of KPIC tumors, we isolated neoplastic cells from sponta-
neous KPIC tumors. At passage 1, we observed that the isolated cells from KPIC tumor
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Fig 2. The molecular profiles and EMT of neoplastic cells of KPIC tumors resemble human PC. (A) E-cadherin and CK immunostaining
showed that KPIC tumors are epithelial. (B-D) Co-immuostaining p53, pMAPK and Her2 antibodies with E-cadherin antibody in KPIC tumors
showed that their molecular profiles are similar to that in human PC. (E, F) Triple immunofluorescent staining of E-cadherin, vimentin and
cytokeratin or Her2 staining showed that KPIC tumors harbor a significant number of EMT cells. Her2 expression in EMT cells was upregulated.
(circled region, EMT region; white yellow and white arrows, EMT cells). Scale bar, 50um.

https://doi.org/10.1371/journal.pone.0176844.9002

contained stromal cells and epithelial characteristic cells which present an adhesive, dense and
compact monolayer pattern (Fig 4A). During passaging, the number of stromal cells were
quickly decreased. At passage 3, cells with epithelial morphology were left and stromal cells
were almost completely diminished (Fig 4A). The morphology of the isolated cells remains
unchanged over 20 passages (Fig 4A). To confirm if the isolated KPIC cells are epithelial, we
have co-immunostained the cells with E-cadherin and Sox-9 or CK antibodies. The results
showed that the isolated KPIC cells are positive for Sox-9, E-cadherin and CK (Fig 4B and 4C).
To see whether the isolated KPIC cells have typical characteristics of cells which harbor p53
and Kras gene mutations, we have co-immunostained the isolated KPIC cells with p53,
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Fig 4. The isolation and characterization of the neoplastic cells of KPIC tumor. (A) The morphology of KPIC cells showed that
KPIC cells have the characteristics of epithelial cells, and formed an adhesive, dense and compact monolayer. Scale bar, 100um. (B-F)
Co-immunostainig of KPIC tumor cells with Sox-9, CK, p53p, pMAPK, and pAkt (ser 473) antibodies and E-cadherin antibody. Scale bar,
50um (B); 20um (C-F). (G) Genotyping of KPIC cells showed that KPIC cells carried four mutant alleles. (H) Ki67 staining showed that
the proliferation of KPIC cells are faster than that of KPC cells. **, P<0.01 using student t-test. Scale bar, 50um. (I) Comparing aneuploid
cells in KPIC with KPC cells. N.S, not statistically significant by student t-test. Scale bar, 50pym.

https://doi.org/10.1371/journal.pone.0176844.9004

PMAPK and pAkt antibodies, in combination of E-cadherin antibody. The results showed that
the isolated KPIC cells are positive for p53, pMAPK and pAkt. To test whether the isolated
KPIC cells carry original four mutated genes, we did a re-genotyping. Genotyping confirmed
that cells harbored the original four mutated genes identified in KPIC mice (Fig 4G). Consistent
with characteristics of ink4-mutated tumors [30], KPIC cells were more proliferative than KPC
cells (Fig 4H). Trp53 mutations often cause the missegregation of the chromosome and multi-
nucleated cells, as observed in KPC cells [8]. Consistent with the Trp53 mutation observed in
tumors, 1-2% of both KPIC and KPC cells were aneuploid (Fig 41). These data showed that the
isolated KPIC cells are ductal epithelial cells, and keep the molecular characteristics of Kras-,
p53- and Ink4-mutated cells.

KPIC cells can also undergo EMT in response to gemcitabine and
paclitaxel albumin-stabilized nanoparticle (Abraxane) treatment

p53 mutation increases the drug resistance of tumor cells [27], and drug resistance is report-
edly related to the EMT of epithelial cells in PC tumors [29]. Moreover, paclitaxel- and gemci-
tabine-resistant epithelial tumor cells often exhibit increased vimentin expression [34-36].
The significant number EMT cells observed in KPIC tissues also implied that these cells easily
undergo EMT and are drug resistant. To test the ability of KPIC cells to undergo EMT in
response to drug stress, we treated KPIC cells with gemcitabine and Abraxane and observed
that both KPIC and KPC cells changed their epithelial morphology to a mesenchymal-like
morphology (Fig 5A). Moreover, double-staining with E-cadherin and vimentin antibodies
showed that these mesenchymal-like cells expressed vimentin (Fig 5B). These data further
show that isolated neoplastic KPIC cells are, like KPC cells, have an ability to EMT under drug
stress.

