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Abstract
We have carried out a comprehensive analysis of the determinants of human influenza A H3

hemagglutinin evolution. We consider three distinct predictors of evolutionary variation at

individual sites: solvent accessibility (as a proxy for protein fold stability and/or conservation),

Immune Epitope Database (IEDB) epitope sites (as a proxy for host immune bias), and prox-

imity to the receptor-binding region (as a proxy for one of the functions of hemagglutinin-to

bind sialic acid). Individually, these quantities explain approximately 15% of the variation in

site-wise dN/dS. In combination, solvent accessibility and proximity explain 32% of the

variation in dN/dS; incorporating IEDB epitope sites into the model adds only an additional

2 percentage points. Thus, while solvent accessibility and proximity perform largely as

independent predictors of evolutionary variation, they each overlap with the epitope-sites

predictor. Furthermore, we find that the historical H3 epitope sites, which date back to the

1980s and 1990s, only partially overlap with the experimental sites from the IEDB, and display

similar overlap in predictive power when combined with solvent accessibility and proximity.

We also find that sites with dN/dS > 1, i.e., the sites most likely driving seasonal immune

escape, are not correctly predicted by either historical or IEDB epitope sites, but only by prox-

imity to the receptor-binding region. In summary, a simple geometric model of HA evolution

outperforms a model based on epitope sites. These results suggest that either the available

epitope sites do not accurately represent the true influenza antigenic sites or that host

immune bias may be less important for influenza evolution than commonly thought.

Author Summary

The influenza virus is one of the most rapidly evolving human viruses. Every year, it accu-
mulates mutations that allow it to evade the host immune response of previously infected
individuals. Which sites in the virus’ genome allow this immune escape and the manner of
escape is not entirely understood, but conventional wisdom states that specific “immune
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epitope sites” in the protein hemagglutinin are preferentially attacked by host antibodies
and that these sites mutate to directly avoid host recognition; as a result, these sites are
commonly targeted by vaccine development efforts. Here, we combine influenza hemag-
glutinin sequence data, protein structural information, IEDB immune epitope data, and
historical epitopes to demonstrate that neither the historical epitope groups nor epitopes
based on IEDB data are crucial for predicting the rate of influenza evolution. Instead, we
find that a simple geometrical model works best: sites that are closest to the location where
the virus binds the human receptor and are exposed to solvent are the primary drivers of
hemagglutinin evolution. There are two possible explanations for this result. First, the ex-
isting historical and IEDB epitope sites may not be the real antigenic sites in hemaggluti-
nin. Second, alternatively, hemagglutinin antigenicity may not be the primary driver of
influenza evolution.

Introduction
The influenza virus causes one of the most common infections in the human population. The
success of influenza is largely driven by the virus’s ability to rapidly adapt to its host and escape
host immunity. The antibody response to the influenza virus is determined by the surface pro-
teins hemagglutinin (HA) and neuraminidase (NA). Among these two proteins, hemaggluti-
nin, the viral protein responsible for receptor binding and uptake, is a major driver of host
immune escape by the virus. Previous work on hemagglutinin evolution has shown that the
protein evolves episodically [1–3]. During most seasons, hemagglutinin experiences mostly
neutral drift around the center of an antigenic sequence cluster; in those seasons, it can be neu-
tralized by similar though not identical antibodies, and all of the strains lie near each other in
antigenic space [4–7]. After several seasons, the virus escapes its local sequence cluster to estab-
lish a new center in antigenic space [7–9].

