Beta-2 Adrenergic Receptor (ADRB2) Gene Polymorphisms and the Risk of Asthma: A Meta-Analysis of Case-Control Studies

Si-Qiao Liang¹, Xiao-Li Chen¹, Jing-Min Deng^{*}, Xuan Wei, Chen Gong, Zhang-Rong Chen, Zhi-Bo Wang

Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China

Abstract

Background and Objective: A number of studies have assessed the relationship between beta-2 adrenergic receptor (ADRB2) gene polymorphisms and asthma risk. However, the results are inconsistent. A meta-analysis that focused on the association between asthma and all ADRB2 polymorphisms with at least three case-control studies was thus performed.

Methods: A literature search of the PubMed, Embase, Web of Science, CNKI, and Wangfang databases was conducted. Odds ratios with 95% confidence intervals were used to assess the strength of associations.

Results: Arg16Gly, Gln27Glu, Thr164lle, and Arg19Cys single nucleotide polymorphisms (SNPs) were identified in 46 casecontrol studies. The results showed that not all of the SNPs were associated with asthma in the overall population. Significant associations were found for the Arg16Gly polymorphism in the South American population via dominant model comparison (OR = 1.754, 95% CI = 1.179–2.609, $t^2 = 16.9\%$, studies = 2, case = 314, control = 237) in an analysis stratified by ethnicity. For the Gln27Glu polymorphism, a protective association was found in children via recessive model comparison $(OR = 0.566, 95\% \text{ Cl} = 0.417 - 0.769, l^2 = 0.0\%$, studies = 11, case = 1693, control = 502) and homozygote genotype comparison (OR = 0.610, 95% CI = 0.434-0.856, l² = 0.0%, studies = 11, case = 1693, control = 1502), and in adults via dominant model comparison (OR = 0.864, 95% CI = 0.768–0.971, $l^2 = 46.9\%$, n = 18, case = 3160, control = 3433).

Conclusions: None of the ADRB2 gene polymorphisms were reproducibly associated with a risk of asthma across ethnic groups in the general population.

Citation: Liang S-Q, Chen X-L, Deng J-M, Wei X, Gong C, et al. (2014) Beta-2 Adrenergic Receptor (ADRB2) Gene Polymorphisms and the Risk of Asthma: A Meta-Analysis of Case-Control Studies. PLoS ONE 9(8): e104488. doi:10.1371/journal.pone.0104488

Editor: Pascal Lavoie, University of British Columbia, Canada

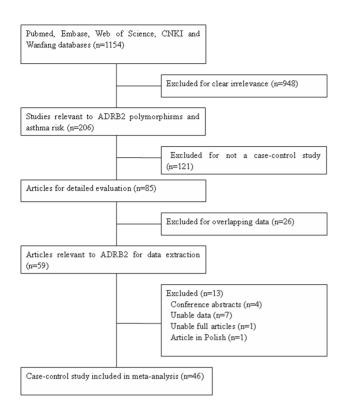
Received December 5, 2013: Accepted July 14, 2014: Published August 11, 2014

Copyright: © 2014 Liang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors have no support or funding to report.

Competing Interests: The authors have declared that no competing interests exist.

* Email: ldyyy666@163.com.


¶ SQL and XLC are co-first authors on this work.

Introduction

Asthma, which is characterized by variable airway obstruction caused by bronchial hyper-reactivity and airway inflammation, is one of the most common chronic respiratory diseases worldwide. The prevalence of asthma varies worldwide, ranging from 0.2% in China to 21.0% in Australia [1]. Recent studies show that asthma is a genetically related disease, with heritability estimates varying between 48% and 79% [2]. An increasing number of studies are focusing on asthma genetics research. Therefore, the identification of asthma susceptibility genes contributing to asthma pathogenesis is important. Candidate-gene linkage studies, positional cloning, and genome-wide association studies (GWAS) have already identified a large number of asthma susceptibility genes, and one of these, the beta-2 adrenergic receptor (ADRB2, also known as β 2-AR) gene, has been extensively studied.

The β 2-AR (ADRB2), a member of the G protein-coupled receptor (GPCR) family, is abundantly expressed on bronchial smooth muscle cells, and specifically binds and is activated by a class of ligands known as catecholamines, and epinephrine in particular [3]. The activation of β 2-AR can result in the expansion of the small airways, and thus β2-AR agonists are used in first-line bronchodilator therapy in asthma [4]. The β 2-AR, which can directly influence the effect of beta-2 adrenergic bronchodilator, is encoded by an intronless gene located on chromosome 5q31-32 [5]. It has been reported that ADRB2 variants are associated with airway hypersensitivity, asthma severity, and the response to medications [6,7]. Several single nucleotide polymorphisms (SNPs), including Arg16Gly (A46G, rs1042713), Gln27Glu (C79G, rs1042714), and Thr164Ile (C491T, rs1800888) have been identified in the coding region of the ADRB2 gene [8]. Replacement of the base may not only alter the gene expression and function of the β 2-AR, it may also alter the response to β 2-AR agonist therapies and even increase the risk of asthma.

To date, various case-control studies have been conducted to investigate the relationship between ADRB2 gene polymorphisms and asthma risk in different population groups [9-13], but the results have been conflicting and inconclusive. One reason for this inconsistency may be the typically small sample size of the individual studies, which may mean that there was insufficient

Figure 1. Flow diagram of included/excluded studies. doi:10.1371/journal.pone.0104488.g001

statistical evidence to reach an agreement. A meta-analysis allows the use of all collected data to enhance the statistical power and to further prove the relationship between ADRB2 gene polymorphisms and asthma risk. To date, five meta-analyses concerning the association between ADRB2 gene polymorphisms and asthma have been reported [6,7,14-16]. However, further investigations are required for the following reasons. Three [6,14,15] studies were conducted in 2004 and 2005 and several additional casecontrol studies were performed after these were published. One study, performed in 2009, showed a relationship between ADRB2 gene polymorphism and the response to inhaled beta-agonists in children with asthma [7]. Only one study focused on a Chinese population [16]. All of the meta-analyses described only Arg16Gly and Gln27Glu. A new meta-analysis including all ADRB2 polymorphisms that have been studied in at least three casecontrol studies was thus conducted to assess the overall association between ADRB2 polymorphisms and risk of asthma. This study provides a more sophisticated understanding of ADRB2 gene polymorphism and the risk of asthma.

Materials and Methods

Literature search

A literature search of the PubMed, Embase, Web of Science, Chinese National Knowledge Infrastructure (CNKI), and Wangfang databases (the last search was conducted on April 15, 2013) was conducted. The search strategy was as follows: "asthma" or "asthmatic" and " β 2-adrenergic receptor" or "ADRB2" or " β 2-AR" in combination with "polymorphism," "mutation," or "variant". The searches were performed without restrictions with regard to publication date and language. Articles that were not published in English or Chinese were subsequently excluded.

Inclusion and exclusion criteria

Studies that fulfilled the following criteria were incorporated into the meta-analysis: (1) case-control studies that evaluated the association between ADRB2 gene polymorphisms and risk of asthma; (2) the genotype distributions or allele frequency of each study was available or sufficient data could be extracted for calculating the odds ratio (OR) with 95% confidence interval (CI). For overlapping studies, the one with the most suitable data was selected. Studies were only excluded if they did not meet these inclusion criteria.

Data extraction

The basic information extracted for each study was as follows: name of first author, publication year, country and ethnicity of case control, age of case, asthma definition, sample size, and genotype frequencies in cases and controls.

Statistical analysis

Pearson's chi-square test was performed to evaluate whether the genotype distribution deviated from Hardy-Weinberg equilibrium (HWE) in the control group. Significantly deviating samples were re-assessed by 1000 time Montecarlo permutation analysis using the freely available software at http://krunch.med.yale.edu/ hwsim. The OR with 95% CI was used to assess the strength of the association between ADRB2 polymorphism and asthma risk. The pooled OR for ADRB2 polymorphisms and asthma risk was performed for four genetic model comparisons (dominant model comparison [AA+Aa vs. aa], recessive model comparison [AA vs. Aa+aa], homozygote genotype comparison [AA vs. aa] and allele comparison [A vs. a]) to estimate the risk. In the current study, the aa genotype was a wild-type, while the AA genotype was a mutant. The Q-test and I^2 test were used to assess the effect of heterogeneity. Heterogeneity was considered statistically significant when Q-test (P < 0.10) or $I^2 > 50\%$. If heterogeneity was indicated, data were combined according to the random-effects model; when the Q-test (P>0.10) or $I^2 < 50\%$, the fixed-effect model was used. Stratified analysis was performed by 1000 time permutation HWE P-value, ethnicity and case age to further explore HWE-specific, ethnicity-specific and age-specific effects. Sensitivity analysis was conducted by sequentially excluding one study at a time to examine the effect of each study on the combined result. Potential publication bias was investigated through the funnel plot and further assessed using Egger's test. A cumulative analysis was conducted after sorting by publication date. All statistical analyses of this meta-analysis were performed using the computer software STATA 11.0 (State Corp., College Station, TX, USA).

Results

Characteristics of included studies

After a comprehensive search of the PubMed, Embase, Web of Science, Wanfang, and CNKI databases, 1154 articles were identified, 948 of which were subsequently excluded because they were not relevant to *ADRB2* polymorphisms and asthma risk. Thus, 206 relevant records were identified. Of these, 121 were excluded due to the lack of a case-control design. Of the remaining 85 articles, 26 were excluded due to overlapping data. Therefore, 59 articles were identified for further study. Of these 59 articles, four [17–20] were excluded as they were conference abstracts, seven [12,21–26] did not report useable data, and one [27] was excluded because the full text was not available. In addition, one article [28] was excluded as it was in Polish. Ultimately, 46 articles [8–11,13,29–69] met the inclusion criteria (Figure 1). The

Table 1. Detailed information of each article in t	in the meta-analysis.	
Table 1. Detailed information of each article	in t	
Table 1. Detailed information of each	article	
Table 1. Detailed information of	each	
Table 1. Detailed information	of	
Table 1. Detailed	l information	
Table 1	. Detailed	
	Table 1	