KPIC cells are tumorigenic and metastatic in immunocompetent mice

Neoplastic KPC cells isolated from spontaneous tumors were tumorigenic in immunocompe-
tent mice [37]. KPC cell orthotopic tumors require 2-4 weeks to be detected, and mice are
moribund starting at 4-8 weeks [23, 37]. Thus, KPIC cells should be able to rapidly form
tumors in immunocompetent mice. To test the tumorigenicity of KPIC cells in immunocom-
petent mice (C57BL/6), we orthotopically transplanted KPIC cells to the pancreases of C57BL/
6 mice. Consistent with the high proliferative ability of Ink4a-mutated cells, we palpated
tumor masses in the pancreas starting at 7 days, and these tumors were confirmed by ultra-
sound scanning. These mice also developed cachexia, abdominal distension and jaundice at
approximately 19 days, and most orthotopically transplanted mice became moribund starting
at 20 days. A gross pathological examination revealed that KPIC cells also formed locally inva-
sive tumors that resembled spontaneous KPIC tumors (Fig 6A), and these tumors invaded the
stomach (1/9), kidney, intestine (9/9) and liver (2/9), which was highly reminiscent of clinical
pathological findings observed in humans and in the spontaneous tumor mouse model (Fig
6A). Histology showed that KPIC cells formed an adenocarcinoma that contained a significant
amount of stroma and high percentage of Ki67-positive cells, and the growth patterns of
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induced EMT in both cells. Scale bar, 50um.
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Fig 6. KPIC cells are tumorigenic in immunocompetent mouse. (A) The gross pathology of an orthotopic KPIC cell tumor showed that the
orthotopic tumor invaded the spleen and liver (white circle, orthotopic tumor; green line, liver invasion; yellow line, spleen invasion). (B) H&E staining,
Mason Trichrome and Ki67 immunostaining of orthotopic KPIC tumors showed that the orthotopic tumors are invasive, and contain desmoplastic
stroma and highly proliferative cells. (C) H&E staining, p53 and CK antibodies immunohistochemistry of the orthotopic tumor of KPIC cells showed the
invasion of orthotopic KPIC tumor to liver. These KPIC cells are ductal epithelial cells and accumulate p53. (D, E) H&E staining showed the orthotopic
tumor invasion to spleen and lymph node. White dotted lines (B-D), the boundary between tumor and normal tissue. Ca, cancer; Pan, pancreas. (F)
Histology of original spontaneous tumor of KPIC. Scale bar, 100um.

https://doi.org/10.1371/journal.pone.0176844.9006

tumor cells resembled those of the original spontaneous tumor (Fig 6B-6E). Surprisingly,
these tumors also maintained some molecular characteristics of the original spontaneous
tumor (Fig 6B-6D).

KPC tumors are highly metastatic, and KPC cells often form metastatic tumors after intra-
venous injection in immunocompetent mice [8, 38]. Thus, we hypothesized that KPIC cells
also have the potential to form a metastatic tumor. To test the metastatic potential of KPIC
cells, we injected these cells into the orbital veins of immunocompetent B6/C57 mice, which
resulted in the formation of multiple metastatic lesions in the lungs at 2 weeks (Fig 7A); we
also observed an invasive in situ adenocarcinoma in the eyes of injected mice (2/9) (Fig 7B).
These metastatic and in situ KPIC tumors also maintain the molecular characteristics of spon-
taneous tumors, such as rapid proliferation and high p53, Sox-9 and CK expression (Fig 7A
and 7B). These data indicated that KPIC cells are also a preclinical model for both invasive and
metastatic PC.
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Fig 7. KPIC cells are metastatic in immunocompetent mouse. (A) Orbital intravenous injection of KPIC cells to immunocompetent mice formed
multiple metastatic lesions in the lung (19 days). Metastatic KPIC cells are proliferative and Sox-9- and p53-positive. Scale bars, 500um and 100um.
(B) KPIC cells formed an in situ tumor at the injection site which also invaded to the muscles of eye. KPIC tumor cells are proliferative and Sox-9- and
p53- positive. (yellow arrow, tumor in eye; green arrows, muscle; white arrows, tumor cells). Scale bar, 100um.