There is a long tradition of research aimed at identifying important regions of the hemag-
glutinin protein, and by proxy, the sites that determine sequence-cluster transitions [4, 6, 10–
21]. Initial attempts to identify and categorize important sites of H3 hemagglutinin were pri-
marily sequence-based and focused on substitutions that took place between 1968, the emer-
gence of the Hong Kong H3N2 strain, and 1977 [10, 11]. Those early studies used the
contemporaneously solved protein crystal structure, a very small set of mouse monoclonal an-
tibodies, and largely depended on chemical intuition to identify antigenically relevant amino-
acid changes in the mature protein. Many of the sites identified in those studies reappeared
nearly two decades later, in 1999, as putative epitope sites with no additional citations linking
them to actual immune data [4]. Those sites and their groupings are still considered the canon-
ical immune epitope set today [3, 16, 22]. While the limitations of experimental techniques and
of available sequence data in the early 1980’s made it necessary to form hypotheses based on
chemical intuition, these limitations are starting to be overcome through recent advances in ex-
perimental immunological techniques and wide-spread sequencing of viral genomes. There-
fore, it is time to revisit the question of whether or not our current understanding of the host
immune response is reflected in the observed patterns of influenza hemagglutinin evolution.
For example, at least one recent model has suggested that the hemagglutinin protein may
evolve to modulate receptor-binding avidity rather than to modulate antibody-binding [23].
Moreoever, since the original epitope set was identified via sequence analysis, we do not even
know whether bona-fide immune-epitope sites actually exist, i.e., sites which represent a
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measurable bias in the host immune response. Most importantly, even if immune-epitope sites
do exist and can be experimentally identified, it is possible that they do not experience more
positive selection than other important sites in the protein.

Some recent studies have begun to address these questions indirectly, via evolutionary anal-
ysis. For example, over the last two decades, virtually every major study on positive selection in
hemagglutinin has found some but never all of the historical epitope sites to be under positive
selection [3, 16, 18, 19, 23]. Furthermore, each of these studies has found a set of sites that are
under positive selection but do not belong to any historical epitope. Finally, because every
study identifies slightly different sites, there seems to be no broad agreement on which sites are
under positive selection [12, 16, 18, 19]. The sites found by disparate techniques are similar but
they are never identical.

To dissect the determinants of hemagglutinin evolution, we here linked several predictors,
including relative solvent accessibility, the inverse distance from the receptor-binding region,
and IEDB immune epitope data, to site-wise evolutionary rates calculated from all of the
human H3N2 sequence data for the last 22 seasons (1991–2014). We found that, individually,
all these predictors explained approximately 15% of evolutionary rate variation. After control-
ling for biophysical constraints with relative solvent accessibility and function with distance to
the receptor-binding region, the remaining predictive power of either IEDB or historical cate-
gories was relatively low. In addition, we found that current IEDB data does not reflect the his-
torical epitope sites or their groups. Finally, by explicitly accounting for RSA, proximity, and
host immune data, we found that we could predict nearly 35% of the evolutionary rate varia-
tion in hemagglutinin, nearly twice as much variation as could be explained by earlier models.

Results

Relationship between evolutionary rate and inverse distance to the
receptor-binding site
Our overarching goal in this study was to identify specific biophysical or biochemical proper-
ties of the mature protein that determine whether a given site will evolve rapidly or not. As a
measure of evolutionary variation and selective pressure, we used the metric dN/dS. dN/dS can
measure both the amount of purifying selection acting on a site (when dN/dS� 1 at that site)
and the amount of positive diversifying selection acting on a site (when dN/dS≳ 1). For sim-
plicity, we will refer to dN/dS as an evolutionary rate, even though technically it is a relative
evolutionary rate or evolutionary-rate ratio. We built an alignment of 3854 full-length H3 se-
quences spanning 22 seasons, from 1991/92 to 2013/14. We subsequently calculated dN/dS at
each site, using a one-rate fixed-effects likelihood (FEL) model as implemented in the software
HyPhy [24].

Several recent works have shown that site-specific evolutionary variation is partially pre-
dicted by a site’s solvent exposure and/or number of residue-residue contacts in the 3D struc-
ture [19, 20, 25–30] (see Ref. [31] for a recent review). This relationship between protein
structure and evolutionary conservation likely reflects the requirement for proper and stable
protein folding: Mutations at buried sites or sites with many contacts are more likely to disrupt
the protein’s conformation [30] or thermodynamic stability [32]. In addition, there may be
functional constraints on site evolution. For example, regions in proteins involved in protein–
protein interactions or enzymatic reactions are frequently more conserved than other regions
[27, 33, 34]. However, these structural and functional constraints generally predict the amount
of purifying selection expected at sites, and therefore they cannot identify sites under positive
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diversifying selection. Moreover, the short divergence time of viruses causes the systematic bio-
physical pressures that predict much of eukaryotic protein evolution to be much less dominant
in viral evolution [28]. Thus, we set out to find a constraint on hemagglutinin evolution that
was related to the protein’s role in viral binding and fusion.