$dail ly^{10}$ 200 $Chia$ $Aail$ $21-69$ $22-60$ $Population$ $SFCRFCFCFPP$ 72 6 vww^{10} 201 $Chia$ Aai $Auilt$ $18-57$ $22-60$ $Population$ $SF-FCR$ 21 2 $vwag v^{11}$ 200 $Chia$ Aai $Children$ $1-77$ $18-71$ $Hoopial$ $SF-FCR$ 212 2 $wag v^{11}$ 200 $Chia$ Aai $(1-7)^2$ $18-71$ $Hoopial$ $SF-FCR$ 21 2 $wag v^{11}$ 200 $Chia$ Aai $(1-7)^2$ $18-71$ $Hoopial$ $2F-FCR$ 21 2 $wag v^{11}$ 200 $Chia$ Aai $Auilt$ $25-54$ $Population$ $SF-FCR$ 21 21 21 $wag v^{11}$ 200 $Chia$ Aai $42-55$ $23-54$ $Population$ $SF-FCR$ 21 21 21 $wag v^{11}$ 200	First author	Year	Country	Ethnicity	Age group	Case age (year)	Control age (year)	Source of controls	Genotyping method	Cases	Control	Asthma definition
1 2011 Chia Aaa Adult 18-57 2-00 Population 65-FCR 21 2 ¹¹ 208 Chia Aaa Chiden 1-7 2-13 Population CR4FLP 217 2 ¹¹ 209 Chia Aaa Chiden 1-72 18-71 Hospial CR4FLP 217 2 ¹¹ 2012 Chia Aaa Adult 77±2.6 2.69±2.55 Hospial SeP-FCR 212 2 ¹¹ 2012 Chia Aaa Adult 27±2.6 2.69±2.55 Hospial Sep-FCR 212 2 ¹¹ 2012 Chia Aab Adult 25-53 2.69±2.50 Hospial Sep-FCR 21 2 ¹¹ 2012 Chia Aab Adult 20-55 2.99±3.07 Hospial Sep-FCR 21 2 ¹¹ 2013 Chia 2014 Sep-FCR 21 21 21 21 21 21 2 ¹¹ 2 ¹¹ <td>Cui LY²⁹</td> <td>2007</td> <td>China</td> <td>Asia</td> <td>Adult</td> <td>21–69</td> <td>22-69</td> <td>Population</td> <td>AS-PCR/PCR-CTPP</td> <td>72</td> <td>60</td> <td>Guidelines of prevention and treatment of bronchial asthma (Chinese Medical Association)</td>	Cui LY ²⁹	2007	China	Asia	Adult	21–69	22-69	Population	AS-PCR/PCR-CTPP	72	60	Guidelines of prevention and treatment of bronchial asthma (Chinese Medical Association)
γ^{11} 208ChiaÅaChiften $1/7$ $2-13$ PopulationCRFLP 217 2^{2} 204ChiaAaAdut $1/7-27$ $18-71$ HospialS9-PCR23 2^{2} 201ChiaAaAdut $1/7-27$ $18-71$ HospialSeperting23 2^{2} 201ChiaAaAdut $27-32$ $28-63$ Population 8^{2} -PCR24 2^{2} 201ChiaAaAdut $27-32$ $28-63$ Population 8^{2} -PCR24 2^{2} ChiaAaAdut $27-32$ $28-63$ Population 8^{2} -PCR27 2^{2} ChiaAaAdut $27-34$ $433-2070$ Hospial 8^{2} -PCR27 2^{2} ChiaAaAdut $27-34$ $433-2070$ Hospial 8^{2} -PCR27 2^{2} ChiaAdut $27-34$ $29-32,070$ Hospial 8^{2} -PCR27 2^{2} ChiaAdut $27-34$ $433-2070$ Hospial 8^{2} -PCR27 2^{2} ChiaAdut $27-34$ $43-32,070$ Hospial 8^{2} -PCR27 2^{2} DiaAdut $27-34$ $29-32,070$ Hospial 8^{2} -PCR27 2^{2} DiaAdut $27-34$ $29-32,070$ Hospial 8^{2} -PCR27 2^{2} DiaAdut $29-32,070$ Hospial 8^{2} -PCR2727 2^{2} DiaAdut <td>∕e WX³⁰</td> <td>2011</td> <td>China</td> <td>Asia</td> <td>Adult</td> <td>18–57</td> <td>22-60</td> <td>Population</td> <td>AS- PCR</td> <td>31</td> <td>37</td> <td>Guidelines of prevention and treatment of bronchial asthma (Chinese Medical Association)</td>	∕e WX³⁰	2011	China	Asia	Adult	18–57	22-60	Population	AS- PCR	31	37	Guidelines of prevention and treatment of bronchial asthma (Chinese Medical Association)
¹³ 204 Chia 54 Adult 17-72 18-71 Hospial S5P- PCR 123 ²¹ 202 Chia Aia Chidren 772.56 769-13 Sequencing 213 ²¹ 203 Gaia Aia Z3-5.5 26-37 26-97 Sequencing 213 ²¹ 2012 Chia Asia Adult 25-5.5 26-97 Population As-PCR 24 ²¹ 2012 Chia Asia Chidren 25-5.5 Population SeP-PCR 27 ²¹ 2013 Chia Adult 20-5.6 Population SeP-PCR 29 ²¹ 2013 Chia Adult 20-5.6 Population SeP-PCR 29 ²¹ 2013 Chia Adult 20-5.6 Population Sep-PCR 29 ²¹ 2014 Adult 21-7.1 20-7.6 Population Sep-PCR 29 ²¹ 2014<	chang XY ³¹	2008	China	Asia	Children	1-17	2–13	Population	PCR-RFLP	217	50	The guidelines of treatment for bronchial asthma in children
3 2012 $Chia$ $4ai$ $Chiden$ 7.7 ± 26 7.6 ± 2.535 $4osptal$ $Sequencing$ 212 7^4 204 A_{31} A_{41} 2^2-53 2^2-53 2^2-53 $9epulation$ 8^2-PCR 7^4 7 2012 A_{32} A_{41} 2^2-54 $3^2-3-207$ $4osptal$ $8epun MassARM$ 71 7 2012 A_{32} A_{41} 2^2-54 4^2-57 $4osptal$ $8epun MassARM$ 71 7 2012 A_{32} A_{41} 2^2-56 7^2-66 $9epulation$ $8epun MassARM$ 71 7 2012 A_{32} A_{41} 2^2-56 7^2-66 $9epulation$ $8epun MassARM$ 71 7 2012 A_{32} A_{41} 2^2-76 8^2-66 $9epulation$ $8epun MassARM$ 71 7 2012 A_{32} A_{41} 2^2-76 8^2-76 $9epulation$ $8epun MassARM$ 71 7 2012 A_{32} A_{41} 2^2-75 8^2-76 $9epulation$ $8epun MassARM$ 71 7 2012 A_{32} A_{41} 2^2-75 $8epulation$ $8epun MassARM$ 71 71 7 2012 A_{32} A_{41} 2^2-75 $8epulation$ $8epun MassARM$ 71 7 2012 A_{12} A_{22} $8e_{22}$ $8epulation$ $8epulation$ $8epulation$ $8epulation$ 7 2012 A_{12} A_{12} $8e_{22}$ <td>Vang W³²</td> <td>2004</td> <td>China</td> <td>Asia</td> <td>Adult</td> <td>17-72</td> <td>18–71</td> <td>Hospital</td> <td>SSP- PCR</td> <td>123</td> <td>89</td> <td>Guidelines of prevention and treatment of bronchial asthma (Chinese Medical Association)</td>	Vang W ³²	2004	China	Asia	Adult	17-72	18–71	Hospital	SSP- PCR	123	89	Guidelines of prevention and treatment of bronchial asthma (Chinese Medical Association)
c^{44} 204 Chia Sale Adult 25-53 28-63 Population As-PCR 24 2012 Chia Asia Adult 4.35 ± 6.2 Asia Adult 4.35 ± 6.2 Bopulation Asia Population Seperts MMA 17 2013 Chia Asia Adult $20-56$ 5.0 ± 3.46 Population Sep-PCR 26 2014 Chia Asia Adult $20-56$ 5.0 ± 3.46 Population Sep-PCR 26 2015 Chia Asia Adult $20-56$ 5.0 ± 3.46 Population Sep-PCR 26 2015 Chia Asia Adult $21-57$ 4.95 Population Sep-PCR 26 2015 Chia Asia Adult $21-57$ 4.95 Population Sep-PCR 26 2015 Chia Asia Chia 4.2 ± 5 4.95 Population Sep-PCR 26 2016 Chia Asia Chia 4.2 ± 5 4.95 Population PCR-PLP 26	ang Z ³³	2012	China	Asia	Children	7.7±2.6	7.69±2.55	Hospital	Sequencing	212	52	Guidelines of prevention and treatment of bronchial asthma in children(China)
2012ChinaAsiaAdut $4.5.\pm 16.2$ $4.39\pm 2.0.70$ HospitalEquenom MassARMAV1712008ChinaAsiaChildren 5.0 ± 3.40 HospitalSSP-PCR 5^{-1} 2009ChinaAsiaAdut 5.0 ± 3.40 HospitalSSP-PCR 5^{-1} 2009ChinaAsiaAdut 3.7 ± 5.7 4.9 ± 6.6 PopulationSequencing2000ChinaAsiaAdut 3.7 ± 5.7 4.9 ± 6.6 PopulationSequencing2000ChinaAsiaAdut 3.7 ± 5.7 4.9 ± 6.6 PopulationSequencing 8^{-1} 2000ChinaAsiaAdut 3.7 ± 5.7 4.9 ± 6.6 Population 8^{-1} 8^{-1} 2000ChinaAsiaAdut $1.4-66$ $1.8-57$ 8^{-1} Population 8^{-1} 8^{-1} 2010ChinaAsiaAdut 3.35 ± 9.17 $1.8-71$ Population 8^{-1} 8^{-1} $ttll W^{-1}$ 2007ChinaAsiaAdut 3.35 ± 9.17 $1.8-71$ Population 8^{-1} 8^{-1} $ttll W^{-1}$ 2007ChinaAsiaAdut 3.35 ± 9.17 $1.8-71$ Population 8^{-1} 8^{-1} 8^{-1} 8^{-1} $ttll W^{-1}$ 2012ChinaAsiaChina $8.3\pm 5\pm 1.17$ $8-71$ Population 8^{-1} 8^{-1} 8^{-1} 8^{-1} 8^{-1} 8^{-1} 8^{-1} 8^{-1} 8^{-1} 8^{-1} 8^{-1} </td <td>eng DX³⁴</td> <td>2004</td> <td>China</td> <td>Asia</td> <td>Adult</td> <td>25-63</td> <td>28-63</td> <td>Population</td> <td>AS- PCR</td> <td>74</td> <td>39</td> <td>Guidelines of prevention and treatment of bronchial asthma (Chinese Medical Association)</td>	eng DX ³⁴	2004	China	Asia	Adult	25-63	28-63	Population	AS- PCR	74	39	Guidelines of prevention and treatment of bronchial asthma (Chinese Medical Association)
2008ChiaSiaChildren 5.0 ± 3.4 HospitalSsP-CR 57 2001ChiaAsiaAdult $20-66$ 5346 Population $4s-PCR$ 55 2002ChiaAsiaAdult 39.7 ± 5.7 40.9 ± 60 Population $4s-PCR$ 55 00 ChiaAsiaAdult 32.7 ± 5.7 40.9 ± 60 Population $8e-PCR$ 59 00 ChiaAsiaAdult 32.7 ± 5.7 40.9 ± 60 Population $8e-PCR$ $8e-PCR$ 00 ChiaAsiaAdult 32.7 ± 5.7 40.9 ± 60 Population $8e-PCR$ $8e-PCR$ 00 ChiaAsiaAdult 32.7 ± 5.7 40.9 ± 60 Population $8e-PCR$ $8e-PCR$ 00 ChiaAsiaChildren $1.2-11.7$ $2.5-13.2$ Population $8e-PCR$ $8e-PCR$ 01 SubitChinaAdult 8.35 ± 9.17 $18-71$ Population $8e-PCR$ $8e-PCR$ 01 SubitAdult $8.3.5\pm9.17$ $18-71$ Population $8e-PCR$ $8e-PCR$ 01 SubitAdult $8.3.5\pm9.17$ $18-71$ Population $8e-PCR$ $8e-PCR$ 01 SubitAdult $8.1-16.6$ $8-11.6$ Population $8e-PCR$ $8e-PCR$ 01 SubitAdult $8.1-16.6$ $8-11.6$ Population $8e-PCR$ $8e-PCR$ 01 BiaAdult $8.1-16.6$ $8-11.6$ $8e-PCR$ $8e-PCR$ <	le XQ ³⁵	2012	China	Asia	Adult	42.5±16.2	43.39±20.70	Hospital	Sequenom MassARRAY	171	148	Guidelines of prevention and treatment of bronchial asthma (Chinese Medical Association)
2001ChiaAsiaAdult $20-66$ $5-46$ Population $4-PCR$ 55 2002ChiaAsiaAdult $37.5.7$ 403 ± 6.0 Population $5equencing$ 120 2002ChiaAsiaAdult $37.5.7$ 403 ± 6.0 Population $5equencing$ 120 2003ChiaAsiaBoth $14-66$ $18-56$ Hospital $5equencing$ 87 2003ChiaAsiaBoth $14-66$ $18-56$ Hospital $5equencing$ 87 2004ChiaAsiaChiden $12-117$ $25-13.2$ Population $7eRFLP$ 86 4104 AsiaAdult 38.35 ± 9.17 $18-71$ Population $5P-CR$ $5P$ 4104 AsiaAdult 38.35 ± 9.17 $18-71$ Population $7eRFLP$ $5P$ 4104 AsiaAdult 38.35 ± 9.17 $18-71$ Population $7eRFLP$ $5P$ 4104 AsiaAdult 38.35 ± 9.17 $18-71$ Population $7eRFLP$ $5P$ 4104 AsiaAdult 38.35 ± 9.17 $18-71$ $PopulationPopulation7eRFLP5P4104AsiaAdult38.35\pm9.1718-71PopulationPopulation7eRFLP5P4104AsiaAdult38.1\pm16.6PopulationPopulation7eRFLP7eRFLP7eRFLP4104AsiaAdult81.9\pm16.6Population7eRFLP7eRFLP7eRFLP$	ie Y ³⁶	2008	China	Asia	Children	5.0±2.8	5.30±3.40	Hospital	SSP-PCR	57	62	The guidelines of treatment for bronchial asthma in children
2009ChiaÁsiaAdult $37.\pm 5.7$ $409.\pm 6.0$ PopulationSequencing 120 2002ChiaAsiaAdult 42 ± 7 46 ± 8 HospitalSequencing 87 2003ChiaAsiaBoth $14-66$ $18-56$ HospitalSequencing 87 2004ChiaAsiaBoth $14-66$ $18-56$ HospitalSequencing 87 2001ChiaAsiaChilden $12-11.7$ $2.5-13.2$ PopulationPCR-RFU 86 LBN 42ZonoChiaAsiaAdult 38.35 ± 9.17 $18-71$ Population 87 -PCR 50 LBN 42ZonoChiaAsiaChildren $0-14$ $0-14$ $0-14$ 90 -PCR 76 4^{a} ZonoChinaAsiaChildren $0-14$ $0-14$ 90 -PCR 76 4^{a} ZonoMolaAsiaChildren $0-14$ $0-14$ 90 -PCR 76 4^{a} ZonoMolaAsiaAdult 38.1 ± 16.2 419 ± 16.6 Population 76 4^{a} ZonoMolaAsiaAdult 38.1 ± 16.2 419 ± 16.6 Population 70 4^{a} LBNZonoAdult 38.1 ± 16.2 419 ± 16.6 Population 70 4^{a} LBNZonoZonoSouth America Children 11.6 ± 5.2 Students 70 4^{a} LBNZonoZonoSouth America Children 11.6 ± 5.2 Students 7	(ing J ³⁷	2001	China	Asia	Adult	20-66	25-46	Population	AS- PCR	55	38	Guidelines of prevention and treatment of bronchial asthma (Chinese Medical Association)
2002ChiaAsiaAdult 42 ± 7 46 ± 8 HospitalSequencing872008ChiaAsiaBoth $14-66$ $18-56$ HospitalSequencing872001ChiaAsiaChildren $12-11.7$ $2.5-13.2$ PopulationPCR-RLP482001ChiaAsiaChildren $12-11.7$ $2.5-13.2$ PopulationPCR-RLP48LBN ⁴² Zo07ChiaAsiaAdult 38.35 ± 9.17 $18-71$ PopulationSP-PCR76 43 Zo12ChiaAsiaAdult 38.35 ± 9.17 $18-71$ PopulationSP-PCR76 43 Zo12ChiaAsiaChildren $0-14$ $0-14$ PopulationPCR-RLP76 43 Zo12ChiaAsiaChildren $0-14$ $0-14$ PopulationPCR-RLP76 43 Zo12IndianAsiaChildren $0-14$ $0-14$ PopulationPCR-RLP76 43 Zo12IndianAsiaChildren $0-14$ $0-14$ PopulationPCR-RLP76 43 Zo12IndianAsiaAdult 38.1 ± 16.2 4.19 ± 16.6 PopulationPCR-RLP76 43 Zo12IndianSouth America Children 11.8 ± 5.2 StudentsPopulation 100 43 South America Children 11.6 ± 5.4 11.8 ± 5.2 StudentsPopulation 100	iu L ³⁸	2009	China	Asia	Adult	39.7±5.7	40.9±6.0	Population	Sequencing	120	120	Guidelines of prevention and treatment of bronchial asthma
2008ChiaAsiaBoth14-6618-56HospitalPCRFLP482001ChiaAsiaChildren $1.2-11.7$ $2.5-13.2$ PopulationPCRFLP50LBN ¹² 2007ChiaAsiaAdult 38.35 ± 9.17 $18-71$ PopulationS5-PCR76 13 2012ChiaAsiaChildren $0-14$ $0-14$ $0-14$ PopulationPCRFLP76 13 2012ChiaAsiaChildren $0-14$ $0-14$ PopulationPCRFLP76 14 2012IndianAsiaAdult 38.1 ± 16.2 41.9 ± 16.6 PopulationPCRFLP76 14 2012IndianAsiaAdult 38.1 ± 16.2 41.9 ± 16.6 PopulationPCRFLP70 14 2012IndianAsiaAdult 38.1 ± 16.2 41.9 ± 16.6 PopulationPCRFLP70 14 2012ColombiaSouth America Children 11.6 ± 5.4 11.8 ± 5.2 StudentsMini-sequencing109	ai LM ³⁹	2002	China	Asia	Adult	42±7	46±8	Hospital	Sequencing	87	94	
2001ChiaAsiaChildren $1.2-11.7$ $2.5-13.2$ PopulationPCRRLP50LBN ⁴² 2007ChinaAsiaAdult 38.35 ± 9.17 $18-71$ PopulationS5P-PCR76 1^{43} 2012ChinaAsiaChildren0-140-14PopulationPCRRLP198 1^{43} 2012ChinaAsiaChildren0-140-14PopulationPCRRLP198 1^{43} 2012IndianAsiaAdult 38.1 ± 16.2 41.9 ± 16.6 PopulationPCRRLP410 2012 IndianSouth America Children 11.6 ± 5.4 11.8 ± 5.2 StudentsMini-sequencing109	hi XH ⁴⁰	2008	China	Asia	Both	14–66	18–56	Hospital	PCR-RFLP	48	48	Guidelines of prevention and treatment of bronchial asthma (Chinese Medical Association)
LBN ⁴² 2007 China Asia Adult 38.35 \pm 9.17 18–71 Population SSP-PCR 76 P^{43} 2012 China Asia Children 0–14 0–14 Population PCR-RELP 198 4 2012 Indian Asia Adult 38.1 \pm 16.2 419 \pm 16.6 Population PCR-RELP 410 2012 Colombia South America Children 11.6 \pm 5.4 11.8 \pm 5.2 Students Mini-sequencing 109	iao W ⁴¹	2001	China	Asia	Children	1.2–11.7	2.5-13.2	Population	PCR-RFLP	50	50	The Chinese Medical Association Respiratory Diseases Asthma Study Group
 ⁴³ 2012 China Asia Children 0-14 0-14 Population PCR·RELP 198 ⁴⁴ 2012 Indian Asia Adult 38.1±16.2 41.9±16.6 Population PCR·RELP 410 ⁴⁵ 2012 Colombia South America Children 11.6±5.4 11.8±5.2 Students Mini-sequencing 109 	uerxun KLBN ⁴²	2007	China	Asia	Adult	38.35±9.17	18-71	Population	SSP- PCR	76	89	Guidelines of prevention and treatment of bronchial asthma (Chinese Medical Association)
 2012 Indian Asia Adult 38.1±16.2 41.9±16.6 Population PCR-RFLP 410 2012 Colombia South America Children 11.6±5.4 11.8±5.2 Students Mini-sequencing 109 	theng BQ ⁴³	2012	China	Asia	Children	0-14	0-14	Population	PCR-RFLP	198	110	Guidelines of prevention and treatment of bronchial asthma (Chinese Medical Association)
2012 Colombia South America Children 11. 6 ± 5.4 11. 8 ± 5.2 Students Mini-sequencing 109	irbian N ⁴⁴	2012	Indian	Asia	Adult	38.1±16.2	41.9 ± 16.6	Population	PCR-RFLP	410	414	GINA (Global Initiative for Asthma) guidelines
	aza C ⁴⁵	2012	Colombia	South Americ	a Children	11.6±5.4	11.8±5.2	Students	Mini-sequencing	109	137	Standardised questionnaires with detailed questions on the occurrence and severity of symptoms of asthma

First author	Year	Country	Ethnicity	Age group	Case age (year)	Control age (year)	Source of controls	Genotyping method	Cases	Control	Asthma definition
Kohyama K ¹¹	2011	Japan	Asia	Adult	49.8±15.9	47.1±13.6	Hospital	Sequence-specific thermal-elution chromatography	300	100	Global Initiative for Asthma guidelines
Fu WP ⁴⁶	2011	China	Asia	Adult	50.4±6.8	48.7±7.3	Hospital	Sequencing	238	265	Asthma was diagnosed by multiple criteria,including a history of recurrent episodes of wheezing,breathlessness,chest tightness and cough
Qiu YY ⁴⁷	2010	China	Asia	Adult	41 ±9	42±9	Hospital	PCR/Sequencing	201	276	Guidelines of prevention and treatment of bronchial asthma (Chinese Medical Association)
Szczepankiewicz A ⁴⁸	2009	Polish	Europe	Children	6-18	10.0±2.2	Population	PCR-RFLP	113	123	GINA recommendations,based on clinical asthma symptoms and lung function test
Llanes E ⁴⁹	2009	Spain	Europe	Adult	22.9±7.1	23–58	Population	PCR-RFLP	109	50	ı
Munakata M ⁵⁰	2006	Japan	Asia	Not available	Not available	Not available	Population	PCR-RFLP	48	100	Diagnosed by symptoms and Bronchial challenge or Bronchodilator test
Tsai HJ ⁵¹	2006		African American	Both	8-40	8-40	Hospital	Sequencing	264	176	Physician-diagnosed
Tellería JJ ⁵²	2005	Spain	Europe	Both	14-64	Not available	Hospital	PCR-RFLP	80	64	The American Thoracic Society guideline
Bhatnagar P ⁵³	2005	India	Asia	Adult	30.7±14.7	34.1 ± 9.8	Not available	PCR	101	55	Physician-diagnosed
Gao JM ⁸	2004	China	Asia	Adult	38.7±13.8	33.7±10.7	Hospital	PCR-RFLP	125	96	Guidelines of Chinese Tuberculosis and Respiratory Society
Santillan AA ⁵⁴	2003	Mexican	North America	Adult	42±14	35±12	Population	PCR-RFLP	303	604	Physician-diagnosed
Gao GK ⁵⁵	2000	China	Asia	Both	4-56	18–53	Not available	AS- PCR	58	89	Guidelines of prevention and treatment of bronchial asthma (Chinese Medical Association)
Wang Z ⁵⁶	2001	China	Asia	Adult	30.6±16.2	35.3±16.7	Population	AS- PCR	128	136	American Thoracic Society Division of Lung Disease questionnaire
Holloway JW ⁵⁷	2000	New Zealand	Oceania	Adult	31.4±1.2	32.7±1.0	Not available	PCR-RFLP	153	92	
Reihsaus E ⁵⁸	1993	USA	Europe	Adult	23-74	Not available	Not available	PCR	51	56	Diagnosed by symptoms and medical history
Neslihan Aygun Kocabas ⁵⁹	2007	Turkish	West Asia and Southern Europe	Not available	Not available	Not available	Not available	PCR-RFLP	129	127	
Chiang CH ⁹	2012	China	Asia	Adult	46±20	44±17	Population	PCR-RFLP	476	115	The guideline of the Global Initiative for Asthma
Larocca N ⁶⁰	2012	Venezuela	South America	Adult	44.4±15.2	42.6±13.9	Not available	PCR-RFLP	105	100	GINA recommendations
Chan IH ¹⁰	2008	China	Asia	Children	5-18	5-18	Hospital	PCR-RFLP	298	175	The American Thoracic Society guideline
Wang JY ⁶¹	2009	China	Asia	Children	7.8±3.8	8.37±2.45	Not available	Taqman	449	512	2006 Global Initiative for Asthma guideline

	ountry	Country Ethnicity	Age group	Case age (year)	Control age (year)	Source of controls	Genotyping method	Cases	Control	Asthma definition
Lv J ⁶⁹ 2009 Cl	China	Asia	Children	3-12	18-22	Students	PCR-RFLP	192	192	2006 Global Initiative for Asthma guideline
Binaei S ⁶² 2003 U	USA	Europe	Children	Not available	Not available	Not available	PCR-RFLP	38	155	
Kotani Y ⁶³ 1999 Ja	Japan	Asia	Adult	48.4±16.8	44.9±12.6	Not available	PCR	117	103	The American Thoracic Society criteria
Weir TD ⁶⁴ 1998		Europe	Adult	34.3±13.8	41.1±17.3	Population	AS- PCR	176	146	Diagnosed by symptoms and medical history
Weir TD ⁶⁴ 1998		Asia	Adult	34.3±13.8	41.1±17.3	Population	AS- PCR	176	146	Diagnosed by symptoms and medical history
Dewar JC ⁶⁵ 1998 U	ЛX	Europe	Adult	18–70	18-70	Not available	AS- PCR	119	511	Physician-diagnosed
Hakonarson H ⁶⁶ 2001 Ic	lceland	Europe	Both	12–59	Not available	Hospital	PCR	324	199	European Community Respiratory Health Survey Group
Leung TF ⁶⁷ 2002 CI	China	Asia	Children	5-15	11.3±3.8	Not available	PCR	76	70	The American Thoracic Society criteria
Lin YC ⁶⁸ 2003 CI	China	Asia	Children	Not available	Not available	Students	PCR	80	69	Physician-diagnosed
Shachor J ¹³ 2003 Is	Israel	Asia	Both	9–73	Not available	Not available	PCR-RFLP	66	113	The criteria of the National Heart, Lung and Blood Institute

characteristics of each article are shown in Table 1. Of these 46 articles, one [64] contained two independent studies, so the data were extracted accordingly. Furthermore, one article [65] did not provide the genotype distribution or allele frequency data, but these data were obtained from another study [15], so this article [65] was still included. Of these 46 case-control studies, three [51,59,64] only provided data on allele frequency and not on genotype distribution. Further analysis was performed on the ADRB2 polymorphisms that had been reported in at least three case-control studies. A total of four SNPs met the inclusion criteria: Arg16Gly (A46G, rs1042713), Gln27Glu (C79G, rs1042714), Thr164Ile (C491T, rs1800888), and Arg19Cys (T-47C, rs1042711). Some of the included studies only focused on the Chinese population, so a meta-analysis of the Chinese population was performed independently. The genotype and allele distribution for the four SNPs are shown in Tables 2 to 5.

