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A system for analysis of histopathology data within a pharmaceutical R&D environment has been developed with the
intention of enabling interdisciplinary collaboration. State-of-the-art AI tools have been deployed as easy-to-use self-
service modules within an open-source whole slide image viewing platform, so that non-data scientist users
(e.g., clinicians) can utilize and evaluate pre-trained algorithms and retrieve quantitative results. The outputs of anal-
ysis are automatically cataloged in the database to track data provenance and can be viewed interactively on the slide
as annotations or heatmaps. Commonly usedmodels for analysis of whole slide images including segmentation, extrac-
tion of hand-engineered features for segmented regions, and slide-level classification usingmulti-instance learning are
included and newmodels can be added as needed. The source code that supports running inference with these models
internally is backed up by a robust CI/CD pipeline to ensure model versioning, robust testing, and seamless deploy-
ment of the latest models. Examples of the use of this system in a pharmaceutical development workflow include glo-
meruli segmentation, enumeration of podocyte count from WT-1 immuno-histochemistry, measurement of beta-1
integrin target engagement from immunofluorescence, digital glomerular phenotyping from periodic acid-Schiff
histology, PD-L1 score prediction using multi-instance learning, and the deployment of the open-source Segment
Anything model to speed up annotation.
Introduction

Histological assessment provides essential insight into the phenotypic
properties of the tissue microenvironment. Pharmaceutical research often
relies on visual assessment of tissue morphologies, whether for characteri-
zation of in vivo experiments, or as an enrolment criterion for a clinical
trial.1,2 Automated computational analysis of histopathology data can expe-
dite tissue analysis workflows and providemore objective quantitation par-
ticularly using rapidly developing AI technologies, reducing turnaround
time and rater reliability concerns.3 However, the translational challenges
of interdisciplinary collaboration between data scientists and biologists
are a big hurdle for the realization of medical AI systems.4,5

Consequentially, systems which allow pathologists and scientists to inter-
face effectively with AI are essential for making the most of new exciting
technologies.6

The ability to leverage histopathology images in pharmaceutical re-
search and clinical trials relies on having the ability to visualize and anno-
tate these images.7 Over the past decade, the commercial sector has jumped
at these opportunities to provide solutions for AI-assisted diagnosis of histo-
logical images. This can be seen in the growing number of startup
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companies which promise easy to use off the shelf solutions for the
development of AI algorithms on tissue sections.8 These tools are tailored
for non-technical users, and the development and usage of pre-built AI
models is abstracted behind easy-to-use interfaces. However, for a skilled
computer science researcher, the proprietary and closed source nature of
these commercial tools is limiting. For example, in a current commercial so-
lution, a user can select between U-net9 and Deeplab10 network architec-
tures to perform whole slide image segmentation. However, the details of
training hyperparameters, data input and predictions aggregation strate-
gies are not visible to the user, and state-of-the-art architectures take time
to be supported.

Several open-source solutions for tissue analysis using AI have also been
made available through recent academic research.11,12 These tools provide
greater flexibility to skilled researchers because their source code can be re-
viewed and modified (the entire processing pipeline can be controlled).
However, open-source software does not have the same level of robustness
and support that paid software offers and may not be ideal for applications
that require constant uptime and multiple stakeholders.

In pharmaceutical research, documentation and reproducibility are
essential for successful regulatory approval13 and pharmaceutical
er 2023
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partnerships with histopathology AI vendors have proven successful, how-
ever several challenges exist:

1. Solutions are needed not just for experts (e.g., pathologists and com-
puter scientists) but for collaboration of pharmaceutical companies’ in-
terdisciplinary teams. A solution where inference using trained models
can easily be run through a user interface is essential for wide utility
across the diverse teams working on drug development or clinical trial
enrollment.

2. Commercial solutions often tailor for diagnosis.14,15 Researchers in
pharmaceutical companies requiremore customized solutions for differ-
ent needs.