https://doi.org/10.1371/journal.pone.0176844.g007

Discussion

PC harbors multiple tumor-driving mutations, including KRAS, P53, CDKN2 and SMAD4 |2,
39]. GEMMs that carry multiple mutations not only expand our understanding of the carcino-
genesis of PC but also provide an applicable tool for evaluating novel therapeutic drugs in pre-
clinical trials [2, 7]. To this end, our KPIC mouse models not only recapitulate the pathology
and high glucose uptake of human PC but also the molecular characteristics of human
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patients. In addition, isolated KPIC cells that are orthotopically or intravenously injected into
immunocompetent mice are tumorigenic and metastatic, revealing the synergistic effect of
mutant P53 with KRAS and CDKN2. Thus, these cells are applicable for use in preclinical trials
that examine PC with multiple genetic mutations.

Human PC is characterized with rich desmoplastic stroma, a rare and "hairy" microvascula-
turity and high glucose uptake ability that relate to drug resistance and poor outcome in PC
patients [22,40, 41]. The rich desmoplastic stroma and rare microvascularity in KPIC tumors
indicate that the microenvironment of KPIC tumor is similar to human PC and KPC. More-
over, high glucose uptake ability of KPIC tumor resembles the physiological characteristic of
aggressive human PC with poor outcome. These data also imply that the chemotherapeutic
drug response of KPIC mice might be similar to human PC. Thus, KPIC mice may be used as
a model for understanding the mechanism of chemotherapeutic drug resistance in human PC.

Mutant p53, including R175H, can increase the invasiveness and metastatic potential of
tumor cells [14]. Moreover, KPC and (KP"™'IC) mice develop metastatic tumors, whereas we
observed a wide range of local invasion but not metastatic lesions in spontaneous KPIC mice [8,
11], suggesting that p53 (R172H) might increases the invasiveness, but not metastatic potential
of tumors. Furthermore, p16™<** binds to CDK4 and CDK& to prevent their conjugation with
cyclin D, which inhibits the entrance of cells into the S phase of the cell cycle [42]. Thus, p16
missense mutations often increase cell proliferation. Therefore, mice may succumb to spontane-
ous KPIC tumors before developing metastases, which was supported by the formation of meta-
static lesions in the lung after intravenous injection and the stronger proliferation of isolated
KPIC cells compared with that of KPC cells. Moreover, PC cells with multiple mutations are
characterized with EMT under different stresses [29], and neoplastic KPIC cells were capable of
EMT in response to stress induced by gemcitabine and Abraxane, which are first-line drugs in
the clinic. These data indicate that KPIC cells are an available cellular model for EMT in PC.

KPC mice are the most widely used models for metastatic PC in preclinical trials. However,
the median survival of KPC mice is approximately 5 months [8], making this model expensive
in terms of both time and money. Alternatively, the KIC model can also be used to study PC
[9], but the 2-month survival of KIC mice does not provide a therapeutic window for preclinical
trials. Therefore, the approximately 3-month median survival of KPIC mice makes this model
economical in terms of time while also might allowing for a short therapeutic window for pre-
clinical trials. Moreover, KPC cells exhibited tumorigenicity in immunocompetent mice [37,
43], and orthotopic transplantation is widely used in preclinical trials. KPIC cells also exhibited
tumorigenicity and metastatic potential in immunocompetent mice, and the aggressive patterns
of orthotopic KPIC cell tumors resemble those of locally invasive human PC. In addition, KPIC
cells formed orthotopic and metastatic tumors in immunocompetent mice faster than KPC cells
[43]. Given this rapid formation of locally aggressive and metastatic tumors, KPIC cells are a
valuable and economic tool to explore the invasive and metastatic behaviors of PC.

Spontaneous KPIC tumors and KPIC cell orthotopic and metastatic tumors resembled the
pathology and physiology of human PC. Thus, the spontaneous KPIC tumors and KPIC cells
established in this study provide a valuable tool for understanding the pathology and physiol-
ogy of PC harboring multiple mutations. Moreover, this model also serves as a tool to test
novel therapeutic approaches for PC harboring multiple genetic mutations and to understand
the synergistic effects of tumor-driving mutations.
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