A few earlier studies had shown that sites near the sialic acid-binding region of hemaggluti-
nin tend to evolve more rapidly than the average for the protein [4, 20, 21]. Furthermore, when
mapping evolutionary rates onto the hemagglutinin structure, we noticed that the density of
rapidly evolving sites seemed to increase somewhat towards the receptor-binding region
(Fig 1A). Therefore, as the primary function of hemagglutinin is to bind to sialic acid and in-
duce influenza uptake, we reasoned that distance from the receptor-binding region of HA
might serve as a predictor of functionally driven HA evolution. We calculated distances from
the sialic acid-binding region (defined as the distance from site 224 in HA), and correlated
these distances with the evolutionary rates at all sites. We found that distance from the recep-
tor-binding region was a strong predictor of evolutionary rate variation in hemagglutinin
(Pearson correlation r = 0.41, P< 10−15).

Next, we wanted to verify that this correlation was representative of hemagglutinin evolu-
tion and not just an artifact of the specific site chosen as the reference point in the distance cal-
culations. It would be possible, for example, that distances to several spatially separated
reference sites all resulted in similarly strong correlations. We addressed this question system-
atically by making, in turn, each individual site in HA the reference site, calculating distances
from that site to all other sites, and correlating these distances with evolutionary rate. We then
mapped these correlations onto the structure of hemagglutinin, coloring each site according to
the strength of the correlation we obtained when we used that site as reference in the distance
calculation (Fig 1B). We obtained a clean, gradient-like pattern: The correlations were highest
when we calculated distances relative to sites near the receptor-binding site (with the maxi-
mum correlation obtained for distances relative to site 224), and they continuously declined
and then turned negative the further we moved the reference site away from the apical region
of hemagglutinin (Fig 1B). This result was in stark contrast to the pattern we had previously
observed when mapping evolutionary rate directly (Fig 1A). In that earlier case, while there
was a perceptible preference of faster evolving sites to fall near the receptor-binding site, the
overall distribution of evolutionary rates along the structure looked mostly random to the
naked eye. We thus found a geometrical, distance-based constraint on hemagglutinin evolu-
tion: Sites evolve faster the closer they lie toward the receptor-binding region.

We also evaluated how proximity to the receptor-binding region performed as a predictor
of dN/dS in comparison to the previously proposed structural predictors relative solvent acces-
sibility (RSA) and weighted contact number (WCN). We found that among these three quanti-
ties, proximity to the sialic acid-binding region was the strongest predictor, explaining 16% of
the variation in dN/dS (Pearson r = 0.41, P< 10−15, see also Fig 2 and S1 Fig). RSA and WCN
explained 14% and 6% of the variation in dN/dS, respectively (r = 0.37, P< 10−15 and r = 0.25,
P = 7 × 10−9). Proximity to the sialic acid-binding region and RSA were virtually uncorrelated
(r = 0.08, P = 0.09) while RSA and WCN correlated strongly (r = −0.64, P< 10−15). These re-
sults suggested that proximity to the sialic acid-binding region and RSA should be used jointly
in a predictive model.

Because hemagglutinin has, in addition to its function as a receptor-binding protein, a host
of other intermediate functional states during the viral fusion process, we also tested the ability
of structural metrics from the post-fusion state to predict hemagglutinin evolutionary rate
[35]. We found no significant metric, either RSA or proximity, derived from the post-fusion
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Fig 1. Evolutionary-rate variation along the hemagglutinin structure. (A) Each site in the protein structure is colored according to its evolutionary rate
dN/dS. Hot colors represent high dN/dS (positive selection) while cool colors represent low dN/dS (purifying selection). (B) Each site in the protein structure
is colored according to the dN/dS–distance correlation obtained when distances are calculated relative to that site. Hot colors represent positive correlations
while cool colors represent negative correlations. Thus, distances from sites that are redder are better positive predictors of the evolutionary rates in the
protein than are distances from bluer sites; distances from blue sites are actually anti-correlated with evolutionary rate. Distances from sites that are colored
green have essentially no predictive ability.

doi:10.1371/journal.ppat.1004940.g001
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Fig 2. Proportion of variance in dN/dS explained by different linear models. The height of each bar represents the coefficient of determination (R2) for a
linear model consisting of the stated predictor variables. The historical epitope sites from Bush 1999 [4] (yellow bar on the left) are the single best predictor of
evolutionary rate variation. However, a model using two predictors that each have a clear biophysical meaning (solvent exposure, proximity to receptor-
binding region) explains almost twice the variation in dN/dS (yellow bar on the right).

doi:10.1371/journal.ppat.1004940.g002
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state. (Complete data and analysis scripts are available in the accompanying Github repository,
see Methods for details.)