HWE for included studies

The HWE for each included study was calculated by chi-square test. The P-value of the genotype distribution in each control group is shown in Tables 2 to 5. As some of the included studies were not in HWE, a stratified analysis according to the P-value for the Arg16Gly and Gln27Glu polymorphisms was conducted. The results are shown in Table 6.

Meta-analysis of ADRB2 polymorphisms and asthma

Meta-analysis of Arg16Gly variants and asthma. For Arg16Gly, there was no significant association in any of the genetic model comparisons in the overall population (Figures 2 to 5). In the analysis stratified by ethnicity, a significant association was found in the South American population in the dominant model comparison (OR = 1.754, 95% CI = 1.179-2.609, $I^2 = 16.9\%$, studies = 2, case = 314, control = 237), but not in the other genetic comparisons or other ethnic groups. In the Chinese population, there was no significant association in any of the genetic model comparisons. The results are shown in Table 6.

Meta-analysis of Gln27Glu variants and asthma. For Gln27Glu, no evidence of an association with asthma risk was found in the overall population in any of the genetic model comparisons (Figures 6 to 9). In the analysis stratified by case age, a protective association was found in children only in the recessive model comparison (OR = 0.566, 95% CI = 0.417 - 0.769, I =0.0%, studies =11, case =1693, control =1502) and genotype comparison (OR = 0.610,homozygote 95% CI = 0.434 - 0.856, $I^2 = 0.0\%$, studies = 11, case = 1693, control = 1502), and in adults only in the dominant model comparison $(OR = 0.864, 95\% \text{ CI} = 0.768 - 0.971, I^2 = 46.9\% n = 18, \text{ case})$ = 3160, control = 3433). In the Chinese population, there was no significant association in any of the genetic model comparisons. The results are shown in Table 6.

Meta-analysis of Thr164Ile variants and asthma. For Thr164Ile, only four case-control studies were included, so no stratified analysis was performed. There was no evidence of an association with asthma risk in any of the genetic models in the overall population. The results are shown in Table 6.

Meta-analysis of Arg19Cys variants and asthma. For Arg19Cys, only three case-control studies provided genotype distribution data, therefore no stratified analysis was conducted. No significant association was found in the overall population in any of the genetic models. The results are shown in Table 6.

Cumulative meta-analysis

Cumulative analysis of the association between Arg16Gly and Gln27Glu polymorphisms and the risk of asthma was performed

ł

And And <th>First such su</th> <th></th> <th></th> <th>Cebuicieu</th> <th></th> <th>Case</th> <th></th> <th></th> <th>Contro</th> <th>-</th> <th></th> <th>Case</th> <th></th> <th>Control</th> <th></th> <th>HWE(P)1000</th>	First such su			Cebuicieu		Case			Contro	-		Case		Control		HWE(P)1000
207 Chia Aia Adult 9 55 8 12 39 1 2003 Chia Aaa Adult 5 19 7 5 20 2004 Chia Aaa Adult 5 19 7 5 26 2003 China Aaa Adult 7 30 10 20 24 23 2012 China Aaa Adult 7 30 20 24 23 2012 China Aaa Adult 7 3 20 26 24 2013 China Aaa Adult 7 3 27 26 25 2013 China Aaa Adult 7 3 26 26 2014 Adult 2 7 27 26 27 26 26 2014 Adult 2 7 27 27 27 26		80				AA	AG	99	AA		99	A	ں		0	
1 Chia Aaa Adult 5 19 7 5 26 1 Chia Asia Chidren 81 111 26 29 20 2004 Chia Asia Chidren 81 111 26 24 23 2012 Chia Asia Adult 13 10 20 24 23 2012 Chia Asia Adult 13 13 21 24 23 2012 Chia Asia Adult 14 27 29 26 24 2012 Chia Asia Adult 13 21 10 23 24 2012 Chia Asia Adult 13 26 26 26 2013 Holan Asia Adult 13 26 26 26 2013 Chia Asia Adult 27 13 27 26 2013 </td <td>Cui LY²⁹</td> <td>2007</td> <td>China</td> <td>Asia</td> <td>Adult</td> <td>6</td> <td>55</td> <td>8</td> <td>12</td> <td>39</td> <td>6</td> <td>73</td> <td>71</td> <td>63</td> <td>57 0.019</td> <td>0.038</td>	Cui LY ²⁹	2007	China	Asia	Adult	6	55	8	12	39	6	73	71	63	57 0.019	0.038
1 2008 China Asa Chindren B1 111 25 19 23 2004 China Asa Adutt 46 59 16 26 5 2012 China Asa Chindren 73 13 26 5 5 2014 China Asa Adutt 73 35 26 5 26 2012 China Asa Adutt 73 37 27 21 23 2003 China Asa Adutt 7 27 20 26 5 2003 China Asa Adutt 7 27 21 26 5 2013 China Asa Adutt 7 27 21 26 5 2014 Anat Adutt 7 27 21 21 25 2014 Anat Adutt 7 26 27 21 25	Ye WX ³⁰	2011	China	Asia	Adult	S.	19	7	2	26	9	29	33	36 3	38 0.013	0.030
2004 China Asa Adult 48 59 16 26 54 2012 China Asa Children 76 104 30 20 20 2013 China Asa Adult 73 75 26 5 26 2013 China Asa Adult 73 35 26 5 36 2013 China Asa Adult 73 37 20 55 55 2003 China Asa Adult 73 33 21 10 25 3 2013 China Asa Adult 73 33 21 10 25 2013 China Asa Adult 73 26 75 26 55 2013 China Asa Adult 73 27 11 27 29 26 2013 Joba Adult 73 26 47<	Zhang XY ³¹	2008	China	Asia	Children	81	111	25	19	23	8	273	161	61 3	39 0.814	1.000
2012 Chia Asia Children 78 104 20 24 23 2024 Chia Asia Adult 32 130 29 26 28 2020 Chia Asia Adult 33 31 32 130 29 50 2030 Chia Asia Adult 37 52 32 33 </td <td>Wang W³²</td> <td>2004</td> <td>China</td> <td>Asia</td> <td>Adult</td> <td>48</td> <td>59</td> <td>16</td> <td>26</td> <td>54</td> <td>6</td> <td>155</td> <td>91</td> <td>106 7</td> <td>72 0.014</td> <td>0.027</td>	Wang W ³²	2004	China	Asia	Adult	48	59	16	26	54	6	155	91	106 7	72 0.014	0.027
2004 China Asia Adult 13 26 6 28 2012 China Asia Adult 32 130 9 50 66 28 2013 China Asia Adult 32 130 9 50 50 2010 China Asia Adult 32 32 32 33 73 2003 China Asia Adult 33 33 33 35 73 2003 China Asia Adult 13 36 7 10 35 2011 China Asia Adult 13 36 7 10 35 2012 China Asia Adult 13 36 7 10 35 2013 China Asia Adult 13 37 10 37 36 37 2014 Asia Adult 13 10 10 <td< td=""><td>Yang Z³³</td><td>2012</td><td>China</td><td>Asia</td><td>Children</td><td>78</td><td>104</td><td>30</td><td>24</td><td>23</td><td>5</td><td>260</td><td>164</td><td>71 3</td><td>33 0.725</td><td>1.000</td></td<>	Yang Z ³³	2012	China	Asia	Children	78	104	30	24	23	5	260	164	71 3	33 0.725	1.000
2012 Chia Asia Adult 22 130 9 50 66 2008 Chia Asia Chideen 14 37 6 21 34 2001 Chia Asia Adult 7 9 6 21 34 2003 Chia Asia Adult 7 9 7 10 35 2003 Chia Asia Adult 7 9 7 10 35 2003 Chia Asia Adult 7 9 7 10 2 3 3 2012 Chia Asia Adult 7 9 7 10 2 5 31 Japan Asia Adult 7 9 10	Feng DX ³⁴	2004	China	Asia	Adult	13	35	26	9	28	5	61	87	40 3	38 0.006	0.016
2008 China Asia Chindren 14 37 6 21 34 2001 China Asia Adutt 27 29 29 55 2003 China Asia Adutt 27 29 29 55 2003 China Asia Adutt 27 29 29 53 2003 China Asia Adutt 23 21 10 25 2003 China Asia Adutt 13 27 10 25 2013 China Asia Adutt 13 26 24 25 3 2013 China Asia Adutt 13 26 26 26 3 2013 China Asia Adutt 13 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 2	He XQ ³⁵	2012	China	Asia	Adult	32	130	6	50	66	32	194	148	166 1	130 0.249	1.000
	Xie Y ³⁶	2008	China	Asia	Children	14	37	9	21	34	7	65	49	76 4	48 0.220	0.337
2009 China Asia Adut 27 59 34 23 71 2002 China Asia Adut 33 33 21 36 33 2003 China Asia Adut 13 33 21 36 25 2011 China Asia Chidren 13 36 21 36 31 3 2012 China Asia Chidren 13 36 24 46 3 2012 China Asia Adut 13 36 29 31 55 3 2012 China Asia Adut 13 36 31 55 3 2013 Juhencica Adut 14 16 16 16 25 56 3 2013 Juhencica Adut 16 16 16 16 16 16 16 16 16 16 16 16 <td>Xing J³⁷</td> <td>2001</td> <td>China</td> <td>Asia</td> <td>Adult</td> <td>6</td> <td>62</td> <td>29</td> <td>29</td> <td>55</td> <td>16</td> <td>80</td> <td>120</td> <td>113 8</td> <td>87 0.234</td> <td>0.385</td>	Xing J ³⁷	2001	China	Asia	Adult	6	62	29	29	55	16	80	120	113 8	87 0.234	0.385
2002 China Asia Adut 33 31 31 35 33 35	Liu L ³⁸	2009	China	Asia	Adult	27	59	34	23	71	26	113	127	117 1	123 0.044	0.082
	Dai LM ³⁹	2002	China	Asia	Adult	33	33	21	36	33	25	66	75	105 8	83 0.005	0.027
BN 4 2001 Chia Asia Children 12 27 11 35 46 BN 4 2007 Chia Asia Adut 13 36 27 26 54 3 2012 Chia Asia Children 77 99 29 31 55 1 2012 Indian Asia Adut 67 99 29 31 55 11 2013 Indian Asia Adut 77 99 29 31 55 11 2011 China Asia Adut 77 99 36 57 56 11 2011 China Asia Adut 77 86 7 56 57 11 2013 Guina Asia Adut 77 87 57 57 11 2010 China Asia Adut 77 70 77 51 </td <td>Shi XH⁴⁰</td> <td>2008</td> <td>China</td> <td>Asia</td> <td>Both</td> <td>22</td> <td>19</td> <td>7</td> <td>10</td> <td>25</td> <td>13</td> <td>63</td> <td>33</td> <td>45 5</td> <td>51 0.751</td> <td>0.774</td>	Shi XH ⁴⁰	2008	China	Asia	Both	22	19	7	10	25	13	63	33	45 5	51 0.751	0.774
BN 2 2007 China Asia Adult 13 36 27 26 54 3 2012 China Asia Children 77 99 28 31 55 1 2012 China Asia Adult 62 199 19 8 13 55 11 2012 Colonbia South America Children 77 99 29 20 13 55 11 Japan Asia Adult 16 16 16 16 16 16 16 13 13 $^{(1)}$ 2010 China Asia Adult 17 85 16 16 16 13 13 $^{(1)}$ 2009 Pish Europe Adult 17 85 16 17 29 25 24 $^{(1)}$ 2009 Pish Europe Adult 17 14 17 29<	Liao W ⁴¹	2001	China	Asia	Children	12	27	11	35	46	19	51	49	116 8	84 0.577	0.721
	Tuerxun KLBN ⁴²	2007	China	Asia	Adult	13	36	27	26	54	6	62	06	106 7	72 0.014	0.024
1 2012 Indian Asia Adult 62 199 149 48 188 11 2013 Colonbia<	Zheng BQ ⁴³	2012	China	Asia	Children	77	66	28	31	55	24	253	155	117 1	103 0.966	1.000
(1) 2012 Colombia South America Children 30 39 40 48 42 (1) Japan Asia Adut 40 160 100 15 50 2011 China Asia Adut 85 88 65 106 92 2010 China Asia Adut 77 85 39 88 135 $wicz A^{48}$ 2009 Polish Europe Children 16 49 20 147 21 M^{50} 2005 Japan Europe Adut 17 54 29 26 24 M^{50} 2005 Japan Europe Mot 17 54 21 23 47 M^{50} 2005 Japan Europe Both 16 16 26 26 26 p^{50} 2005 Japan Sain Mot 23 24 17 29	Birbian N ⁴⁴	2012	Indian	Asia	Adult	62	199	149	48	188	178	323	497	284 5	544 0.878	0.933
	lsaza C ⁴⁵	2012	Colombia	South America	Children	30	39	40	48	42	47	66	119	138 1	136 0.000	0.000
	Kohyama K ¹¹	2011	Japan	Asia	Adult	40	160	100	15	50	35	240	360	80 1	120 0.677	0.856
2010 China Asia Adut 77 85 39 88 135 ewicz A ⁴⁸ 2009 Polish Europe Children 16 48 49 26 54 N^{00} 2009 Spain Europe Adut 17 54 37 8 25 N^{00} 2006 Japan Asia Not available 17 54 37 8 25 N^{00} 2006 - African American Both 13 41 23 47 p^{31} 2005 India Asia Adut 13 43 24 29 25 53 p^{31} 2003 India Asia Adut 13 26 17 29 24 p^{31} 2003 Mexican North America Adut 13 26 13 31 p^{31} 2003 Mexican North America Adut 26 10	Fu WP ⁴⁶	2011	China	Asia	Adult	85	88	65	106	92	67	258	218	304 2	226 0.000	0.000
ewicz A^{48} 2009 Polish Europe Children 16 48 49 26 54 N^{90} 2009 Spain Europe Adutt 17 54 37 8 25 N^{90} 2006 Japan Asia Not available 14 21 11 23 47 N^{90} 2 Asia Not available 14 21 11 23 47 P^{30} 2 Asia Not available 14 21 17 29 47 P^{31} 2005 Spain Europe Both 13 24 17 29 P^{31} 2003 India Asia Adutt 19 28 17 29 P^{34} 2003 Mexican North America Adutt 26 16 17 21 21 21 21 21 21 21 21 21 21 21 21 21 </td <td>Qiu YY⁴⁷</td> <td>2010</td> <td>China</td> <td>Asia</td> <td>Adult</td> <td>77</td> <td>85</td> <td>39</td> <td>88</td> <td>135</td> <td>53</td> <td>239</td> <td>163</td> <td>311 2</td> <td>241 0.924</td> <td>1.000</td>	Qiu YY ⁴⁷	2010	China	Asia	Adult	77	85	39	88	135	53	239	163	311 2	241 0.924	1.000
	Szczepankiewicz A ⁴⁸	2009	Polish	Europe	Children	16	48	49	26	54	41	80	146	106 1	136 0.304	0.449
	Llanes E ⁴⁹	2009	Spain	Europe	Adult	17	54	37	80	25	17	88	128	41 5	59 0.813	1.000
	Munakata M ⁵⁰	2006	Japan	Asia	Not available	14	21	11	23	47	30	49	43	93 1	107 0.580	0.771
2 2005 Spain Europe Both 13 43 24 17 29 p^{33} 2005 India Asia Adult 19 54 17 29 p^{33} 2003 India Asia Adult 19 54 12 30 q^4 2003 Mexican North America Adult 56 163 84 101 318 q^4 2000 China Asia Both 14 26 18 101 318 Q^5 2001 China Asia Adult 56 163 84 101 318 Q^5 2001 China Asia Adult 76 16 12 68 Q^5 2001 China Asia Adult 78 27 28 64 Q^5 193 USA Europe Adult 78 7 7 5 5 5 5 5 5 5 5 5 5 5 5 5	Tsai HJ ⁵¹	2006		African American	Both	I.	ı	,	T	I	ı	285	243	162 1	- 190	ŗ
	Tellería JJ ⁵²	2005	Spain	Europe	Both	13	43	24	17	29	18	69	91	63 6	65 0.454	0.674
2004 China Asia Adult 38 59 28 53 53 Λ^{34} 2003 Mexican North America Adult 36 163 84 101 318 2000 China Asia Both 14 26 18 12 68 V^{57} 2001 China Asia Adult 25 54 23 64 V^{57} 2000 New Zealand Oceania Adult 78 47 29 35 54 55 54	Bhatnagar P ⁵³	2005	India	Asia	Adult	19	54	28	12	30	13	92	110	54 5	56 0.499	0.624
A ⁵⁴ 2003 Mexican North America Adult 56 163 84 101 318 2000 China Asia Both 14 26 18 12 68 2001 China Asia Adult 25 54 23 64 W ⁵⁷ 2000 New Zealand Oceania Adult 78 47 29 35 54 35 54 <t< td=""><td>Gao JM⁸</td><td>2004</td><td>China</td><td>Asia</td><td>Adult</td><td>38</td><td>59</td><td>28</td><td>35</td><td>53</td><td>8</td><td>135</td><td>115</td><td>123 6</td><td>69 0.051</td><td>0.108</td></t<>	Gao JM ⁸	2004	China	Asia	Adult	38	59	28	35	53	8	135	115	123 6	69 0.051	0.108
2000 China Asia Both 14 26 18 12 68 N ⁵⁷ 2001 China Asia Adult 25 54 23 64 W ⁵⁷ 2000 New Zealand Oceania Adult 78 47 29 35 39 64 58 1993 USA Europe Adult 5 19 27 7 16 7 50 200 Mutor 5 19 27 7 16	Santillan AA ⁵⁴	2003	Mexican	North America	Adult	56	163	84	101	318	185	275	331	520 6	688 0.070	0.170
2001 China Asia Adult 25 54 22 38 64 W ⁵⁷ 2000 New Zealand Oceania Adult 78 47 29 35 39 58 1993 USA Europe Adult 5 19 27 7 16 7 64 20 27 7 16 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 35 39 58 1993 USA Europe Adult 5 19 27 7 16	Gao GK ⁵⁵	2000	China	Asia	Both	14	26	18	12	68	6	54	62	92 8	86 0.000	0.000
2000 New Zealand Oceania Adult 78 47 29 35 39 1993 USA Europe Adult 5 19 27 7 16 2003 T USA Europe Adult 5 19 27 7 16	Wang Z ⁵⁶	2001	China	Asia	Adult	25	54	22	38	64	34	104	98	140 1	132 0.499	0.676
1993 USA Europe Adult 5 19 27 7 16	Holloway JW ⁵⁷	2000	New Zealand	Oceania	Adult	78	47	29	35	39	17	203	105	109 7	73 0.303	0.469
	Reihsaus E58	1993	USA	Europe	Adult	2	19	27	7	16	33	29	73	30 8	82 0.042	0.174
2007 Turkish West Asia and Not available Southern Furope	Neslihan Aygun Kocabas ⁵⁹	2007	Turkish	West Asia and Southern Europe	Not available	,	ı		ı	ı	·	91	167	108 1	146 -	