3. As pharmaceutical companies collect and generate massive data, a strat-
egy for data governance is necessary5 and AI software would be devel-
oped and deployed using DevOps practices such as continuous
integration and development.16 Commercial solutions either doesn’t
provide the necessary flexibility and are extremely pricy.

The field of AI is rapidly developing, and pharmaceutical companies
seeking shortened development and feedback cycles are starting to invest
in internal data science talent. For example the recently open-sourced foun-
dational model Segment Anything17 has shown promise for medical image
segmentation tasks.18,19 On the topic of AI in pharmaceutical research,
Henstock (2019) said “strategic investments in external technologies will
be necessary, but the synergies of related problems allow them to be
more efficiently solved internally”.5

Towards this goal, we have developed a unified platform for histopa-
thology analysis using state-of-the-art AI technology which is tailored to
pharmaceutical use cases. This software is built on the Digital Slide
Archive,20 an open-source histopathology viewing platform. Our solution
interfaces with existing data governance systems which are already in
place. This system supports common preclinical research tasks such as tis-
sue segmentation and feature extraction, as well as patient-level prediction
using a state-of-the-art weakly supervised learning pipeline. Trained
models for these tasks can be easily deployed for use within the viewer,
allowing multidisciplinary stakeholders to utilize internally developed AI
models. Additionally, after evaluation new state-of-the-art open-source
models can be easily deployed on the system and made accessible to non-
technical users. After inference using the deployed models is run, outputs
such as segmentation predictions and attention heatmaps are automatically
visualized interactively on the slide, and analysis metadata is associated
with the slide.

Methods

A solution for histopathology data analysis requires a coalescence of
data science, software design, user interface optimization, and especially
in pharmaceutical research, careful data and code management. Fig. 1 out-
lines this solution. A description of efforts to develop a fully featured plat-
form for pharmaceutical histology data has been broken down into the
following sections: Histopathology viewer, Data governance& provenance,
Deployable AI, and Automatic testing & codebase.

Histopathology viewer

Perhaps, the primary component for a histopathology analysis platform
is a viewer in which end-users can interact with the system (center panel of
Fig. 1). Histopathology slides which are digitally scanned are known as
whole slide images (WSIs). These images are often gigapixels in size and
are compressed using specialized formats which require purpose-built soft-
ware to view.21 WSI viewers allow users to quickly zoom and pan around
these large images which is essential for exploring the tissue phenotypes.
For convenient use, a viewer must be fast, intuitive, and ideally not require
any local software installation or file downloads.

We have chosen to use the Digital Slide Archive (DSA),20 an open-
source histopathology slide viewer created by Kitware Inc. for the user
2

facing component of our histopathology analysis platform. The DSA
supports all the major WSI formats and is accessible through the web. Im-
portantly, the DSA is licensed under the Apache License 2.0 which grants
permission for commercial use, modification, distribution, patent, and pri-
vate use.22 Fig. 2 depicts the user interface of the DSA.

One of the most appealing aspects of the DSA is its ability to read data
directly from external S3 buckets,23 which helps avoid redundant data cop-
ies, and simplifies datamanagement. From preliminary testing, image load-
ing times using the DSA are comparable to the commonly used locally
installed software Aperio Imagescope. Fig. 2A shows the time for opening
a WSI and zooming into the maximum magnification level, we note that
while opening a slide directly from S3 is slower than a slide directly stored
in the EC2 instance24 which hosts the DSA, it is still reasonably fast.

The HistomicsUI viewer which is integrated into the DSA platform al-
lows user annotation of WSIs using polygon and brush tools. We have cre-
ated a library for generating these annotations (which are stored in
JSON25 format) automatically from the results of algorithmic inference.
This includes tissue segmentation, which is represented as contours,
multi-instance learning, where attention maps are visualized as heatmaps,
and feature extraction, where tissue features can be associated with slides
as metadata. Fig. 2C depicts the HistomicsUI viewer.