Incorporating IEDB immunological data
Another potential functional constraint on hemagglutinin evolution is a bias in the human im-
mune system. This bias, generally referred to as antigenicity, describes the extent to which the
human immune system does a better job attacking one region of a protein compared to anoth-
er. Conventional wisdom states that functionally important sites in the protein that are targeted
by antibodies will evolve more rapidly to facilitate immune escape. And indeed, our results
from the previous subsection have shown that proximity to the receptor-binding region is a
good predictor of evolutionary variation. However, if substitutions to avoid direct antibody
binding are the primary cause of positive selection, then we would expect antigenic sites on
hemaggalutinin to serve as a substantially better predictors of adaptation than proximity to the
receptor-binding site alone.

For influenza hemagglutinin H3, there exists a list of canonical, historical epitope sites that
are commonly considered to represent this bias [4]. However, these sites were not primarily de-
fined based on actual immunological data, and they have not been re-validated since the late
1990s even though more experimental data is now available. (See Discussion for details on the
history of the historical epitope sites.) Before we could generate a combined evolutionary
model, we therefore considered it essential to validate the antigenic groups with available im-
munological data. As it turns out, the majority of antigenic data available did not agree with
the historical epitope sites (S1 Text). Therefore, we used both the historical epitope sites and a
set of IEDB re-defined epitopes for further modeling.

A detailed explanation of our re-grouping based on IEDB data is available in S1 Text. It is
important to note that these groups are not intended to represent a new canonical set of hem-
agglutinin epitopes. Indeed, the data from which they were derived is limited and relatively
poorly annotated. However, considering the magnitude of the difference between the historical
epitopes and the available IEDB data we considered it imperative to include IEDB derived epi-
topes in our analysis.

Thus, we considered both the historical epitope groups (Bush 1999) and the IEDB derived
epitopes 1–4, defined in S1 Text. Because a site’s epitope status is a categorical variable, we cal-
culated variance explained as the coefficient of determination (R2) in a linear model with dN/
dS as the response variable and epitope status as the predictor variable. We found that IEDB
epitopes explained 15% of the variation in dN/dS, comparable to RSA and proximity. In com-
parison, the historical epitopes alone explained nearly 18% of the variation in dN/dS, outper-
forming all other individual predictor variables considered here (Fig 2 and Table 1). However,
as discussed in S1 Text, the available IEDB data suggest that not all of the historical sites may
be actual immune epitope sites. Therefore, we suspected that some of the predictive power of
historical sites was due to these sites simply being solvent-exposed sites near the receptor-bind-
ing region. We similarly wondered to what extent the predictive power of the IEDB epitope
sites was attributable to the same cause, since, in fact, both historical and IEDB epitope sites
showed comparable enrichment in sites near the sialic acid-binding region and in solvent-ex-
posed sites (S2 Fig). Therefore, we analyzed how the variance explained increased as we com-
bined epitope sites (IEDB or historical) with either RSA or proximity or both.

We found that epitope status, under either definition (IEDB/historical), led to increased pre-
dictive power of the model when combined with either RSA or proximity (Fig 2). However, a
model consisting of just the two predictors RSA and proximity, not including any information
about epitope status of any sites, performed even better than any of the other one- or two-

Geometric Constraints Dominate the Antigenic Evolution of Influenza HA

PLOS Pathogens | DOI:10.1371/journal.ppat.1004940 May 28, 2015 7 / 20



predictor models, explaining 32% of the variation in dN/dS (Fig 2). Adding epitope status to
this best-performing two-predictor model resulted in only minor improvement, from 32% to
34% variance explained in the case of IEDB epitopes and from 32% to 37% variance explained
in the case of historical epitope sites (Fig 2 and Table 1).