Table 2. Cont.															
First author	Year	Country	Ethnicity	Age group	Case			Control			Case	0	Control	HWE(P)	HWE(<i>P</i>)1000 permutations
					AA	AG	90	AA	AG	90	A G	A	U		
Larocca N ⁶⁰	2012	Venezuela	South America	Adult	30	17	58	47	18	35	77 13	133 1	112 88	0.000	0.000
Chan IH ¹⁰	2008	China	Asia	Children	101	135	59	51	89	33	337 25	253 19	191 155	5 0.597	0.700
Wang JY ⁶¹	2009	China	Asia	Children	138	207	97	173	250 8	87 4	483 4(401 59	596 424	4 0.837	0.674
LV J ⁶⁹	2009	China	Asia	Children	30	76	86	46	100	. 46	136 24	248 19	192 192	2 0.564	0.725
Binaei S ⁶²	2003	USA	Europe	Children	7	24	7	34	67	54	38 38		135 175	5 0.132	0.243
Kotani Y ⁶³	1999	Japan	Asia	Adult	30	52	35	28	45	. 08	112 13	122 10	101 105	5 0.201	0.342
Weir TD ⁶⁴	1998		Europe	Adult							195 12	125 10	102 66		
Weir TD ⁶⁴	1998		Asia	Adult				ī			13 19) 62	2 62		Ţ
Dewar JC ⁶⁵	1998	UK	Europe	Adult	14	50	53	74	263	180	78 15	156 4	411 623	3 0.158	0.251
Hakonarson H ⁶⁶	2001	Iceland	Europe	Both	45	151	127	21	85	75 2	241 4(405 1:	127 235	5 0.677	0.874
Leung TF ⁶⁷	2002	China	Asia	Children	25	38	13	22	37	11 8	88 64	t 81	1 59	0.483	0.675
Lin YC ⁶⁸	2003	China	Asia	Children	34	35	11	27	25	. 17	103 57	79	9 59	0.031	0.104
Shachor J ¹³	2003	Israel	Asia	Both	11	38	17	26	52	35 (60 72		104 122	2 0.433	0.531
	000+ 881														

doi:10.1371/journal.pone.0104488.t002

ADRB2 Polymorphisms and Asthma: A Meta-Analysis

First author	Year	Country	Ethnicity	Age group	Case			Control		Ũ	Case	5	Control	HWE(P)		HWE(<i>P</i>) 1000 permutations
					U U	U U	99	и С	00 00	U 19		5	ט ט			
Cui LY ²⁹	2007	China	Asia	Adult	52	11	6	52	4 4	11	15 2	29 1	108 12	0.000	0	0.024
Ye WX ³⁰	2011	China	Asia	Adult	10	17	4	14	19 4	37		25 4	47 27	0.511	.0	0.763
Zhang XY ³¹	2008	China	Asia	Children	54	119	44	80	24 18		227 2	207 4	40 60	1.000	-	1.000
Wang W ³²	2004	China	Asia	Adult	73	33	17	52	27 10		179 6	67 1	131 47	0.038	.0	0.153
Yang Z ³³	2012	China	Asia	Children	183	28	-	52	0 0	35	394 3	30 1	104 0			
Feng DX ³⁴	2004	China	Asia	Adult	25	39	10	15	20 4	89		59 5	50 28	0.475	0	0.510
Xie Y ³⁶	2008	China	Asia	Children	49	5	e	51	4 7	10	103 1	11 1	106 18	0.000	0	0.000
Xing J ³⁷	2001	China	Asia	Adult	35	58	7	23	74 3	1	128 7	72 1	120 80	0.000	.0	0.000
Dai LM ³⁹	2002	China	Asia	Adult	71	13	e	76	14 4	15	155 1	19 1	166 22	0.007	0	0.015
Liao W ⁴¹	2001	China	Asia	Children	26	20	4	52	36 12	72		28 1	140 60	0.153	0	0.327
Tuerxun KLBN ⁴²	2007	China	Asia	Adult	44	29	e	52	34 3	11	117 3	35 1	138 40	0.363	O	0.646
Birbian N ⁴⁴	2012	Indian	Asia	Adult	224	146	40	203	168 43	55	594 2	226 5	574 254	4 0.350	0	0.465
Isaza C ⁴⁵	2012	Colombia	South America	Children	76	29	4	103	29 5	15	181 3	37 2	235 39	0.120	Ö	0.322
Fu WP ⁴⁶	2011	China	Asia	Adult	179	38	21	209	37 19		396 8	80 4	455 75	0.000	0	0.001
Qiu YY ⁴⁷	2010	China	Asia	Adult	166	32	e	226	45 5	36	364 3	38 4	497 55	0.129	0	0.386
Szczepankiewicz A ⁴⁸	2009	Polish	Europe	Children	31	58	24	39	48 36		1 20 1	106 1	126 120	0.015	.0	0.540
Llanes E ⁴⁹	2009	Spain	Europe	Adult	49	40	18	24	22 4	1	138 7	76 7	70 30	0.736	0	0.783
Munakata M ⁵⁰	2006	Japan	Asia	Not available	39	9	-	86	14 0	84	4 8		186 14	0.452	-	1.000
Tsai HJ ⁵¹	2005	Spain	Europe	Both	27	39	14	30	20 14	93		67 8	80 48	0.008	0	0.420
Gao JM ⁸	2004	China	Asia	Adult	46	76	e	39	56 1	16	168 8	82 1	134 58	0.000	0	0.002
Santillan AA ⁵⁴	2003	Mexican	North America	Adult	241	53	6	385	202 17		535 7	71 9	972 236	6 0.117	0	0.248
Gao GK ⁵⁵	2000	China	Asia	Both	20	32	9	32	49 8	72		44 1	113 65	0.077	0	0.171
Wang Z ⁵⁶	2001	China	Asia	Adult	108	19	-	113	22 1	25	235 2	21 2	248 24	0.950	0	0.303
Holloway JW ⁵⁷	2000	New Zealand	Oceania	Adult	28	76	49	19	37 35		132 1	174 7	75 107	7 0.125	0	0.235
Reihsaus E ⁵⁸	1993	USA	Europe	Adult	13	26	12	17	23 16	52		50 5	57 55	0.182	O	0.384
Chiang CH ⁹	2012	China	Asia	Adult	400	66	10	85	26 1	86	866 8	86 1	196 28	0.517	0	0.743
Larocca N ⁶⁰	2012	Venezuela	South America	Adult	37	57	1	30	60 10		131 7	79 1	120 80	0.012	0	0.060
Chan IH ¹⁰	2008	China	Asia	Children	232	43	19	133	19 21	50	507 81		285 61	0.000	0	0.000
Wang JY ⁶¹	2009	China	Asia	Children	359	84	5	425	77 9	8(802 9	94 9	927 95	0.016	O	0.201
Binaei S ⁶²	2003	USA	Europe	Children	23	12	2	107	36 12	58		16 2	250 60	0.001	0	0.039
Kotani Y ⁶³	1999	Japan	Asia	Adult	94	23	0	89	14 0	21	211 2	23 1	192 14	0.459	1.	1.000
Weir TD ⁶⁴	1998	1	Europe	Adult	ı	1	ı	I	1	1	174 1	136 1	101 67	,	I	
Weir TD ⁶⁴	1998	I	Asia	Adult						26	6		91 33	,	1	
Dewar JC ⁶⁵	1998	NK	Europe	Adult	33	51	35	134	271 106		117 1	121 5	539 483	3 0.149	0	0.225

First author	Year	Year Country	Ethnicity	Age group	Case			Control			Case		Control		HWE(P)	HWE(<i>P</i>) 1000 permutations
					ម	99 00		90 00		g	U	U	U	ט		
Hakonarson H ⁶⁶	2001	Iceland	Europe	Both	92	173	59	48	112	39	357 :	291	208	190	0.071	0.149
Leung TF ⁶⁷	2002	China	Asia	Children	64	12	0	55	15	0	140	12	125	15	0.315	0.642
Lin YC ⁶⁸	2003	China	Asia	Children	65	15	0	54	14	-	145	15	122	16	0.932	1.000
Shachor J ¹³	2003	Israel	Asia	Both	33	27	4	53	49	6	93	35	155	67	0.617	0.671
doi:10.1371/journal.pone.0104488.t003	104488.t003															

after sorting by publication date. As shown in Figures 10 to 13, for Arg16Gly, there was a stable trend in the estimated risk effect in the dominant model comparison from 2009 to 2012 and in the allelic comparison from 1993 to 2012. As shown in Figures 14 to 17, for Gln27Glu, there was a trend toward no significant association over time in all genetic model comparisons.

Sensitivity analysis

Sensitivity analysis was conducted by sequentially excluding individual studies to estimate the stability of the results. After sequentially excluding each study, statistically similar results were found.

Publication bias

Potential publication bias was investigated using the funnel plot and was further assessed using Egger's test. Significant publication bias was detected for the Gln27Glu polymorphism in the dominant model comparison (t = 2.69, P = 0.011). No evidence of publication bias was found for the Arg16Gly, Thr164Ile, or Arg19Cys polymorphism in any of the genetic model comparisons. The results are shown in Table 7.

Discussion

Asthma is a well-known disease of the respiratory system that is characterized by cramps and obstruction of the small bronchus. *B*2-AR binds specifically to a class of ligands that can lead to the expansion of the small airways. In the present study, the relationship between all related *ADRB2* gene polymorphisms and the overall risk of asthma was examined. The purpose of this meta-analysis was to provide more information for asthma candidate gene research, based on the hypothesis that genetic effects vary across different ethnic cohorts.

Four ADRB2 polymorphisms that had been investigated in at least three case-control studies were included in the study. The results indicated that Arg16Gly, Gln27Glu, Thr164Ile, and Arg19Cys were not associated with risk of asthma in the overall population. The findings of the current study are consistent with those of Migita [14] and Contopoulos-Ioannidis [6]. Migita and his colleagues performed a meta-analysis by a random-effects model that showed a non-significant odds ratio for the Arg16Gly and the Gln27Glu polymorphism. Contopoulos-Ioannidis found that polymorphisms of ADRB2 are not major risk factors for the development of asthma. Cumulative analysis further confirmed that there was no significant association between the Arg16Gly polymorphism or the Gln27Glu polymorphism and the risk of asthma, showing that the variants had no effect with the accumulation of more data over time.

In the analysis stratified by case age, a protective effect for the Gln27Glu polymorphism was observed in adults in the dominant model comparison and in children in the recessive model comparison and the homozygote genotype comparison. This finding corroborates the ideas of Ammarin Thakkinstian, who suggested that the Gln/Glu and Glu/Glu genotypes could reduce the risk of asthma [15]. Besides, the pathogenesis of asthma in adults and children may differ, but the exact mechanism remains unknown and needs further detailed research.

In the analysis stratified by ethnicity, an increased risk of asthma was only seen with the Arg16Gly polymorphism in the South American population, and a protective effect was only found with the Gln27Glu polymorphism in the North American population and only in the dominant model comparison. The discrepancies in linkage disequilibrium (LD) structure in Chinese and Europeans may explain these differences: the minor allele of the ADRB2

Table 3. Cont

Table 4. Genotype and allele distributions in the meta-analysis for Thr164lle (rs1800888).	and alle	ele distributio	ns in the meta-	analysis for Thr	164lle (rs18008	888).								
First author	Year	Country	Ethnicity	Age group	Case			Control	-		Case		Control	HWE(P)	HWE(<i>P</i>)1000 permutations
					ម	Ե	F	ษ ช	Ե	F	U	⊢			
Yang Z ³³	2012	China	Asia	Children	211 1	-	0	52	0	0	423	-	104 0		,
Gao JM ⁸	2004	China	Asia	Adult	56	67	2	48	48	0	179	71	144 48	3 0.001	0.021
Gao GK ⁵⁵	2000	China	Asia	Both	9	48	4	27	47	15	60	56	101 77	7 0.475	0.546
Reihsaus E ⁵⁸	1993	USA	Europe	Adult	51	0	0	53	m	0	102	0	109 3	0.837	1.000
doi:10.1371/journal.pone.0104488.t004	.0104488.t0	04													

÷
1
27
42
2
rs)
Š
19Cys
õ
Q
Ł
۲
lysis for
is:
<u>×</u>
Ja
a
tà
e
2
he
ţ
s in the meta-analys
ns
<u>0</u> .
utions
0
str
distrib
Ð
allele
a
otype and allele distril
and
Ð
ď
-f
enot
Genot
ble 5.
able
Ĥ

First author	Year	Year Country	Ethnicity	Age group	Case			Control	-		Case		Control		HWE(P)	HWE(<i>P</i>) 1000 permutations
					F	Ե	т a	F	Ե	ម	т ст сс т с т	υ	 _	υ		
Fu WP ⁴⁶	2011	China	Asia	Adult	162 69	69	7	199	61	5	393	83	83 459 71 0.897	71	0.897	1.000
Qiu YY ⁴⁷	2010	China	Asia	Adult	166	32	e	226	45	5	364	38	497	55	0.129	0.384
Szczepankiewicz A ⁴⁸	2009	Polish	Europe	Children	51	41	21	57	49	17	143	83	163	83	0.227	0.407
Tsai HJ ⁵¹	2006	,	African American	Both				,	,	,	454	74	289	63		,
	100+0040010	u u														

ble 6. Main results of pooled ORs in the meta-analysis.	
ooled O	
esults of p	
5. Main r	
Table (

SNP	Groups	Dominant model comparison	omparison		Recessive model comparison	nparison		Homozygote genotype comparison	ype comp	arison	Allelic comparison		
		OR (95%CI)	$P_{(Z)}$	æ	OR (95%CI)	$P_{(Z)}$	d	OR (95%CI)	$P_{(z)}$	d	OR (95%CI)	$P_{(z)}$	r,
Arg 16Gly	Total	1.069 (0.978–1.167)	0.142	46.4%	1.111(0.949–1.300)	0.192	64.2%	1.155(0.969–1.376)	0.108	54.3%	1.074(0.987–1.168)	0.098	58.5%
(rs1042713)	Adult	1.077 (0.956–1.213)	0.225	51.8%	1.170(0.942–1.454)	0.155	67.9%	1.230(0.965–1.569)	0.094	57.9%	1.110 (0.992–1.242)	0.069	57.3%
	Children	1.122 (0.970–1.299)	0.121	21.5%	1.061(0.798–1.410)	0.685	61.4%	1.158(0.851–1.575)	0.350	53.9%	1.092(0.930–1.282)	0.282	60.0%
	Both	0.846(0.607-1.1815)	0.326	66.7%	1.064(0.617–1.833)	0.824	67.9%	0.946(0.526-1.702)	0.853	51.4%	0.896(0.704–1.140)	0.372	56.7%
	Not available	0.683 (0.312–1.492)	0.339		0.733(0.329–1.634)	0.448		0.602(0.231-1.571)	0.300		1.045(0.595–1.834)	0.878	70.9%
	Asia	1.055(0.954–1.168)	0.297	49.2%	1.122(0.913–1.380)	0.275	68.6%	1.139(0.914–1.420)	0.247	58.8%	1.074(0.970–1.189)	0.167	57.1%
	Europe	1.205(0.910–1.596)	0.192	0.0%	1.055(0.793–1.404)	0.713	41.6%	1.202(0.881–1.640)	0.245	1.1%	1.079(0.929–1.252)	0.319	64.6%
	South America	1.754(1.179–2.609)	0.006	16.9%	1.583(0.778–3.221)	0.205	70.6%	1.880(0.999–3.539)	0.050	51.8%	1.627(0.913–2.897)	0.098	78.7%
	North America	0.886 (0.618–1.270)	0.509	ı	0.869(0.640–1.179)	0.366	ı	0.819(0.540–1.241)		ı	0.910(0.748-1.107)		ı
	Oceania	0.609(0.359–1.032)	0.065	Ţ	1.010(0.520–1.962)	0.977	I	0.765(0.373-1.572)	0.466	ı	0.772(0.529–1.128)	0.181	ī
	China	1.093(0.914–1.305)	0.330	55.4%	1.199(0.929–1.548)	0.162	71.2%	1.209(0.929–1.573)	0.159	62.6%	1.104(0.980–1.245)	0.105	60.6%
	HWE (P>0.05)	1.041(0.943–1.149)	0.339	47.0%	1.003(0.850-1.183)	0.973	60.7%	1.058(0.869–1.287)	0.576	54.4%	1.041 (0.942–1.152)	0.428	58.9%
	HWE (P<0.05)	1.186(0.972–1.446)	0.196	46.0%	1.673(1.136–2.466)	0.009	64.7%	1.578(1.122–2.221)	0.009	38.0%	1.185(0.997–1.409)	0.054	53.2%
Gln27Glu	Total	0.925(0.843–1.014)	0.097	34.8%	0.935(0.805–1.086)	0.380	0.0%	0.936(0.793–1.105)	0.435	0.0%	0.947(0.883–1.015)	0.122	25.9%
(rs1042714)	Adult	0.864(0.768–0.971)	0.014	46.9%	1.158(0.952–1.408)	0.143	0.0%	1.123(0.905–1.392)	0.292	0.0%	0.955(0.875-1.042)	0.302	37.9%
	Children	1.061 (0.885–1.274)	0.521	3.0%	0.566(0.417-0.769)	0.000	0.0%	0.610(0.434-0.856)	0.004	0.0%	0.912(0.788–1.056)	0.218	28.4%
	Both	0.969(0.734–1.278)	0.822	23.3%	0.890(0.624–1.271)	0.522	0.0%	0.878(0.58–1.318)	0.531		0.955(0.793–1.150)	0.624	0.0%
	Not available	1.103(0.413–2.947)	0.846	ŀ	6.626(0.265–165.798)	0.250	I	6.570(0.262-164.864)	0.252	ı	1.265(0.511–3.131)	0.611	ı
	Asia	0.957(0.854–1.073)	0.451	7.0%	0.886(0.713–1.101)	0.275	0.0%	0.884(0.704–1.110)	0.289	0.0%	0.949(0.866–1.040)	0.262	12.1%
	Europe	1.057(0.853–1.309)	0.614	0.0%	1.023(0.801–1.307)	0.853	35.9%	1.032(0.775-1.373)	0.829	0.0%	1.047(0.918–1.195)	0.493	0.0%
	South America	1.028(0.685–1.543)	0.893	34.6%	1.038(0.491–2.196)	0.922	0.0%	0.954(0.431–2.111)	0.908	0.0%	1.023(0.751–1.392)	0.887	0.0%
	North America	0.452(0.327–0.626)	0.000	I	1.057(0.466–2.400)	0.895	,	0.846(0.371-1.928)	0.690	ı	0.547(0.411–0.727)	0.000	ı
	Oceania	1.178(0.615–2.258)	0.622	ı	0.754(0.438–1.296)	0.307	ı	0.950(0.460–1.964)	0.890	ı	0.924(0.637–1.340)	0.677	ı
	China	0.984(0.863–1.122)	0.813	9.2%	0.867(0.674–1.117)	0.270	0.0%	0.894(0.684–1.168)	0.411	0.0%	0.967(0.870-1.075)	0.536	18.9%
	HWE (P>0.05)	0.895(0.807–0.992)	0.035	32.0%	0.940(.798–1.108)	0.463	0.0%	0.941(0.781-1.133)	0.520	0.0%	0.925(0.855–1.001)	0.053	18.5%
	HWE (P<0.05)	1.042(0.844–1.287)	0.704	28.3%	0.913(0.633–1.315)	0.624	26.9%	0.919(0.635–1.329)	0.652	15.5%	1.006(0.853-1.186)	0.944	38.4%
Thr164lle	Total	1.460(0.544–3.916)	0.452	54.3%	0.772(0.089–6.684)	0.814	50.7%	1.502(0.416–5.419)	0.535	0.0%	1.173(0.858-1.603)	0.318	0.0%
(rs1800888)													
Arg 19Cys	Total	1.165(0.898-1.510)	0.250	0.0%	1.344(0.773–2.335)	0.295	0.0%	1.340(0.754–2.381)	0.318	0.0%	1.039(0.860–1.254)	0.691	49.4%
(rs1042711)													