Data governance & provenance

Pharmaceutical data is often accompanied by data regulationswhich re-
quire a robust system for managing data access. Using an already existing
internal system put in place for data access requests, we have programmat-
ically linked the permissionsmodel of theDSA. Thismeans thatwhen a user
data request is granted, the S3 bucket holding the data is indexed in the
DSA and they are given access to view the data. The DSA is accessible via
the web secured behind a firewall, and login is accomplished via Single
Sign On using a user’s enterprise credentials.

The provenance of data in the system is tracked andmaintained when it
is created. Metadata generated by analysis tasks is cataloged by the system
as metadata, which tracks the user who ran the analysis, which model was
used, the time, and code versioning to ensure reproducibility and data
governance.

Deployable AI

AI algorithms can be deployed and run through the DSA interface. This
is accomplished by containerization of the algorithm via Docker, input pa-
rameters are captured in the user interface and passed to the code running
inference. Thus far, we have deployed algorithms for running multi-
instance learning and segmentation of WSIs, examples of the interface for
these algorithms is depicted in Fig. 2C&D respectively. We have also de-
ployed an algorithm for sub-compartment segmentation and feature extrac-
tion which uses thresholding to further stratify segmented regions.
Deployment of these algorithms is accomplished by creating an agnostic
container where the model weights and parameters are user selectable.

A simple to use script packages model weights with the associated
hyperparameters needed to run inference and uploads this to the DSA.
The deployment of algorithms in the DSA is similar to priorwork by Lutnick
et al11 which describes the deployment of a WSI segmentation pipeline in
the DSA, however, our segmentation pipeline properly captures holes in-
side segmented regions. To save on compute cost, our deployment uses
on demand hardware accelerated compute to run AI analysis, using a light-
weight EC2 instance (r5d.2xlarge) without a GPU to serve the DSA. GPU-
enabled workers are spun up dynamically as AI analysis jobs are submitted
to the system and then shutdown again when they are no longer needed.
Currently, worker uptime is managed with a CronJob which monitors
and starts workers when there are analysis jobs in the queue. This leads
to a small initial delay caused by the worker instance start time which we
have found to be an average of 86.4±14 s. However, once the worker is
started, subsequent jobs are not subject to this delay. Currently, there is a



Fig. 1. Overview of proposed system for histopathology analysis. The system is centered around a cloud-based histology viewer (DSA) which is run on AWS EC2. The DSA
interface acts as a system for exploring the database and associated metadata, as well as tracking data provenance. HistomicsUI (a component of DSA) allows viewing and
annotation of histopathology data by users. The DSA queries a series of external S3 buckets which store the data. Data queries and access pass through a system for data
stewardship ensuring proper management and governance of data. External compute resources are connected to the system allowing data scientists to use annotations to
create models using a shared codebase which is continuously improved. Trained models can be deployed and run through the DSA interface, where the results are
automatically cataloged.
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single GPU enabledworker provisioned (g3.4xlarge AWS instance), but our
framework should be easily extensible to multiple worker nodes which are
able to run jobs simultaneously to speed up periods of high demand.

Automatic testing & codebase

Application testing is essential in validating software functionality over
time. The application is tested with the following objectives: quality assur-
ance, defect identification, user satisfaction, and risk assessment and com-
pliance. Application tests were developed and executed according to a
test plan designed to verify that the application meets product require-
ments. An automated CI/CD pipeline was developed to test the codebase,
as well as containerize and deploy the AI algorithm to the DSA web inter-
face. This pipeline first retrieves the most up-to-date version of the algo-
rithm and executes unit tests and end-to-end tests. Since some of these
tests involve GPU-accelerated inference, a custom solution was developed
to allow automated calls to GPU EC2 instances after each software change
of pull request. If the tests meet acceptance criteria, the algorithm is then
containerized and deployed to the DSA interface, available to the
3

application user. This system design ensures that the codebase and model
versioning are always up-to-date, valid, and tracked against cataloged
results. New model versions are cataloged in the system as they become
available. The model version used is included in the results so this can be
tracked. In the future, we plan to implement a system for defining models
that should run in data locations. This will allow pre-specified models to
be automatically run when new data is uploaded, which we believe will
be useful for projects where new data is being continuously generated.