Predicting sites under selection and comparisons to other work
The geometrical constraints RSA and proximity explained more variance in dN/dS than did
epitope sites, but were they also better at predicting sites of interest? Because dN/dS can mea-
sure purifying as well as positive diversifying selection, the percent variance in dN/dS that a
model explains may not necessarily accurately reflect how useful that model is in predicting
specific sites, e.g. sites under positive selection. For example, one could imagine a scenario in
which a model does exceptionally well on sites under purifying selection (dN/dS� 1) but fails
entirely on sites under positive selection (dN/dS> 1). Such a model might explain a large pro-
portion of variance but be considered less useful than a model that overall predicts less varia-
tion in dN/dS but accurately pinpoints site under positive selection. Therefore, we wondered
whether epitope sites might do a poor job predicting background purifying selection but might
still be useful in predicting sites with dN/dS> 1. We found, to the contrary, that neither the
historical nor the IEDB epitope sites could reliably predict sites with dN/dS> 1, alone or in
combination with RSA (Fig 3A–3D). Proximity to the receptor-binding site, on the other hand,
correctly predicted four sites with dN/dS> 1, even in the absence of any other predictors. No-
tably, all models we considered here were robust to cross-validation. The cross-validated resid-
ual standard error was virtually unchanged from its non-cross-validated value in all cases
(Table 1). Because proximity clearly identified four points with high dN/dS, we also verified
that the proximity–dN/dS correlation was not caused just by these four points. We removed
from our data set the four points that had both predicted and observed dN/dS> 1, and found
that a significant proximity–dN/dS correlation remained nonetheless (r = 0.17, p = 0.00001).

Finally, we compared the predictions from the geometrical model of hemagglutinin evolu-
tion to results from a recent study of antigenic cluster transitions; that study found seven sites
near the receptor-binding region which were critical for cluster transitions according to

Table 1. Predictive performance of each linear model considered.

Predictors in the linear model R2 RSE cvRSE10 cvRSEloo

RSA 0.14 0.41 0.41 0.41

IEDB Epitopes 0.15 0.41 0.42 0.42

1 / Distance 0.16 0.40 0.41 0.41

Bush 1999 0.18 0.40 0.41 0.41

RSA + IEDB Epitopes 0.23 0.39 0.41 0.40

RSA + Bush 1999 0.24 0.39 0.39 0.39

1 / Distance + IEDB Epitopes 0.23 0.39 0.40 0.40

1 / Distance + Bush 1999 0.28 0.38 0.39 0.39

RSA + 1 / Distance 0.32 0.37 0.37 0.37

RSA + 1 / Distance + IEDB Epitopes 0.34 0.36 0.39 0.38

RSA + 1 / Distance + Bush 1999 0.37 0.35 0.37 0.37

R2 is the proportion of variation in dN/dS explained by the specified model. RSE is the residual standard error of the linear model. cvRSE10 is the cross

validated residual standard error calculated by 10-fold cross validation. cvRSEloo is the cross validated residual standard error calculated by leave-one-out

cross validation.

doi:10.1371/journal.ppat.1004940.t001
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Fig 3. Observed dN/dS vs. predicted dN/dS for different predictive linear models. (A) Only epitope status according to the historical definition is used as
predictor variable. (B) Historical epitope sites and RSA are used as predictor variables. (C) Only epitope status according to the IEDB non-linear epitope data
is used as predictor variable. (D) IEDB epitope sites and RSA are used as predictor variables. (E) Only proximity to the sialic acid-binding region (measured
as 1/Distance to Residue 224) is used as predictor variable. (F) Proximity and RSA are used as predictor variables. Individual sites with dN/dS > 1 are
predicted correctly only if the linear model includes the 1/Distance predictor. However, in all cases, adding the RSA predictor significantly improves the
model predictions.

doi:10.1371/journal.ppat.1004940.g003
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hemagglutinin inhibition (HI) assays with ferret antisera [21]. The sites identified in Ref. [21]
were 145, 155, 156, 158, 159, 189, and 193. For comparison, our geometric model (with predic-
tors RSA and 1/Distance) predicted none of these sites to be under positive selection. Sites pre-
dicted to have dN/dS> 1 were instead 96, 137, 138, 143, 222, 223, 225, and 226. Moreover, out
of the seven sites from Ref. [21], only one (site 145) had an observed dN/dS significantly above
1. By contrast, four of the eight sites predicted under the geometric model to have dN/dS> 1
did indeed have dN/dS significantly above 1. Thus, the sites that determine the major antigenic
changes in the virus did not at all overlap with the sites expected and observed to be under the
greatest evolutionary pressure. When investigating the location of these sites in detail, we
found that all of the sites we predicted to have dN/dS> 1 were located just basal to the recep-
tor-binding site, whereas nearly all of the sites from [21] (with the exception of 145, the site
with dN/dS> 1) were located on the apical side of the receptor-binding site (Fig 4).