ID CuLY (2007) Ye WX (2011) Xiang XY (2008) Xiang ZY (2008) Feng DX (2004) Feng DX (2004) Culy Xiang Zy (2004) Feng DX (2004) Culy Xiang Zy (2004	OR (95% CI) 1.75 (0.68, 4.49) 0.81 (0.21, 3.11) 1.03 (0.55, 1.94) 0.64 (0.36, 1.16) 1.47 (0.80, 2.72) 0.85 (0.30, 2.45) 2.22 (1.33, 3.70)	Weight 0.88 0.43 1.95 2.30 2.09
Ve WX (2011) 11 12 Zhang XY (2008) 14 Wang W (2004) 14 Yang Z (2012) 14 Fing (2X (2004) 14 Time (2X (2004) 14 Time (2X	0.81 (0.21, 3.11) 1.03 (0.55, 1.94) 0.64 (0.36, 1.16) 1.47 (0.80, 2.72) 0.85 (0.30, 2.45)	0.43 1.95 2.30
Zhang XY (2008)	1.03 (0.55, 1.94) 0.64 (0.36, 1.16) 1.47 (0.80, 2.72) 0.85 (0.30, 2.45)	1.95 2.30
Wang W (2004) Yang Z (2012) Feng DX (2004)	0.64 (0.36, 1.16) 1.47 (0.80, 2.72) 0.85 (0.30, 2.45)	2.30
Wang W (2004) Image: Constraint of the second	0.64 (0.36, 1.16) 1.47 (0.80, 2.72) 0.85 (0.30, 2.45)	2.30
fang Z (2012) Teng DX (2004)	1.47 (0.80, 2.72) 0.85 (0.30, 2.45)	2.00
eng DX (2004)		
		0.70
		2.97
(ie Y (2008)	1.57 (0.71, 3.50)	1.22
ing J (2001)	4.13 (1.84, 9.28)	1.19
iu L (2009)	0.82 (0.44, 1.53)	2.01
Dai LM (2002)	1.02 (0.56, 1.85)	2.17
hi XH (2008)	0.31 (0.13, 0.76)	0.97
iao W (2001)	1.71 (0.79, 3.68)	1.33
uerxun KLBN (2007)	2.00 (0.94, 4.24)	1.39
(heng BQ (2012)	0.65 (0.39, 1.07)	3.10
Birbian N (2012)	0.74 (0.49, 1.10)	4.79
saza C (2012)	1.42 (0.82, 2.46)	2.61
ohyama K (2011)	1.15 (0.60, 2.18)	1.90
u WP (2011)	1.20 (0.84, 1.72)	5.99
Nu YY (2010)	0.75 (0.52, 1.10)	5.40
zczepankiewicz A (2009)	1.66 (0.84, 3.29)	1.67
lanes E (2009)	1.02 (0.41, 2.55)	0.93
1unakata M (2006)	0.68 (0.31, 1.49)	1.28
eller"*a JJ (2005)	1.86 (0.83, 4.20)	1.19
hatnagar P (2005)	1.20 (0.54, 2.71)	1.19
iao JM (2004)	1.31 (0.75, 2.31)	2.46
antillan AA (2003)	0.89 (0.62, 1.27)	6.03
ao GK (2000)	0.49 (0.21, 1.15)	1.07
Vang Z (2001)	1.18 (0.66, 2.12)	2.27
olloway JW (2000)	0.61 (0.36, 1.03)	2.81
elhsaus E (1993)	1.31 (0.39, 4.43)	0.53
arocca N (2012)	2.22 (1.24, 3.95)	2.35
Than IH (2008)	0.80 (0.54, 1.20)	4.75
Vang JY (2009)	1.13 (0.86, 1.48)	10.57
v J (2009)	1.70 (1.02, 2.84)	2.99
inaei 5 (2003)	1.24 (0.50, 3.07)	0.96
otani Y (1999)	1.08 (0.59, 1.97)	2.17
ewar JC (1998)	1.23 (0.67, 2.26)	2.10
akonarson H (2001)	0.81 (0.47, 1.41)	2.56
eung TF (2002)	0.94 (0.47, 1.87)	1.62
in YC (2003)	0.87 (0.45, 1.68)	1.82
hachor J (2003)	1.49 (0.68, 3.27)	1.28
Overall (I-squared = 46.4%, p = 0.001)	1.07 (0.98, 1.17)	100.00
1 .108 1	9.28	

Figure 2. Forest plots of the association between the Arg16Gly (rs1042713) polymorphism and risk of asthma in dominant model comparison.

doi:10.1371/journal.pone.0104488.g002

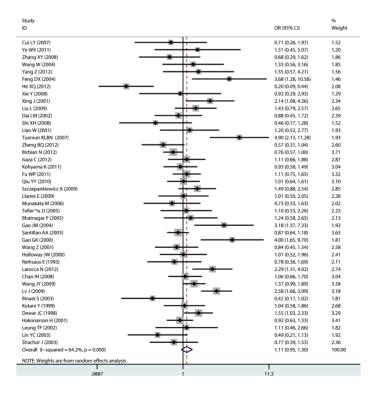
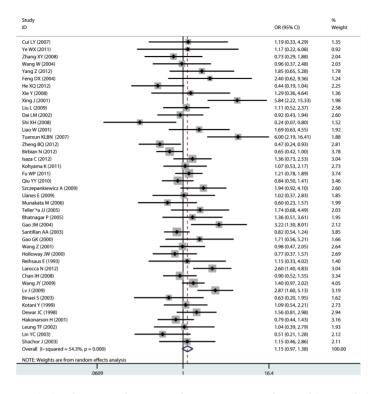



Figure 3. Forest plots of the association between the Arg16Gly (rs1042713) polymorphism and risk of asthma in recessive model comparison.

Figure 4. Forest plots of the association between the Arg16Gly (rs1042713) polymorphism and risk of asthma in homozygote genotype comparison. doi:10.1371/journal.pone.0104488.g004

Arg16Gly (A46G, rs1042713) in the population of northern and western European ancestry (CEU) was A with a frequency of 0.358, whereas it was G with a frequency of 0.439 among the Han

Chinese in Beijing (HCB). The minor allele of the ADRB2 Gln27Glu (C79G, rs1042714) was 0.467, whereas it was 0.122 in HCB. Another reason for these differences is that sample size was

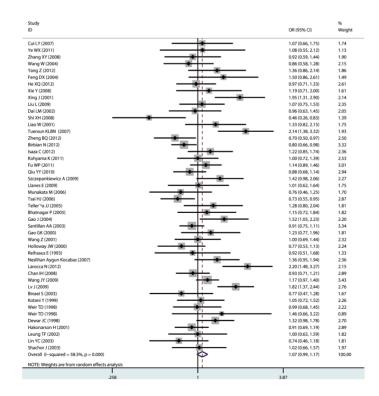
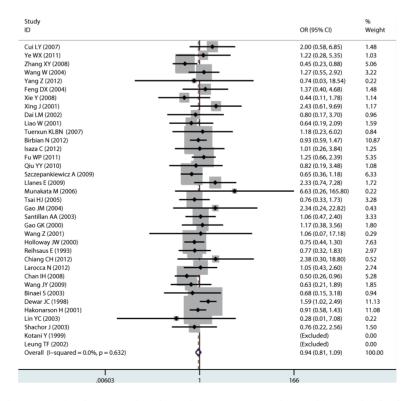



Figure 5. Forest plots of the association between the Arg16Gly (rs1042713) polymorphism and risk of asthma in allele comparison. doi:10.1371/journal.pone.0104488.g005

ID Cui LY (2007) Ye WX (2011) Zhang XY (2008) Wang W (2004) Yang Z (2012) Feng DX (2004) Xie Y (2008) Xie Y (2008) Xie Y (2008) Xie Y (2008) Liao W (2001) Dai LM (2002) Liao W (2001) Di LM (2002) Birbian N (2012) Birbian N (2012) Birbian N (2012) Birbian N (2012) Szczepankiewicz A (2009) Llanes E (2009) Uny Y (2010) Szczepankiewicz A (2009) Llanes E (2009	OR (95% CI) 2.50 (1.01, 6.18) 1.28 (0.47, 3.49) 0.57 (0.25, 1.30) 0.96 (0.55, 1.68) 16.88 (1.01, 280.93) 1.23 (0.55, 2.74) 0.76 (0.28, 2.04)	Weight 1.05 0.85 1.29 2.79 0.11
Ye WX (2011) Zhang YY (2008) Wang W (2004) Yang Z (2012) Feng DX (2004) Xing J (2001) Dai LM (2002) Liao W (2001) Jibizan Z (2012) Jibizan Z (2012) Liao W (2001) Jibizan Z (2012) Liao W (2010) Jibizan Z (2012) Jibizan Z (2012) J	1.28 (0.47, 3.49) 0.57 (0.25, 1.30) 0.96 (0.55, 1.68) 16.88 (1.01, 280.93) 1.23 (0.55, 2.74)	0.85 1.29 2.79 0.11
Zhang XY (2008) Wang W (2004) Yang Z (2012) Feng DX (2004) Wie Y (2008) Ming J (2001) Dai LM (2002) Liao W (2001) Birbian N (2012) Birbian N (2012) Birbian N (2012) Birbian N (2012) Saza C (2012) Tu WP (2011) Qiu YY (2010) Szczepankiewicz A (2009) How How How How How How How How How How	0.57 (0.25, 1.30) 0.96 (0.55, 1.68) 16.88 (1.01, 280.93) 1.23 (0.55, 2.74)	1.29 2.79 0.11
Wang W (2004) fang Z (2012) Feng DX (2004) Kie Y (2008) Kia J (2001) Liao W (2001) Liao W (2001) Urevrun KLBN (2007) Birbian N (2012) saza C (2012) to WP (2011) Diu YY (2010) Szczepankiewicz A (2009) Lanes E (2009)	0.96 (0.55, 1.68) 16.88 (1.01, 280.93) 1.23 (0.55, 2.74)	2.79 0.11
Yang Z (2012) • Feng DX (2004) • (Key (2008)) • Jan Z (2001) • Jan Z (2001) • Jan W (2001) • Jan W (2002) • Jan W (2007) • Jan W (2007) • Jan W (2012) • Jan W (2012) • Jan W (2011) • Jun YY (2010) • Janes E (2009) •	16.88 (1.01, 280.93) 1.23 (0.55, 2.74)	0.11
Feng DX (2004) Image: Constraint of the second se	1.23 (0.55, 2.74)	
Kie ¥ (2008) King J (2001) Ja LM (2002) Ja W (2001) Birbian N (2012) Saza C (2012) U WP (2011) Diu YY (2010) Szczepankiewicz A (2009) Janes E (2009)		1 2 2
Ging J (2001) Image: Constraint of the second s	0.76 (0.28, 2.04)	1.32
Jai LM (2002) Jai W (2001) Jirbian N (2012) Saza C (2012) ↓ UW (2011) Jiu YY (2010) Szczepankiewicz A (2009) Lanes E (2009)		0.87
Lao W (2001) Fuerxun KLBN (2007) saza C (2012) u WP (2010) 2iu YY (2010) Sizczepankiewicz A (2009) Janes E (2009)	0.55 (0.30, 1.03)	2.22
uerxun KLBN (2007) → sirbian N (2012) → siza C (2012) → siu WP (2011) → ziczepankiewicz A (2009) → Janes E (2009) →	0.95 (0.45, 2.01)	1.54
Sirbian N (2012) saza (2012) u WP (2011) ju YY (2010) szczepankiewicz A (2009) Lanes E (2009)	1.00 (0.51, 1.97)	1.86
saza C (2012) u WP (2011) 2ju YY (2010) Szczepankiewicz A (2009) Janes E (2009)	1.02 (0.55, 1.90)	2.23
Eu WP (2011) → → 2010) 2010 → → 202020000000000000000000000000	0.80 (0.61, 1.05)	11.44
Qiu YY (2010) 5zczepankiewicz A (2009)	1.32 (0.75, 2.31)	2.70
Szczepankiewicz A (2009)	1.23 (0.81, 1.87)	4.94
lanes E (2009)	0.95 (0.59, 1.53)	3.78
	1.23 (0.70, 2.15)	2.72
Augakata M (2006)	1.09 (0.56, 2.14)	1.89
	1.10 (0.41, 2.95)	0.89
Isai HJ (2005)	1.73 (0.88, 3.40)	1.88
5ao JM (2004)	1.18 (0.68, 2.03)	2.88
Santillan AA (2003) 🔶 🔒	0.45 (0.33, 0.63)	8.13
Gao GK (2000)	1.07 (0.53, 2.13)	1.78
Wang Z (2001)	0.91 (0.47, 1.75)	2.00
Holloway JW (2000)	1.18 (0.61, 2.26)	2.02
Reihsaus E (1993)	1.27 (0.55, 2.98)	1.19
Chiang CH (2012)	0.60 (0.36, 0.98)	3.46
arocca N (2012)	0.79 (0.44, 1.42)	2.50
Chan IH (2008)	0.89 (0.57, 1.40)	4.21
Nang JY (2009)	1.23 (0.88, 1.70)	7.97
Binaei S (2003)	1.36 (0.64, 2.86)	1.54
Kotani Y (1999)	1.56 (0.75, 3.21)	1.63
Dewar JC (1998)	0.93 (0.59, 1.45)	4.29
Hakonarson H (2001)	0.80 (0.53, 1.20)	5.23
eung TF (2002)	0.69 (0.30, 1.59)	1.21
.in YC (2003)	0.83 (0.37, 1.85)	1.33
Shachor J (2003)	0.86 (0.46, 1.59)	2.26
Overall (I–squared = 34.8%, p = 0.022)	0.92 (0.84, 1.01)	100.00
.00356 1		

Figure 6. Forest plots of the association between the Gln27Glu (rs1042714) polymorphism and risk of asthma in dominant model comparison.

doi:10.1371/journal.pone.0104488.g006

Figure 7. Forest plots of the association between the Gln27Glu (rs1042714) polymorphism and risk of asthma in recessive model comparison.