Concurrently, manual tests verifying the histopathology viewer web in-
terfacewere developed and executed by testers (consisting of a team of data
scientists, other developers, and testers) in accordance with the above test-
ing objectives. Test data utilized for these tests originated from both private
data sources and from The Cancer Genome Atlas (National Institute of
Health, National Cancer Institute).26

Results & use-cases

We have optimized and deployed several algorithms in the platform for
easy use by non-technical stakeholders.



Fig. 2. Panel A shows loading times for 10WSIs by storage location. This reflects the time to open a slide and zoom into themaximummagnification level. Data stored in EC2
is located on the instance, which is hosting the DSA, S3 data is stored on a remote S3 bucket. Both EC2 and S3 are accessed via the DSA overweb. Data stored locally is opened
via Aperio Imagescope on a user’s local computer. Panels B–D show examples of the user interface of the developed tool. Panel B depicts a folder of data in the system.
Thumbnails of slides in this folder are pictured and the metadata fields associated with each slide can be configured, searched, and sorted. Panel C depicts the
HistomicsUI slide viewer, where users can interact with the data, annotate, or submit analysis jobs using deployed algorithms. Here, an algorithm for PD-L1 scoring using
multi-instance learning is shown, but a model agnostic version is also available using the internally developed codebase. Panel D depicts a deployed segmentation
algorithm which can also be run through the user interface. The model parameters for this segmentation algorithm are user selectable which makes it reusable for
multiple tissue types.
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Segmentation

Examples of segmentation of glomeruli can be seen in Fig. 3A&B from
immunofluorescence and immunohistochemistry-stained renal tissue sec-
tions respectively. Further segmentation of glomerular sub-compartments
is also depicted using color deconvolution,27 Otsu’s thresholding28 and op-
tional bottleneck detection and splitting.29 Fig. 3A shows sub-compartment
segmentation of β1 integrin, and Fig. 3B shows detected WT-1 positive
podocyte nuclei both within glomeruli regions. Fig. 3C shows panoptic seg-
mentation of multiple compartments within the renal tissue. On slides con-
taining whole mouse kidney sections scanned at 40× magnification with
an average tissue area of 360±30 pixels2 tissue area, glomeruli segmenta-
tion took 290±14 s, andWT-1 detection and splitting took 11±1.6 s. On a
holdout set of 6 slides, we observed a segmentation performance Matthews
correlation coefficient=0.88.
4

Feature extraction

Features from segmented regions can be quantified, extracted, and
exported to CSV (comma separated variable) files for further analysis
all within the DSA interface. Examples of this functionality in use in-
cludes quantification of target engagement via β1 integrin positive
area Fig. 3A, and podocyte counting shown in Fig. 3B. The runtime for
feature extraction is dependent on the number and complexity of the fea-
tures being calculated, but to streamline this process, we have created an
easy-to-use framework where users can create and pass a function which
calculates the desired features, and calculation is parallelized. We note
that at the time of writing, the segmentation and feature extraction
tools described above have successfully been applied to more than 750
whole slide images from 10 different mouse studies by biologist stake-
holders.