In summary, we have found that two simple geometric measures of a site’s location in the
3D protein structure, solvent exposure and proximity to the receptor-binding region, jointly
outperformed, by a wide margin, any previously considered predictor of evolutionary variation
in hemagglutinin, including immune epitope groups. In fact, the vast majority of the variation
in evolutionary rate that was explained by the historical epitope sites was likely due to these
sites simply being located near the receptor-binding region on the surface of the protein. How-
ever, historical epitope sites, in combination with solvent exposure and proximity, had some
residual explanatory power beyond even a three-predictor model that combined the two geo-
metric measures with IEDB immune-epitope data. We suspect that this residual explanatory
power reflects the sequence-based origin of the historical epitope sites. To our knowledge, the
historical epitope sites were at least partially identified by observed sequence variation, so that,
to some extent, these sites are simply the sites that have been observed to evolve rapidly
in hemagglutinin.

Discussion
We have conducted a thorough analysis of the determinants of site-specific hemagglutinin evo-
lution. Most importantly, we have found that immune epitopes, defined either by IEDB data or
historically by sequence analysis, account for a relatively small portion of influenza evolution.
In addition, we have found that neither epitope definition could be used to predict hemaggluti-
nin sites under positive selection. By contrast, a simple geometric measure, receptor-binding
proximity, is both a combined strong predictor of evolutionary rate and is the only quantity
that can predict sites with dN/dS> 1. In addition, we have shown that a simple linear model
containing three predictors, solvent accessibility, proximity to the receptor-binding region, and
IEDB epitopes, explains nearly 35% of the evolutionary rate variation in hemagglutinin H3.
Taken together our analysis suggests that one of two possible explanations must be true. First,
it is possible that hemagglutinin antigenicity is not a strong direct driver of influenza adaptive
evolution. Second, alternatively, the current IEDB data and historical epitopes may simply be
insufficient and/or incorrect. Such a situation would explain why neither epitope definition can
explain much evolutionary rate variation beyond the geometric constraints, and why neither
epitope definition can predict sites under positive selection.

History of epitopes in hemagglutinin H3
Efforts to define immune epitope sites in H3 hemagglutinin go back to the early 1980’s [10].
Initially, epitope sites were identified primarily by speculating about the chemical neutrality of
amino acid substitutions between 1968 (the year H3N2 emerged) and 1977, though some
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Fig 4. Sites identified by Koel et al. 2013 and those predicted to have dN/dS > 1. The sites shown in purple are those identified by Koel et al. 2013 [21] to
be critical for antigenic cluster transitions. Only one of these sites has a dN/dS significantly above one, site 145. The sites shown in red are those that our
geometrical model predicts to have dN/dS > 1. (Half of those sites have observed dN/dS > 1.) Note that our model predicts only sites on the basal side of
sialic acid to be under positive selection, since our reference point for proximity is site 224. Site 145, the only purple site under positive selection, is also the
only purple site on the basal side of sialic acid.

doi:10.1371/journal.ppat.1004940.g004
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limited experimental data on neutralizing antibodies was also considered [10, 11]. In 1981, the
initial four epitope groups were defined by non-neutrality (amino-acid substitutions that the
authors believed changed the chemical nature of the side chain) and relative location, and
given the names A through D [10]. Since that original study in 1981, the names and general lo-
cations of H3 epitopes have remained largely unchanged [4, 16]. The sites were slightly revised
in 1987 by the same authors and an additional epitope named E was defined [11]. From that
point forward until 1999 there were essentially no revisions to the codified epitope sites. In ad-
dition, while epitopes have since been redefined by adding or removing sites, no other epitope
groups have been added [3, 16, 18]; epitopes are still named A–E. In 1999, the epitopes were re-
defined by more than doubling the total number of sites and expanding all of the epitope
groups [4]. At that time, the redefinition consisted almost entirely of adding sites; very few sites
were eliminated from the epitope groups. Although this set of sites and their groupings remain
by far the most cited epitope sites, it is not particularly clear what data justified this definition.
Moreover, when the immune epitope database (IEDB) summarized the publicly available data
for influenza in 2007, it only included one IEDB B cell epitope in humans (Table 2 in [36]). Al-
though there were a substantial number of putative T cell epitopes in the database, a priori
there is no reason to expect a T cell epitope to show preference to hemagglutinin as opposed to
any other influenza protein; yet it is known that several other influenza proteins show almost
no sites under positive selection. Moreover, it is known that the B cell response plays the big-
gest role is maintaining immunological memory to influenza, and thus it is the most important
arm of the adaptive immune system for influenza to avoid.