Study		%
ID	OR (95% CI)	Weight
Cui LY (2007)	2.25 (0.65, 7.77)	1.79
Ye WX (2011)	1.40 (0.28, 6.98)	1.06
Zhang XY (2008)	0.36 (0.14, 0.91)	3.22
Wang W (2004)	1.21 (0.51, 2.86)	3.72
Yang Z (2012)	0.86 (0.03, 21.38)	0.27
Feng DX (2004)	1.50 (0.40, 5.64)	1.56
Xie Y (2008)	0.45 (0.11, 1.82)	1.38
Xing J (2001)	1.53 (0.36, 6.54)	1.30
Dai LM (2002)	0.80 (0.17, 3.71)	1.17
Liao W (2001)	0.67 (0.20, 2.27)	1.83
Tuerxun KLBN (2007)	1.18 (0.23, 6.15)	1.01
Birbian N (2012)	0.84 (0.53, 1.35)	12.39
Isaza C (2012)	1.08 (0.28, 4.17)	1.51
Fu WP (2011)	1.29 (0.67, 2.48)	6.46
Qiu YY (2010)	0.82 (0.19, 3.47)	1.31
Szczepankiewicz A (2009)	0.84 (0.42, 1.69)	5.61
Llanes E (2009)	2.20 (0.67, 7.23)	1.94
Munakata M (2006)	6.57 (0.26, 164.86)	0.26
Tsai HJ (2005)	1.11 (0.45, 2.75)	3.35
Gao JM (2004)	2.54 (0.25, 25.45)	0.52
Santillan AA (2003)	0.85 (0.37, 1.93)	4.04
Gao GK (2000)	1.20 (0.36, 3.97)	1.92
Wang Z (2001)	1.05 (0.06, 16.94)	0.35
Holloway JW (2000)	0.95 (0.46, 1.96)	5.20
Reihsaus E (1993)	0.98 (0.35, 2.77)	2.54
Chiang CH (2012)	2.13 (0.27, 16.82)	0.64
Larocca N (2012)	0.89 (0.33, 2.38)	2.84
Chan IH (2008)	0.52 (0.27, 1.00)	6.37
Wang JY (2009)	0.66 (0.22, 1.98)	2.26
Binaei S (2003)	0.78 (0.16, 3.70)	1.12
Dewar JC (1998)	1.34 (0.78, 2.30)	9.43
Hakonarson H (2001)	0.79 (0.46, 1.35)	9.61
Lin YC (2003)	0.28 (0.01, 6.95)	0.26
Shachor J (2003)	0.71 (0.20, 2.50)	1.74
Kotani Y (1999)	(Excluded)	0.00
Leung TF (2002)	(Excluded)	0.00
Overall (I–squared = 0.0%, p = 0.932)	0.94 (0.79, 1.10)	100.00
.00607 1	 165	

Figure 8. Forest plots of the association between the Gln27Glu (rs1042714) polymorphism and risk of asthma in homozygote genotype comparison.

doi:10.1371/journal.pone.0104488.g008

small for the South American and North American populations, and therefore the current boundary result may have been unable to demonstrate that the Arg16Gly and Gln27Glu polymorphisms

are associated with the risk of asthma in these populations. More studies with a larger sample size are needed. In the Chinese population, the results of the current meta-analysis showed that

ID	OR (95% CI)	Weight
		weight
Cui LY (2007)	2.27 (1.10, 4.67)	0.93
Ye WX (2011)	1.18 (0.59, 2.35)	1.00
Zhang XY (2008)	0.61 (0.39, 0.95)	2.47
Wang W (2004)	1.04 (0.67, 1.61)	2.55
Yang Z (2012)	16.16 (0.98, 266.45)	0.06
Feng DX (2004)	1.18 (0.67, 2.09)	1.50
Xie Y (2008)	0.63 (0.28, 1.40)	0.76
Xing J (2001)	0.84 (0.56, 1.26)	2.96
Dai LM (2002)	0.92 (0.48, 1.77)	1.14
Liao W (2001)	0.91 (0.53, 1.54)	1.71
Tuerxun KLBN (2007)	1.03 (0.62, 1.73)	1.82
Birbian N (2012)	0.86 (0.70, 1.06)	10.68
Isaza C (2012)	1.23 (0.75, 2.01)	2.02
Fu WP (2011)	1.23 (0.87, 1.73)	4.12
Qiu YY (2010)	0.94 (0.61, 1.46)	2.56
Szczepankiewicz A (2009)	0.93 (0.65, 1.33)	3.70
Llanes E (2009)	1.29 (0.77, 2.14)	1.85
Munakata M (2006)	1.27 (0.51, 3.13)	0.59
Tsai HJ (2005)	1.20 (0.75, 1.93)	2.13
Gao JM (2004)	1.13 (0.75, 1.69)	2.94
Santillan AA (2003)	0.55 (0.41, 0.73)	5.93
Gao GK (2000)	1.06 (0.66, 1.72)	2.07
Wang Z (2001)	0.92 (0.50, 1.72)	1.29
Holloway JW (2000)	0.92 (0.50, 1.70)	3.50
Reihsaus E (1993)	1.00 (0.58, 1.70)	1.68
Chiang CH (2012)	0.70 (0.44, 1.09)	2.35
Larocca N (2012)	0.90 (0.44, 1.09)	3.06
Chan IH (2008)	0.75 (0.52, 1.07)	3.68
Wang JY (2009)	1.14 (0.85, 1.54)	5.36
Binaei S (2003)	1.15 (0.62, 2.14)	1.25
Kotani Y (1999)	1.49 (0.75, 2.99)	1.01
Weir TD (1998)	1.18 (0.80, 1.73)	3.32
Weir TD (1998)	0.64 (0.24, 1.68)	0.51
Dewar JC (1998)	1.15 (0.87, 1.53)	6.07
Hakonarson H (2001)	0.89 (0.69, 1.15)	7.72
Leung TF (2002)	0.71 (0.32, 1.58)	0.76
Lin YC (2003)	0.79 (0.37, 1.66)	0.87
Shachor J (2003)	0.87 (0.54, 1.41)	2.07
Overall (I–squared = 25.9%, p = 0.076)	0.95 (0.88, 1.01)	100.00
.00375 1	266	

Figure 9. Forest plots of the association between the Gln27Glu (rs1042714) polymorphism and risk of asthma in allele comparison. doi:10.1371/journal.pone.0104488.g009

Halomaton (2001) Halomaton (2001) Leung IF (2002) Halomaton (2001) Samillan AK (2003) Halomaton (2003) Binesi S (2003) Halomaton (2003) Wang W (2004) Halomaton (2003) Binether (2003) Halomaton (2003) Wang W (2004) Halomaton (2003) Binether (2003) Halomaton (2004) Wang W (2004) Halomaton (2005) Binether (2005) Halomaton (2004) Wang W (2005) Halomaton (2004) Wang W (2005) Halomaton (2004) Wang W (2005) Halomaton (2004) Chan H (2005) Halomaton (2004) Wang W (2006) Halomaton (2004) UL (2007) Halomaton (2004) Wang W (2006) Halomaton (2004) Wang W (2007) Halomaton (2004)	
Kolm V (1999) Image: Control of Contr	1.31 (0.39, 4.43)
Gas G& (DOO) Image: Cool of the sector of the	1.25 (0.72, 2.15)
Holoway W 2000) Image: Color C	1.17 (0.78, 1.75)
King J (2001) Image: Control of Contr	1.00 (0.69, 1.44)
Lie W (2001) Wang Z (2001) Wang Z (2001) Lie W (2001) Lie W (2001) Lie W (2003) Lie W (2004) Lie W (2004) Lie W (2004) Lie W (2004) Lie W (2005) Lie	0.85 (0.63, 1.15)
Wang Z (2001) Image S (2001) Jai LM (2002) Image S (2001) Dai LM (2002) Image S (2001) Branel S (2003) Image S (2003) Stachor J (2003) Image S (2003) Wang W (2004) Image S (2003) Stachor J (2003) Image S (2003) Wang W (2004) Image S (2004) Stachor J (2005) Image S (2004) Stachor J (2005) Image S (2004) Teller's J (2005) Image S (2004) Stachor J (2005) Image S (2004) Teller's J (2005) Image S (2004) Teller's J (2005) Image S (2004) Stachor J (2005) Image S (2004) Teller's J (2005) Image S (2004) Stachor J (2005) Image S (2004) Stachor J (2005) Image S (2004) Stachor J (2005) Image S (2004) Liu L (2007) Image S (2007) Wang W (2008) Image S (2007) Ulu L (2009) Image S (2007) Wang W (2007) Image S (2007) Wang W (2007) <td< td=""><td>1.03 (0.78, 1.36)</td></td<>	1.03 (0.78, 1.36)
Dai LM (2007) Image (2007) Samillar A(2003) Image (2003) Samillar A(2004) Image (2004) Samillar A(2004) Image (2004) Samillar A(2005) Image (2005) Samillar A(2007) Image (2007) Zhang Y(2008) Image (2007) Samillar A(2007) Image (2007) Zhang Y(2008) Image (2007) Samillar A(2007) Image	1.09 (0.84, 1.42)
Lin YC (2003) Shachor J (2003) Shachor J (2003) Keng DX (2004) Feng DX (2004) Feng DX (2004) Sharbag LP (2005) Munakata M (2006) Cui LY (2007) Thuraun KLBN (2007) Thuraun KLBN (2007) Thuraun KLBN (2007) Thuraun KLBN (2007) Sharbag LP (2008) Sharbag LP (2008) Sharbag LP (2008) Sharbag LP (2008) Sharbag LP (2008) Sharbag LP (2008) Starbag LP (2008) Starb	1.11 (0.87, 1.41)
Lenn JT (2002) Image (2003) Binard S (2003) Image (2003) Binard S (2003) Image (2003) Binard S (2003) Image (2003) Wang W (2004) Image (2003) Binard S (2003) Image (2003) Binard S (2003) Image (2004) Binard S (2003) Image (2004) Binard S (2003) Image (2004) Dimandata M (2003) Image (2004) Dimandata M (2007) Image (2004) Dimandata M (2007) Image (2004) Dimanda (2007) Image (2004) Dimand (2004) Image (2004)	1.05 (0.84, 1.31)
Santilan A (2003) Sanchar J (2003) Sanchar J (2003) Vany W (2004) Vany W (2004) Vany W (2004) Vany W (2004) Vany W (2004) Vany W (2005) Vany W (200	1.05 (0.85, 1.29)
Binui 5 (2003)	1.04 (0.85, 1.27)
Binai 5 (2003)	1.00 (0.84, 1.19)
Shachar J (2003) Wang W (2004) Feng DX (2004) Hartnager P (2005) Hartnager P (200	1.01 (0.85, 1.20)
Wang W (2004)	1.00 (0.85, 1.18)
Freq Di XO00h Image: Content of the section of the secti	1.07 (0.98, 1.17)
Gay JM (2004) Image // 2005) Teller's J/ (2005) Image // 2005) Munakata M (2006) Image // 2005) Tuenun (KBK (2007) Image // 2006) Tuenun (KBK (2007) Image // 2006) Shi XH (2008) Image // 2006) Chan H (2008) Image // 2007) Luin (2009) Image // 2009) Luin (2001) Image // 2001) Year (2011) Image // 2001) Year (2011) Image // 2002) Year (2011) Image // 2002) Year (2011) Image // 2002) Year (2012) Image // 2002)	0.97 (0.82, 1.13)
Teller' 24 (2005) Munakata M (2006) Munakata M (2006) Munakata M (2006) Munakata M (2007) Zhang Y (2008) Shi XH (0.96 (0.82, 1.13)
Bhatragar (2005) Image: Constraint of the second of the seco	0.99 (0.85, 1.15)
Munakisa M2006) Cai LY (2007) Evanor KLBN (2007) Evanor KLBN (2007) Evanor KLBN (2008) Shi XH (2008) Chaines (2009) Lui L (2009) Szczepankiewicz (2009) Lui L (2009) Szczepankiewicz (2009) Lui L (2009) Szczepankiewicz (2009) Lui L (2009) Szczepankiewicz (2000) Szczepankiewicz	1.01 (0.87, 1.17)
Gul Y (2007) → Thuman KBN (2007) → Zhang XY (2008) → Thuman KBN (2007) → Start (2008) → Chan H (2008) → Ul (2009) → Start (2008) → Start (2008) → Mang XY (2008) → Mang XY (2009) → Mang XY (2009) → Mang XY (2001) → Kel yaana K (2011) → Mang XY (2010) → Kel yaana K (2011) → Haw (2002) → Kel yaana K (2011) → Haw (2012) →	1.01 (0.88, 1.17)
Tuerun (KBP (2007) Image: Constraint of the second of the se	1.00 (0.87, 1.15)
Zhang XY (2008) Image: Constraint of the second of the s	1.01 (0.88, 1.17)
Xie Y (2008)	1.04 (0.90, 1.19)
Shi XH (2008)	1.04 (0.90, 1.19)
Chan H (2006) Image: Chan H (2006) Liu L (2009) Image: Chan H (2007) Lianes E (2009) Image: Chan H (2007) Mua L (2009) Image: Chan H (2007) Vang V (2009) Image: Chan H (2007) Vel X (2011) Image: Chan H (2007) Yang Z (2012) Image: Chan H (2007) Vel X (2012) Image: Chan H (2007)	1.05 (0.92, 1.20)
Liu L 2009) Szczepaniewick 2 A0099 Liunes E 2009	1.02 (0.89, 1.17)
Saczepankiewicz A (2009) Lumes E (2009) Hua L (2009) UW g07 (2009) Ve WX (2011) Koływan X (2011) Koływan X (2011) Koływan X (2012)	1.00 (0.88, 1.13)
Lanes (2009) Wang Y (2009) Ukang Y (2009) Ukang Y (2009) Ukang Y (2010) Ukang Y (2010) Ukang Y (2011) Ukang Y (2011) Ukang Y (2012) Ukang Y (0.99 (0.87, 1.12)
Wang JY (2009) → Hau L (2009) → Qi VY (2010) → Ye WX, 2011) → Kohyana K (2011) → Yang Z (2012) → Hex XQ (2012) → Hex XQ (2012) →	1.01 (0.89, 1.14)
Huū (2009) Qiu YY (2010) V (X2 (2017) V (X2 (2017) V (X2 (2017) Yang Z (2017) He XQ (2012) He XQ (2012) He XQ (2012) →	1.01 (0.89, 1.14)
0iu Yr (2010) → Ve WX (2011) → Kallyama K2011) → Fu WP (2011) → He X2 (2012) → H	1.03 (0.92, 1.15)
Ye WX (2011) Kolysma (2011) Yang 2 (2012) He XQ (2012) He XQ (2012)	1.05 (0.94, 1.17)
Kolyama (2011)	1.02 (0.92, 1.14)
Fu WP (2011)	1.02 (0.92, 1.13)
Yang Z (2012)	1.03 (0.93, 1.14)
He XQ (2012) Zheng BQ (2012)	1.04 (0.94, 1.14)
Zheng BQ (2012)	1.05 (0.95, 1.15)
	1.07 (0.98, 1.18)
Birbian N (2012)	1.06 (0.96, 1.16)
	1.04 (0.95, 1.14)
Isaza C (2012)	1.05 (0.95, 1.14)
Larocca N (2012)	1.06 (0.97, 1.16)

Figure 10. Forest plots of cumulative meta-analysis of Arg16Gly (rs1042713) in association with asthma by published year under dominant model comparison. doi:10.1371/journal.pone.0104488.g010

> Study ID OR (95% CI) Reihsaus E (1993) 0.78 (0.36, 1.69 Dewar JC (1998) 1.19 (0.62, 2.29) 1.19 (0.62, 2.29) 1.19 (0.81, 1.75) 1.44 (0.84, 2.47) 1.33 (0.86, 2.07) 1.44 (0.97, 2.12) 1.41 (1.00, 1.98) 1.31 (0.95, 1.81) 1.23 (0.92, 1.65) 1.19 (0.91, 1.56) 1.19 (0.93, 1.52) 1.13 (0.90, 1.41) 1.08 (0.86, 1.37) 1.04 (0.82, 1.32) 1.14 (0.02, 1.32) Kotani Y (1999) Kotani Y (1999) Gao GK (2000) Holloway JW (2000) Xing J (2001) Liao W (2001) Wang Z (2001) Hakonarson H (2001) Dai LM (2002) Leung TF (2002) Santillan Ak (2003) Binaei S (2003) Lin YC (2003) 1.04 (0.82, 1.32) 1.11 (0.95, 1.30) 1.05 (0.84, 1.32) 1.10 (0.87, 1.39) 1.16 (0.91, 1.49) 1.16 (0.92, 1.46) 1.16 (0.93, 1.45) 1.14 (0.92, 1.41) Shachor J (2003) Shachor J (2003) Wang W (2004) Feng DX (2004) Gao JM (2004) Teller^{*a}a JJ (2005) Bhatnagar P (2005) Munakata M (2006) Munakata M (2006) Cui LY (2007) Tuerxun KLBN (2007) Zhang XY (2008) Xie Y (2008) Shi XH (2008) 1.14 (0.92, 1.41) 1.12 (0.91, 1.38) 1.19 (0.95, 1.50) 1.17 (0.93, 1.46) 1.16 (0.93, 1.44) 1.13 (0.91, 1.41) Chan IH (2008) Chan IH (2008) Liu L (2009) Szczepankewicz A (2009) Ulanes E (2009) Hua L (2009) Qiu YY (2010) Ye WX (2011) Kołyama K (2011) Yang Z (2012) He XQ (2012) Zheng BQ (2012) 1.13 (0.92, 1.38) 1.14 (0.93, 1.39) 1.14 (0.93, 1.39) 1.15 (0.95, 1.39) 1.15 (0.95, 1.38) 1.16 (0.97, 1.38) 1.20 (1.00, 1.44) 1.20 (1.00, 1.44) 1.20 (1.00, 1.42) 1.18 (1.00, 1.40) 1.18 (1.00, 1.40) 1.18 (1.00, 1.30) 1.14 (0.96, 1.35) 1.11 (0.94, 1.32) 1.10 (0.93, 1.29) Zheng BQ (2012) Birbian N (2012) Isaza C (2012) _ 1.10 (0.94, 1.29) Larocca N (2012) 1.12 (0.95, 1.32) 2.74

Figure 11. Forest plots of cumulative meta-analysis of Arg16Gly (rs1042713) in association with asthma by published year under recessive model comparison.