Fig. 3. Examples of computationally produced annotations in the DSA. Panel A shows glomeruli segmentation (blue) and β1 integrin detection (orange) from
immunofluorescence-stained kidney tissue. Panel B shows glomeruli segmentation (blue) and podocyte detection (orange) from renal tissue stained using Wilms’ tumor-1
immunohistochemistry. Panel C depicts multi-compartment instance segmentation of renal tissue, tubules (blue), glomeruli (yellow), sclerotic glomeruli (red), and
arteries (orange). Panel D depicts various heatmaps of attention scores for a multi-instance learning network trained to predict PD-L1 score on H&E tissue sections.
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Multi-instance learning

Prediction of slide-level labels via multi-instance learning30 can also be
run within this system. Here, attention predictions are displayed as
heatmaps on the slide so experts can reviewwhich regions are being consid-
ered for the final prediction. Fig. 3D depicts several styles of heatmaps
which can be generated by the system when performing a PD-L1 scoring
task.31 On slides containing cancer biopsies scanned at 40×, multi-
instance learning inference takes 21±0.8 s per gigapixel and has been
tested in slides as large as 12 gigapixels in size. As with segmentation, we
note that the multi-instance learning pipeline is model agnostic and the
weights trained for PD-L1 scoring are easily replaced by another selection
from a catalog of deployed models.

AI-assisted annotation

We deployed the recently released foundational model for segmenta-
tion: Segment Anything17 in the system. Thismodel was trained to segment
structures from prompts and our preliminary testing of this model shows
that it performs well in histology images without any further optimization.
As several projects that include annotation of histology tissue are ongoing,
we decided to utilize the capabilities of the Segment Anything model to
5

decrease the workload of expert annotators. Fig. 4 shows several modes
of pre-segmentation and segmentation of user input prompts utilizing the
Segment Anything model that are currently deployed in our platform. A
video showing the capabilities of the Segment Anything model running in
our system is available in Supplemental Fig. 1. We believe we are the first
to integrate this segmentation model into a WSI viewer.

On slides containing whole mouse kidney sections scanned at 40×
magnification with an average tissue area of 360±30 pixels2 tissue area,
pre-segmentation took 270±15 s, and segmentation from bounding box
prompts took 10±0.8 s per prompt. In the future, we would like to pre-
compute features using the encoder of this model and make this segmenta-
tion aid more interactive.

Conclusion

Effectively utilizing histopathology tissue in pharmaceutical research
requires customizable solutions for viewing and annotating this data. AI
technologies have the potential to greatly impact WSI analysis workflows
by multidisciplinary teams. However, due to the fast-paced landscape of
AI technology, internal investment in data science talent by pharmaceutical
companies unlocks greater opportunities for integrating in house AI and
open-source foundational models into easily accessible interfaces. We



Fig. 4. Tools for speeding annotation using zero shot learning. We have deployed a foundational model for segmentation (Segment Anything) to speed up annotation of
structures in WSIs. Panel A depicts using the Segment Anything model for pre-segmentation of the entire WSI. Note the slide is automatically tiled to fit into memory, and
the magnification of the tiles is user selectable through the UI. Panel B shows the ability of a user to right click and assign detected contours labels from a pre-defined list
which can be set on a folder level. Panel C shows the ability to run the Segment Anything models on user defined regions of interest. This is similar to pre segmentation
of the entire WSI but is useful if the user only wants to annotate specific sections of the slide. Finally, panel D shows the ability to generate segmentations from user
prompts. Here, a user roughly annotates structures of interest by placing a bounding box around them which is converted to a segmentation boundary using the Segment
Anything model.
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have created a system for AI-assisted analysis of WSIs in a pharmaceutical
setting.

This system is built on top of an open-source WSI viewer which has
been integrated with data access systems which are already in use.
6

AI algorithms can easily be deployed within this system for use by non-
technical users, and outputs from analysis are visualized and stored in
the system with maintained provenance. The codebase for training
models and deploying them in this system is backed by a robust CI/CD
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pipeline, which tracks model versioning and ensures that deployed code
is tested.

This system is actively being used to quantify pre-clinical drug develop-
ment endpoints such as podocyte count and target engagement, as well as
to make promising open-source foundational models accessible to non-
technical end users. Additional AI capabilities are being deployed in the sys-
tem as they are needed, for example object detection. We are currently in
the process of validating this system for GxP compliance32 and hope to uti-
lize it for external deployment of AI algorithms in clinical trials.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.jpi.2023.100337.
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