The historical H3 epitope sites have played a crucial role in molecular evolution research.
Since 1987, an enormous number of methods have been developed to analyze the molecular
evolution of proteins, and specifically, to identify positive selection. The vast majority of these
methods have either used hemagglutinin for testing, have used the epitopes for validation, or
have at some point been applied to hemagglutinin. Most importantly, in all this work, the epi-
tope definitions have been considered fixed. Most investigators simply conclude that their
methods work as expected because they recover some portion of the epitope sites. Yet virtually
all of these studies identify many sites that appear to be positively selected but are not part of
the epitopes. Likewise, there is no single study that has ever found all of the epitope sites to be
important. Even if the identified sites from all available studies were aggregated, we would like-
ly not find every site among the historical epitopes in that aggregated set of sites.

Implications of historical epitope groups for current research
Given all of this research activity, it seems that the meaning of an immune epitope has been
muddled. Strictly speaking, an immune epitope is a site to which the immune system reacts.
There is no a priori reason why an immune epitope needs to be under positive selection, needs
to be a site that has some number or chemical type of amino acid substitutions, or needs to be
predictive of influenza whole-genome or hemagglutinin-specific sequence cluster transitions.
Yet, from the beginning of the effort to define hemagglutinin immune epitopes, such features
have been used to identify epitope sites, resulting in a set of sites that may not accurately reflect
the sites against which the human immune system produces antibodies.

Ironically, this methodological confusion has actually been largely beneficial to the field of
hemagglutinin evolution. As our data indicate, if the field had been strict in its pursuit of im-
mune epitopes sites, it would have been much harder to produce predictive models with those
sites, in particular given that IEDB data on non-linear epitopes have been sparse until very re-
cently. By contrast, the historical epitope sites have been used quite successfully in several pre-
dictive models of the episodic nature of influenza sequence evolution. In fact, in our analysis,
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historical epitopes displayed the highest amount of variance explained among all individual
predictors (Fig 2). We argue here that the success of historical epitope sites likely stems from
the fact that they were produced by disparate analyses each of which accounted for a different
portion of the evolutionary pressures on hemagglutinin. Of course, it is important to realize
that some of this success is likely the result of circular reasoning, since the sites themselves
were identified at least partially from sequence analysis that included the clustered, episodic na-
ture of influenza hemagglutinin sequence evolution.

Despite the success of historical epitope groups, they only predict about 18% of the evolu-
tionary rate-variation of hemagglutinin for the entire phylogenetic tree. Since many of these
sites likely are not true immune epitopes (and therefore not host dependent), one might ask
which features of the historical epitope sites make them good predictors. We suspect that they
perform well primarily because they are a collection of solvent-exposed sites near the sialic
acid-binding region (see S2 Fig). We had shown previously that sites within 8 Šof the sialic
acid-binding site are enriched in sites under positive selection, compared to the rest of the pro-
tein [20]. A similar result was found in the original paper by Bush et al. [4]. However, the relat-
ed metric of distance from the sialic acid-binding site has not previously been considered as a
predictor of evolution in hemagglutinin. Furthermore, before 1999, most researchers thought
the opposite should be true; that receptor-binding sites should have depressed evolutionary
rates [4]. Even today the field seems split on the matter [21]. As we have shown here, the in-
verse of the distance from sialic acid is a relatively strong quantitative predictor of hemaggluti-
nin evolution; by itself this distance metric can account for 16% of evolutionary rate-variation.
Moreover, by combining this one metric with another to control for solvent exposure, we can
account for more than a third of the evolutionary rate variation in hemagglutinin. For refer-
ence, this number is larger than the variation one could predict by collecting and analyzing all
of the hemagglutinin sequences that infect birds (another group of animals with large numbers
of natural influenza infections), and using those rates to predict human influenza hemaggluti-
nin evolutionary rates [20].