D	OR (95% CI)
Reihsaus E (1993)	1.15 (0.33, 4.02)
Dewar JC (1998)	1.46 (0.82, 2.60)
Kotani Y (1999)	1.30 (0.83, 2.03)
Gao GK (2000)	1.35 (0.89, 2.04)
Holloway JW (2000)	1.17 (0.82, 1.68)
King J (2001)	1.51 (0.88, 2.60)
Liao W (2001)	1.52 (0.96, 2.43)
Wang Z (2001)	1.42 (0.94, 2.14)
Hakonarson H (2001)	1.30 (0.89, 1.90)
Dai LM (2002)	1.25 (0.89, 1.75)
Leung TF (2002)	1.22 (0.89, 1.67)
Santillan AA (2003)	1.15 (0.87, 1.53)
Binaei S (2003)	1.12 (0.85, 1.47)
Lin YC (2003)	1.07 (0.81, 1.40)
Shachor J (2003)	1.15 (0.97, 1.38)
Wang W (2004)	1.06 (0.82, 1.36)
Feng DX (2004)	1.08 (0.84, 1.40)
Gao JM (2004)	1.16 (0.89, 1.52)
Teller''a JJ (2005)	1.18 (0.91, 1.53)
Bhatnagar P (2005)	1.19 (0.93, 1.52)
Munakata M (2006)	1.15 (0.91, 1.47)
Cui LY (2007)	1.15 (0.91, 1.45)
Tuerxun KLBN (2007)	1.24 (0.96, 1.61)
Zhang XY (2008)	1.22 (0.95, 1.56)
Xie Y (2008)	1.22 (0.95, 1.55)
Shi XH (2008)	1.17 (0.90, 1.50)
Chan IH (2008)	1.15 (0.90, 1.46)
Liu L (2009)	1.14 (0.91, 1.44)
Szczepankiewicz A (2009)	1.17 (0.93, 1.46)
Llanes E (2009)	1.16 (0.94, 1.45)
Wang JY (2009)	1.17 (0.96, 1.44)
Hua L (2009)	1.23 (0.99, 1.51)
Qiu YY (2010)	1.20 (0.98, 1.47)
Ye WX (2011)	1.20 (0.99, 1.47)
Kohyama K (2011)	1.20 (0.99, 1.45)
Fu WP (2011)	1.20 (1.00, 1.44)
Yang Z (2012)	1.21 (1.01, 1.45)
He XQ (2012)	1.18 (0.98, 1.41)
Zheng BQ (2012)	1.14 (0.95, 1.38)
Birbian N (2012)	1.12 (0.93, 1.34)
isaza C (2012)	1.12 (0.94, 1.34)
Larocca N (2012)	1.16 (0.97, 1.38)

Figure 12. Forest plots of cumulative meta-analysis of Arg16Gly (rs1042713) in association with asthma by published year under homozygote genotype comparison.

doi:10.1371/journal.pone.0104488.g012

2		OR (95% CI)
elhsaus E (1993)	•	0.92 (0.51, 1.68)
Veir TD (1998)	+	0.97 (0.70, 1.34)
Veir TD (1998)	+	1.03 (0.76, 1.39)
lewar JC (1998)		1.16 (0.94, 1.44)
iotani Y (1999)		1.14 (0.94, 1.36)
ao GK (2000)		1.15 (0.97, 1.36)
followay JW (2000)		1.07 (0.92, 1.26)
ing J (2001)		1.16 (0.94, 1.43)
iao W (2001)		1.17 (0.97, 1.42)
Vang Z (2001)		1.15 (0.97, 1.36)
lakonarson H (2001)		1.11 (0.95, 1.30)
ai LM (2002)		1.10 (0.95, 1.27)
eung TF (2002)		1.09 (0.95, 1.25)
antillan AA (2003)		1.06 (0.94, 1.20)
inaei S (2003)	_	1.05 (0.93, 1.18)
in YC (2003)	_	1.03 (0.91, 1.16)
hachor J (2003)		1.07 (0.99, 1.17)
Vang W (2004)	_	1.02 (0.91, 1.14)
eng DX (2004)	_	1.03 (0.92, 1.16)
iao JM (2004)		1.06 (0.94, 1.19)
eller a JJ (2005)	_	1.06 (0.95, 1.19)
hatnagar P (2005)		1.07 (0.96, 1.19)
funakata M (2006)		1.06 (0.95, 1.17)
sai HJ (2006)	_	1.03 (0.92, 1.15)
ui LY (2007)		1.03 (0.93, 1.15)
uerxun KLBN (2007)		1.06 (0.95, 1.19)
leslihan Aygun Kocabas (2007)		1.08 (0.96, 1.20)
hang XY (2008)		1.07 (0.96, 1.19)
ie Y (2008)		1.07 (0.97, 1.19)
hi XH (2008)		1.05 (0.94, 1.18)
han IH (2008)	_ _	1.05 (0.94, 1.16)
iu L (2009)		1.05 (0.95, 1.16)
zczepankiewicz A (2009)		1.06 (0.96, 1.17)
lanes E (2009)	_	1.06 (0.96, 1.16)
Vang JY (2009)		1.06 (0.97, 1.16)
lua L (2009)	—	1.08 (0.98, 1.20)
iu YY (2010)		1.08 (0.98, 1.18)
e WX (2011)		1.08 (0.98, 1.18)
ohyama K (2011)		1.07 (0.98, 1.17)
u WP (2011)		1.08 (0.99, 1.17)
ang Z (2012)	↓	1.08 (0.99, 1.18)
le XQ (2012)		1.08 (0.99, 1.17)
heng BQ (2012)	_ ↓	1.06 (0.98, 1.16)
irbian N (2012)		1.05 (0.97, 1.15)
aza C (2012)		1.06 (0.97, 1.15)
arocca N (2012)		1.08 (0.99, 1.17)
	· ·	

Figure 13. Forest plots of cumulative meta-analysis of Arg16Gly (rs1042713) in association with asthma by published year under allele comparison.

ID		OR (95% CI)
Reihsaus E (1993)		1.27 (0.55, 2.98)
Dewar JC (1998)		0.99 (0.67, 1.47)
Kotani Y (1999)	+	1.10 (0.78, 1.56)
Gao GK (2000)	+ •	1.09 (0.80, 1.49)
Holloway JW (2000)	_	1.11 (0.84, 1.47)
Xing J (2001)		0.99 (0.76, 1.27)
Liao W (2001)		0.99 (0.78, 1.25)
Wang Z (2001)	_	0.98 (0.78, 1.22)
Hakonarson H (2001)	+	0.93 (0.77, 1.14)
Dai LM (2002)	+	0.93 (0.77, 1.13)
Leung TF (2002)	+	0.92 (0.77, 1.11)
Santillan AA (2003)	_ —	0.77 (0.66, 0.91)
Binaei S (2003)	_ —	0.79 (0.68, 0.93)
Lin YC (2003)		0.79 (0.68, 0.93)
Shachor J (2003)	-+-	0.92 (0.84, 1.01)
Wang W (2004)	_ 	0.81 (0.69, 0.93)
Feng DX (2004)	_	0.82 (0.71, 0.95)
Gao JM (2004)		0.84 (0.73, 0.96)
Teller"a JJ (2005)		0.86 (0.75, 0.99)
Munakata M (2006)		0.87 (0.76, 0.99)
Cui LY (2007)	-+	0.89 (0.78, 1.02)
Tuerxun KLBN (2007)	-+	0.89 (0.78, 1.02)
Zhang XY (2008)	_	0.88 (0.78, 1.01)
Xie Y (2008)		0.88 (0.77, 1.00)
Chan IH (2008)	—	0.88 (0.78, 1.00)
Szczepankiewicz A (2009)		0.90 (0.79, 1.01)
Llanes E (2009)		0.90 (0.80, 1.02)
Wang JY (2009)	-+-	0.93 (0.83, 1.04)
Qiu YY (2010)		0.93 (0.84, 1.04)
Ye WX (2011)	-+-	0.94 (0.84, 1.05)
Fu WP (2011)	-+-	0.95 (0.86, 1.06)
Yang Z (2012)		0.96 (0.86, 1.06)
Birbian N (2012)	→ +	0.94 (0.85, 1.03)
Isaza C (2012)	→ +	0.95 (0.86, 1.04)
Chiang CH (2012)	-+	0.93 (0.85, 1.02)
Larocca N (2012)		0.93 (0.84, 1.02)
.336		1 2.98

Figure 14. Forest plots of cumulative meta-analysis of Gln27Glu (rs1042714) in association with asthma by published year dominant model comparison.

doi:10.1371/journal.pone.0104488.g014

ID	OR (95% CI)
Reihsaus E (1993)	0.77 (0.32, 1.83)
Dewar JC (1998)	1.37 (0.92, 2.03)
Kotani Y (1999)	1.37 (0.92, 2.03)
Gao GK (2000)	1.34 (0.92, 1.95)
Holloway JW (2000)	1.11 (0.82, 1.52)
Xing J (2001)	1.16 (0.85, 1.56)
Liao W (2001)	1.11 (0.83, 1.49)
Wang Z (2001)	1.11 (0.83, 1.49)
Hakonarson H (2001)	1.05 (0.82, 1.34)
Dai LM (2002)	1.04 (0.82, 1.33)
Leung TF (2002)	1.04 (0.82, 1.33)
Santillan AA (2003)	1.04 (0.83, 1.32)
Binaei S (2003)	1.04 (0.82, 1.30)
Lin YC (2003)	1.03 (0.82, 1.29)
Shachor J (2003)	0.94 (0.81, 1.09)
Wang W (2004)	1.04 (0.84, 1.30)
Feng DX (2004)	1.05 (0.85, 1.31)
Gao JM (2004)	1.06 (0.85, 1.31)
Teller"a JJ (2005)	1.04 (0.84, 1.28)
Munakata M (2006)	1.05 (0.85, 1.29)
Cui LY (2007)	1.06 (0.87, 1.31)
Tuerxun KLBN (2007)	1.07 (0.87, 1.31)
Zhang XY (2008)	0.99 (0.82, 1.20)
Xie Y (2008)	0.98 (0.80, 1.18)
Chan IH (2008)	0.92 (0.77, 1.11)
Szczepankiewicz A (2009)	0.90 (0.75, 1.07)
Llanes E (2009)	0.92 (0.77, 1.09)
Wang JY (2009)	0.91 (0.76, 1.08)
Qiu YY (2010)	0.91 (0.76, 1.08)
Ye WX (2011)	0.91 (0.77, 1.08)
Fu WP (2011)	0.93 (0.79, 1.10)
Yang Z (2012)	0.93 (0.79, 1.09)
Birbian N (2012)	0.93 (0.80, 1.08)
Isaza C (2012)	0.93 (0.80, 1.08)
Chiang CH (2012)	0.94 (0.80, 1.09)
Larocca N (2012)	0.94 (0.81, 1.09)

Figure 15. Forest plots of cumulative meta-analysis of Gln27Glu (rs1042714) in association with asthma by published year under recessive model comparison.

Study ID	OR (95% CI)
Delbeaux E (1002)	0.08 (0.25 2.77)
Reihsaus E (1993) Dewar JC (1998)	0.98 (0.35, 2.77) 1.25 (0.78, 2.03)
Kotani Y (1998)	1.25 (0.78, 2.03)
Sao GK (2000)	1.25 (0.78, 2.03)
Holloway JW (2000)	1.25 (0.80, 1.95)
Xing J (2001) Liao W (2001) -	1.18 (0.82, 1.70)
	1.12 (0.79, 1.60)
Wang Z (2001)	1.12 (0.79, 1.59)
Hakonarson H (2001) -	1.01 (0.76, 1.35)
Dai LM (2002) -	1.00 (0.75, 1.34)
Leung TF (2002) —	1.00 (0.75, 1.34)
Santillan AA (2003) -	0.98 (0.75, 1.29)
Binaei S (2003) -	0.98 (0.75, 1.28)
Lin YC (2003) —	0.97 (0.74, 1.26)
Shachor J (2003)	0.94 (0.79, 1.10)
Wang W (2004) -	0.99 (0.77, 1.27)
Feng DX (2004) -	1.00 (0.78, 1.29)
Gao JM (2004)	1.01 (0.79, 1.30)
Teller"aa JJ (2005)	1.02 (0.80, 1.30)
Munakata M (2006)	1.03 (0.81, 1.31)
Cui LY (2007)	1.06 (0.84, 1.34)
Tuerxun KLBN (2007)	1.06 (0.84, 1.34)
Zhang XY (2008)	1.00 (0.80, 1.25)
Xie Y (2008) -	0.98 (0.78, 1.22)
Chan IH (2008) —	0.92 (0.74, 1.13)
Szczepankiewicz A (2009)	0.91 (0.74, 1.11)
Llanes E (2009) -	• 0.93 (0.76, 1.14)
Wang JY (2009) -	0.92 (0.76, 1.12)
Qiu YY (2010) -	0.92 (0.76, 1.12)
Ye WX (2011) -	• 0.92 (0.76, 1.12)
Fu WP (2011) -	• 0.95 (0.79, 1.14)
Yang Z (2012) -	• 0.95 (0.79, 1.14)
Birbian N (2012)	0.93 (0.79, 1.11)
Isaza C (2012) -	0.94 (0.79, 1.11)
Chiang CH (2012)	0.94 (0.80, 1.12)
Larocca N (2012)	0.94 (0.80, 1.11)
.347	1 2.88

Figure 16. Forest plots of cumulative meta-analysis of Gln27Glu (rs1042714) in association with asthma by published year under homozygote genotype comparison. doi:10.1371/journal.pone.0104488.g016

Study ID		OR (95% CI)
		01(057/01)
Reihsaus E (1993)	•	1.00 (0.58, 1.70)
Weir TD (1998)		1.11 (0.82, 1.52)
Weir TD (1998)		1.06 (0.79, 1.42)
Dewar JC (1998)		1.11 (0.90, 1.36)
Kotani Y (1999)		1.13 (0.93, 1.38)
Gao GK (2000)		1.12 (0.94, 1.35)
Holloway JW (2000)	_	1.08 (0.92, 1.27)
Xing J (2001)	+	1.04 (0.90, 1.22)
Liao W (2001)	+	1.03 (0.89, 1.20)
Wang Z (2001)	+	1.03 (0.89, 1.18)
Hakonarson H (2001)	_ _	0.99 (0.88, 1.12)
Dai LM (2002)		0.99 (0.88, 1.12)
Leung TF (2002)	+	0.98 (0.87, 1.11)
Santillan AA (2003)	_	0.90 (0.81, 1.01)
Binaei S (2003)		0.91 (0.81, 1.01)
Lin YC (2003)	_	0.90 (0.81, 1.01)
Shachor J (2003)	_	0.95 (0.88, 1.01)
Wang W (2004)		0.91 (0.82, 1.01)
Feng DX (2004)		0.92 (0.83, 1.02)
Gao JM (2004)		0.93 (0.84, 1.03)
Teller"a JJ (2005)		0.94 (0.85, 1.04)
Munakata M (2006)		0.94 (0.86, 1.04)
Cui LY (2007)	+	0.96 (0.87, 1.06)
Tuerxun KLBN (2007)	+	0.96 (0.88, 1.06)
Zhang XY (2008)		0.94 (0.86, 1.03)
Xie Y (2008)		0.94 (0.86, 1.03)
Chan IH (2008)	_	0.92 (0.85, 1.01)
Szczepankiewicz A (2009)	_ _	0.92 (0.85, 1.01)
Llanes E (2009)		0.93 (0.86, 1.02)
Wang JY (2009)		0.95 (0.87, 1.03)
Qiu YY (2010)	_	0.95 (0.87, 1.03)
Ye WX (2011)	_	0.95 (0.88, 1.03)
Fu WP (2011)	 +	0.96 (0.89, 1.04)
Yang Z (2012)		0.96 (0.89, 1.04)
Birbian N (2012)	_	0.95 (0.88, 1.02)
Isaza C (2012)		0.96 (0.89, 1.03)
Chiang CH (2012)	_	0.95 (0.88, 1.02)
Larocca N (2012)	_ +	0.95 (0.88, 1.02)
.583	1	1.72

Figure 17. Forest plots of cumulative meta-analysis of Gln27Glu (rs1042714)in association with asthma by published year under allele comparison.

Table 7. Publication bias results of Egger's test.	results of Egger's tes								
SNP	Study number (n)	Dominant mode	nodel comparison	Recessive mo	Recessive model comparison	Homozygote genotype comparison	enotype	Allele comparison	uo
			Р		Р	÷	d	-	٩
Arg16Gly (rs1042713)	45	1.02	0.315	0.42	0.675	0.72	0.475	1.12	0.268
Gln27Glu (rs1042714)	37	2.69	0.011	0.71	0.484	1.09	0.284	1.80	0.080
Thr164lle (rs1800888)	4	-0.37	0.746	ı	ı	ı	ı	-2.10	0.171
Arg19Cys (rs1042711)	4	-2.01	0.294	-0.78	0.579	-0.51	0.698	-0.59	0.613
doi:10.1371/journal.pone.0104488.t007	007								

there was no significant association with the risk of asthma with either the Arg16Gly polymorphism or the Gln27Glu polymorphism in any of the genetic model comparisons, supporting Ni Suiqin's [16] conclusion.

In the analysis stratified by HWE according to the P-value for the Arg16Gly and Gln27Glu polymorphisms, a significant association was found in the recessive model comparison and the homozygote genotype comparison for Arg16Gly in the group with P<0.05, but not in the group with P>0.05. For Gln27Glu, a significant association was found in the dominant model comparison in the group with P>0.05. These results therefore need to be interpreted with caution. There are several possible explanations as to why the control group population was not in HWE. First, the population was not characterized by random mating. Second, the locus under consideration exhibited an inconstant fluctuating mutation rate. Third, there was selection for a particular phenotype. Fourth, the population was not sufficiently large or non-random. Fifth, there had been a change in the population structure during the period of study due to migration.

No significant association with the risk of asthma was found for the Thr164Ile and Arg19Cys polymorphisms. Thus, the Thr164Ile and Arg19Cys polymorphisms may not be involved in the pathogenesis of asthma. Further research is needed because, as only four case-controls were included in the study, there might not be sufficient statistical evidence to clarify the association between the Thr164Ile and Arg19Cys polymorphisms and the risk of asthma.

ADRB2 is located on chromosome 5q31-32, encodes 413 amino acids, and is an intronless gene [5]. According to the SNPper database, there are more than 100 SNPs in the promoter region, five SNPs in the 5'UTR region and 18 SNPs in the coding region of the gene. The mutation of the two most important SNPs, Arg16Gly and Gln27Glu, which are located at nucleotide positions 46 and 79 of the coding region of the ADRB2 gene, respectively, can cause changes in the amino acid sequence. The altered amino acid sequence can lead to down-regulation of the β 2-AR and may cause the desensitization of related reactions [70]. Thr164Ile is also located in the coding region of the ADRB2 gene; a base change from C to T can lead to a change in amino acid from threenine (Thr) to isoleucine (Ile). The missense polymorphisms of Arg16Gly, Gln27Glu, and Thr164Ile may lead to functional changes in ADRB2. Most of the studies relating to ADRB2 and asthma risk have focused on coding region polymorphisms. In recent years, studies on ADRB2 have not been confined to coding region polymorphisms alone, as more and more studies have begun to pay attention to promoter region polymorphisms. Arg19Cys is located in the 5' leader region that harbors an open reading frame (ORF) in the promoter region of the ADRB2 gene; a base change from T to C leads to a change in amino acid from arginine (Arg) to cysteine app:addword:cysteine(Cys). Recent in vivo and in vitro research has demonstrated that this change can impede the translation of ADRB2 mRNA, and thus can regulate cellular expression of the receptor [71]. Further studies are therefore required to assess whether the SNPs in ADRB2 alter signal regulation, gene expression, or the function of its product or not.

There are certain inevitable limitations to the current metaanalysis. First, all available literature should be included in the meta-analysis, but we only included literature published in English and Chinese, thus neglecting studies published in other languages. In addition, most of the included studies just focus on Chinese and Asian, which may result in an inability to detect modest association due to lack of power because of underreporting/lower incidence of asthma in these populations. Second, most original literature only provides a generic asthma definition, and does not describe asthma phenotype(s) and environmental factors in detail, so we cannot supply this information. Third, several studies were not included because they did not provide sufficient data for statistical analysis, which may have biased the result. Fourth, publication bias was only detected for the Gln27Glu polymorphism in the dominant model comparison (t = 2.69, P = 0.011), but not in the other three genetic model comparisons. In fact, positive results or results with "expected" findings are more likely to be published. Publication bias may lead to a false positive result. We detected significant publication bias for the Gln27Glu polymorphism in the dominant model, so the results need to be interpreted with caution. Fifth, moderate heterogeneity was found in some genetic models for the Arg16Gly polymorphism. Because no information was available other than the factors we performed a stratified analysis, and thus we were unable to use meta-regression to explore other possible sources of between-group heterogeneity. Furthermore, the result of the sensitivity analysis was stable.

References

- To T, Stanojevic S, Moores G, Gershon AS, Bateman ED, et al. (2012) Global asthma prevalence in adults: findings from the cross-sectional world health survey. BMC Public Health 12: 204.
- Pinto LA, Stein RT, Kabesch M (2008) Impact of genetics in childhood asthma. J Pediatr (Rio J) 84: S68–75.
- Litonjua AA, Gong L, Duan QL, Shin J, Moore MJ, et al. (2010) Very important pharmacogene summary ADRB2. Pharmacogenet Genomics 20: 64–69.
- Pignatti PF (2004) Trends in pharmacogenomics of drugs used in the treatment of asthma. Pharmacol Res 49: 343–349.
- Brodde OE, Leineweber K (2005) Beta2-adrenoceptor gene polymorphisms. Pharmacogenet Genomics 15: 267–275.
- Contopoulos-Ioannidis DG, Manoli EN, Ioannidis JP (2005) Meta-analysis of the association of beta2-adrenergic receptor polymorphisms with asthma phenotypes. J Allergy Clin Immunol 115: 963–972.
- Finkelstein Y, Bournissen FG, Hutson JR, Shannon M (2009) Polymorphism of the ADRB2 gene and response to inhaled beta- agonists in children with asthma: a meta-analysis. J Asthma 46: 900–905.
- Gao JM, Lin YG, Qiu CC, Liu YW, Ma Y, et al. (2004) Beta2-adrenergic receptor gene polymorphism in Chinese Northern asthmatics. Chin Med Sci J 19: 164–169.
- Chiang CH, Lin MW, Chung MY, Yang UC (2012) The association between the IL-4, ADRbeta2 and ADAM 33 gene polymorphisms and asthma in the Taiwanese population. J Chin Med Assoc 75: 635–643.
- Chan IH, Tang NL, Leung TF, Huang W, Lam YY, et al. (2008) Study of genegene interactions for endophenotypic quantitative traits in Chinese asthmatic children. Allergy 63: 1031–1039.
- Kohyama K, Abe S, Kodaira K, Yukawa T, Hozawa S, et al. (2011) Arg16Gly beta2-adrenergic receptor gene polymorphism in Japanese patients with aspirinexacerbated respiratory disease. Int Arch Allergy Immunol 156: 405–411.
- Kukreti R, Bhatnagar P, B-Rao C, Gupta S, Madan B, et al. (2005) Beta(2)adrenergic receptor polymorphisms and response to salbutamol among Indian asthmatics*. Pharmacogenomics 6: 399–410.
- Shachor J, Chana Z, Varsano S, Erlich T, Goldman E, et al. (2003) Genetic polymorphisms of the beta-2 adrenergic receptor in Israelis with severe asthma compared to non-asthmatic Israelis. Isr Med Assoc J 5: 821–824.
- Migita O, Noguchi E, Jian Z, Shibasaki M, Migita T, et al. (2004) ADRB2 polymorphisms and asthma susceptibility: transmission disequilibrium test and meta-analysis. Int Arch Allergy Immunol 134: 150–157.
- Thakkinstian A, McEvoy M, Minelli C, Gibson P, Hancox B, et al. (2005) Systematic review and meta-analysis of the association between {beta}2adrenoceptor polymorphisms and asthma: a HuGE review. Am J Epidemiol 162: 201–211.
- Ni SQ, Tan LW (2012) Meta-Analysis of Association between β-2 Adrenoceptor Polymorphisms and Bronchi Asthma in Chinese. Pharmacy Today 22: 159–166.
- Tatarskyy PF, Chumachenko NG, Kucherenko AM, Gulkovskyi RV, Arabskaya LP, et al. (2011) Study of possible role of CYP1A1, GSTT1, GSTM1, GSTP1, NAT2 and ADRB2 genes polymorphisms in bronchial asthma development in children. Biopolymers and Cell 27: 66–73.
- Sy HY, Ko FWS, Chu HY, Chan IHS, Liu TC, et al. (2010) Association between candidate genes and spirometric variables in Chinese. Paediatric Respiratory Reviews 11: S2.
- Chung LP, Shi J, Baltic S, Waterer G, Thompson PJ (2010) Prevalence of ADRB2 polymorphisms in caucasians with severe asthma compared with mild and non-asthmatics. Respirology 15: A42.
- 20. Leung T, Ko F, Sy H, Chu H, Liu T, et al. (2009) Functional ADRB2 polymorphisms are associated with asthma endophenotypes in Chinese adults

Therefore, the heterogeneity seemed to have no effect on the results, suggesting their reliability.

In conclusion, the current meta-analysis suggests that the Arg16Gly, Gln27Glu, Thr164Ile, and Arg19Cys polymorphisms may not be involved in the risk of asthma in the overall population or the Chinese population. Well-designed, high-quality studies with a larger sample size and various ethnicities should be conducted to confirm these results.

Supporting Information

Checklist S1 PRISMA checklist. (DOC)

Author Contributions

Conceived and designed the experiments: SQL XLC JMD. Performed the experiments: XW CG. Analyzed the data: ZRC ZBW. Contributed reagents/materials/analysis tools: SQL XLC JMD. Wrote the paper: SQL XLC.

but not children. Allergy: European Journal of Allergy and Clinical Immunology 64: 186.

- 21. Guo XR, Gong WX, Weng YQ, Zheng Q, Li SJ, et al. (2005) Association between β (2)-adrenergic receptor polymorphisms and Cough variant asthma. Chinese Journal of Primary Medicine and Pharmacy 12: 2.
- Ren L (2011) Association between ADAM33, LTS pathway, ADRB2 genes polymorphisms and childhood asthma [Master]. Chongqing: Chongqing Medical University.
- Su MW, Tung KY, Liang PH, Tsai CH, Kuo NW, et al. (2012) Gene-gene and gene-environmental interactions of childhood asthma: a multifactor dimension reduction approach. PLoS One 7: e30694.
- Hawkins GA, Tantisira K, Meyers DA, Ampleford EJ, Moore WC, et al. (2006) Sequence, haplotype, and association analysis of ADRbeta2 in a multiethnic asthma case-control study. Am J Respir Crit Care Med 174: 1101–1109.
- 25. Fu J, Chen H, Hu L, Zhang H, Ma Y, et al. (2002) Association between the genetic polymorphisms of beta2-adrenergic receptor gene and the asthma susceptibility and clinical phenotypes in a Chinese population. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 19: 41–45.
- Liggett SB (1997) Polymorphisms of the beta2-adrenergic receptor and asthma. Am J Respir Crit Care Med 156: S156–162.
- Huo J (2011) A study on the verification of the predisposing gene model for predicting childhood asthma in Han nationality[Master]. Shanghai: Shanghai Jiaotong University.
- Cichy M, Adamek-Guzik T, Uracz D, Uracz W, Czerniawska-Mysik G, et al. (2005) [The functional relevance of Arg16Gly and Gln27Glu-beta2-adrenoreceptor polymorphism in patients with asthma and allergic rhinitis]. Folia Med Cracov 46: 33–51.
- Cui LY, Liu XH, Gao LX, Fan DS (2007) Study on the Association between β2adrenergic Receptor Genetic polymorphisms and asthma in the population of Inner Mongolia. Chinese journal of Clinical Medicin 14: 477–481.
- Ye WX, Feng DX, Zhang XY, Yu H, Xu M (2011) Study on the Relationship between β2-adrenergic Receptor Genetic polymorphisms and asthma a in Miao Nationality. Journal of Medical Research 40: 83–85.
- Zhang XY, Zhao WL, Gui Q, He NH (2008) Relationship between genetic polymorphisms of β2-adrenergic receptor and childhood asthma. Journal of Clinical Pediatrics 26: 399–402+408.
- 32. Wang W, Wufuer HMTL, Shabiti YLHMJ, Xiang YB, Abula ABLKM (2004) Association between the genetic polymorphisms of β2-adrenergic receptor gene and the asthma susceptibility and clinical phenotypes in Uygur population. Journal of Cardiovascular and Pulmonary Diseases 23: 147–152.
- Yang Z, Zhang H, Wang W, Yin Y, Zhang L, et al. (2012) Effect of β2adrenergic receptor polymorphisms on childhood asthma and therapeutic efficacy of long acting β2-agonist. Journal of Clinical Pediatrics 30: 739–743.
- Feng DX, Ye WX, Zhang XY, Yu H, Diao XY, et al. (2004) Study on β2adrenergic Receptor Genetic Polymorphisms and Asthma. Journal of Modern Clinical Medical Bioengineering 10: 5–7.
- He XQ, Li FX, Tan JY, Yang XX (2012) Association of single nucleotide polymorphisms of ADRB2 Arg16Gly with asthma in southern Chinese population. Immunological Journal 28: 687–690+702.
- Xie Y, Yang ZZ, Chai BC (2008) Relationship of Genetic Polymorphisms of β2 -Adrenergic Receptor and Asthma in Children in Shanghai Area. Journal of Applied Clinical Pediatrics23: 272–273+303.
- Xing J, Wang C, Liu JZ, Yan M, Huang KW, et al. (2001) Association of receptor gene polymorphisms with asthma in Northern Chinese Han Population. Chinese Journal of Internal Medicine 40: 3.

- Liu L, Fang LZ, Dai LM (2009) Combination Effect of Gene Polymorphisms in 16 Position of β2-adenergic Receptor and Cigarette Smoking on Asthma in Chinese Han Individuals. Medical Recapitulate 15: 4.
- Dai LM, Wang ZL, Zhang YP, Li W, Zhao ZH, et al. (2002) Association of beta2 receptor gene polymorphisms with lung function in asthma patients. Chinese Journal of Tuberculosis and Respiratory Diseases 25: 2.
- Dai XH, Zhou JP (2008) Association of IL-13 and beta2 receptor gene polymorphisms with asthma. Shandong Medical Journal 48: 3.
- 41. Liao W, Li WM, Zhao CM, Guang LX, Yin XJ, et al. (2001) Preliminary Study on the relationship between β2-adrenergic receptors genetic polymor- phisms and asthma in children of Han nationality of Chongqing. Journal of Third Military Medical University 23: 968–971.
- Tuerxun KLBN, Shabiti YLHM, Wang W, Wufuer HMTL (2007) Study on the β2AR polymorphism in asthmatic abnormal black savda patients. Journal of Xinjiang Medical University30: 945–948.
- Zheng BQ, Wang GL, Yang S, Lu YQ, Liu RJ, et al. (2012) [Study of genetic susceptibility in 198 children with asthma]. Zhongguo Dang Dai Er Ke Za Zhi 14: 811–814.
- Birbian N, Singh J, Jindal SK, Singla N (2012) Association of beta(2)-adrenergic receptor polymorphisms with asthma in a North Indian population. Lung 190: 497–504.
- 45. Isaza C, Sepulveda-Arias JC, Agudelo BI, Arciniegas W, Henao J, et al. (2012) beta(2) -adrenoreceptor polymorphisms in asthmatic and non-asthmatic schoolchildren from Colombia and their relationship to treatment response. Pediatr Pulmonol 47: 848–855.
- 46. Fu WP, Zhao ZH, Zhong L, Sun C, Fang LZ, et al. (2011) Relationship between polymorphisms in the 5' leader cistron, positions 16 and 27 of the adrenergic beta2 receptor gene and asthma in a Han population from southwest China. Respirology 16: 1221–1227.
- Respirology 16: 1221–1227.
 47. Qiu YY, Zhang XL, Qin Y, Yin KS, Zhang DP (2010) Beta(2)-adrenergic receptor haplotype/polymorphisms and asthma susceptibility and clinical phenotype in a Chinese Han population. Allergy Asthma Proc 31: 91–97.
- Szczepankiewicz A, Breborowicz A, Sobkowiak P, Kramer L, Popiel A (2009) Role of ADRB2 gene polymorphism in asthma and response to beta(2)-agonists in Polish children. J Appl Genet 50: 275–281.
- Llanes E, Quiralte J, Lopez E, Sastre B, Chacartegui M, et al. (2009) Analysis of polymorphisms in olive pollen allergy: IL13, IL4RA, IL5 and ADRB2 genes. Int Arch Allergy Immunol 148: 228–238.
- Munakata M, Harada Y, Ishida T, Saito J, Nagabukuro A, et al. (2006) Molecular-based haplotype analysis of the beta 2-adrenergic receptor gene (ADRB2) in Japanese asthmatic and non-asthmatic subjects. Allergol Int 55: 191–198.
- Tsai HJ, Shaikh N, Kho JY, Battle N, Naqvi M, et al. (2006) Beta 2-adrenergic receptor polymorphisms: pharmacogenetic response to bronchodilator among African American asthmatics. Hum Genet 119: 547–557.
- Telleria JJ, Blanco-Quiros A, Muntion S, Antonio Garrote J, Arranz E, et al. (2006) Tachyphylaxis to beta2-agonists in Spanish asthmatic patients could be modulated by beta2-adrenoceptor gene polymorphisms. Respir Med 100: 1072– 1078.
- Bhatnagar P, Gupta S, Guleria R, Kukreti R (2005) beta2-Adrenergic receptor polymorphisms and asthma in the North Indian population. Pharmacogenomics 6: 713–719.
- Santillan AA, Camargo CA Jr, Ramirez-Rivera A, Delgado-Enciso I, Rojas-Martinez A, et al. (2003) Association between beta2-adrenoceptor polymorphisms and asthma diagnosis among Mexican adults. J Allergy Clin Immunol 112: 1095–1100.

- 55. Gao G, Wang S, Zhang J (2000) [Study on beta 2 adrenergic receptor genetic polymorphisms in asthmatics in the people of the Han nationality of northern China]. Zhonghua Jie He He Hu Xi Za Zhi 23: 93–97.
- Wang Z, Chen C, Niu T, Wu D, Yang J, et al. (2001) Association of asthma with beta(2)-adrenergic receptor gene polymorphism and cigarette smoking. Am J Respir Crit Care Med 163: 1404–1409.
- Holloway JW, Dunbar PR, Riley GA, Sawyer GM, Fitzharris PF, et al. (2000) Association of beta2-adrenergic receptor polymorphisms with severe asthma. Clin Exp Allergy 30: 1097–1103.
- Reihsaus E, Innis M, MacIntyre N, Liggett SB (1993) Mutations in the gene encoding for the beta 2-adrenergic receptor in normal and asthmatic subjects. Am J Respir Cell Mol Biol 8: 334–339.
- Kocabas NA, Kaymak C, Aydin N, Oztuna D, Karakaya AE (2007) Investigation of the beta 2-adrenoceptor (ADRB2) 16 and glutathione Stransferase P1 (GSTP1) gene polymorphisms in Turkish asthma patients. Toxicology Letters 172: S164–S165.
- 60. Larocca N, Moreno D, Garmendia JV, Velasquez O, Martin-Rojo J, et al. (2012) Beta 2 adrenergic receptor polymorphisms, at codons 16 and 27, and bronchodilator responses in adult Venezuelan asthmatic patients. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 157: 374–378
- Wang JY, Liou YH, Wu YJ, Hsiao YH, Wu LS (2009) An association study of 13 SNPs from seven candidate genes with pediatric asthma and a preliminary study for genetic testing by multiple variants in Taiwanese population. J Clin Immunol 29: 205–209.
- Binaei S, Christensen M, Murphy C, Zhang Q, Quasney M (2003) Beta2adrenergic receptor polymorphisms in children with status asthmaticus. Chest 123: 375S.
- Kotani Y, Nishimura Y, Maeda H, Yokoyama M (1999) Beta2-adrenergic receptor polymorphisms affect airway responsiveness to salbutamol in asthmatics. J Asthma 36: 583–590.
- Weir TD, Mallek N, Sandford AJ, Bai TR, Awadh N, et al. (1998) beta2-Adrenergic receptor haplotypes in mild, moderate and fatal/near fatal asthma. Am J Respir Crit Care Med 158: 787–791.
- Dewar JC, Wheatley AP, Venn A, Morrison JF, Britton J, et al. (1998) Beta2adrenoceptor polymorphisms are in linkage disequilibrium, but are not associated with asthma in an adult population. Clin Exp Allergy 28: 442–448.
- Hakonarson H, Bjornsdottir US, Ostermann E, Arnason T, Adalsteinsdottir AE, et al. (2001) Allelic frequencies and patterns of single-nucleotide polymorphisms in candidate genes for asthma and atopy in Iceland. Am J Respir Crit Care Med 164: 2036–2044.
- Leung TF, Tang NL, Chan IH, Li AM, Ha G, et al. (2002) Distribution in allele frequencies of predisposition-to-atopy genotypes in Chinese children. Pediatr Pulmonol 34: 419–424.
- Lin YC, Lu CC, Shen CY, Lei HY, Guo YL, et al. (2003) Roles of genotypes of beta2-adrenergic receptor in the relationship between cosinophil counts and lung function in Taiwanese adolescents. J Asthma 40: 265–272.
- Lv J, Liu Q, Hua L, Dong X, Bao Y (2009) Association of five single nucleotide polymorphism loci with asthma in children of Chinese Han nationality. J Asthma 46: 582–585.
- Green SA, Turki J, Bejarano P, Hall IP, Liggett SB (1995) Influence of beta 2adrenergic receptor genotypes on signal transduction in human airway smooth muscle cells. Am J Respir Cell Mol Biol 13: 25–33.
- Parola AL, Kobilka BK (1994) The peptide product of a 5' leader cistron in the beta 2 adrenergic receptor mRNA inhibits receptor synthesis. J Biol Chem 269: 4497–4505.