In terms of re-grouping IEDB immune data, it is important to note that the IEDB has major
limitations; not all existing (not to mention all possible) immunological data have been added.
Further, the extent to which certain epitopes (e.g., stalk epitopes) have been mapped may be
more reflective of a bias in research interests among influenza researchers than a bias in the
human immune system. Also, until recently, the ability to generate unbiased high-affinity anti-
bodies to influenza has been limited [37, 38]. Therefore, in our re-derivation of epitope group-
ings, we are certainly missing sites or may be incorrectly grouping the ones that we have. Our
analysis of epitope sites will likely have to be redone as more data become available. However,
we expect that as more non-linear data become available, they will broadly follow the trend ob-
served in the linear epitope data, that is, the more antibodies are mapped, the more sites in the
hemagglutinin protein appear in at least one mapping, until virtually every site in the entire
hemagglutinin protein is represented. Under this scenario, the ability to predict evolution from
immunological data would become worse, not better, as more data are accumulated.

One additional caveat comes from any potential effect of glycosylation on influenza im-
mune escape. Glycosylations on hemagglutinin can have a major effect on receptor and anti-
body binding [13]. In addition, the number of glycosylations in H3 hemagglutinin has
increased since initial introduction of pandemic H3N2 in 1968 [13]. However, a priori there is
no reason to believe that glycosylation will either increase or decrease dN/dS at individual sites
or groups of sites; it could affect dN/dS in either direction, in particular if direct antibody es-
cape is not the primary driver of hemagglutinin evolution. Moreover, there is no clear way to
incorporate glycosylation into our regression model. In the future, investigating changing
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glycosylation patterns throughout the evolution of H3 hemagglutinin may yield important in-
sights into influenza adaptation and immune escape.

Geometric constraints likely dominate adaptive evolution in
hemagglutinin
Why do geometric constraints (solvent exposure and proximity to receptor-binding site) do a
good job predicting hemagglutinin evolutionary rates? Hemagglutinin falls into a class of pro-
teins known collectively as viral spike glycoproteins (GP). In general, the function of these pro-
teins is to bind a host receptor to initiate and carry out uptake or fusion with the host cell.
Therefore, a priori one might expect that the receptor-binding region would be the most con-
served part of the protein, since binding is required for viral entry. Yet, in hemagglutinin sites
near the binding region are the most variable in the entire protein. There are at least two possi-
ble models that might explain this observation. First, conventional wisdom says that in terms
of host immune evasion, antibodies that bind near the receptor-binding region may be the
most inhibitory, and hence mutations in this region the most effective in allowing immune es-
cape. Viral spike GPs have a surface that is both critical for viral survival and is sufficiently
long lived that a host immune response is easily generated against it. There are likely many
other viral protein surfaces that are comparatively less important or sufficiently short lived dur-
ing a conformational change that antibody neutralization is impractical. Thus, the virions that
survive to the next generation are those with substantial variation at the surface or surfaces
with high fitness consequences and a long half-life in vivo. Evolutionary variation at surfaces
with low or no fitness consequences, or at short-lived surfaces, should behave mostly like neu-
tral variation and hence appear as random noise, not producing a consistent signal of positive
selection. Second, according to the avidity modulation model of Hensley et al. [23], it is possi-
ble that antibody inhibition is not overcome by escaping the antibody directly. Considering the
fact that neither historical nor IEDB immune epitopes vastly out-performed our simple dis-
tance metric, we think that our results support a model which does not expect an evolutionary
bias based on antibody binding sites. However, it remains a possibility that the historical epi-
topes and current IEDB data are simply wrong about which sites and groups of sites the
human immune system attacks. Either way, our work highlights the need for a paradigm shift
in the field.

We also need to consider that actual epitope sites, i.e., sites toward which the immune sys-
tem has a bias, may not be that important for the evolution of viruses. An epitope is simply a
part of a viral protein to which the immune system reacts. Therefore, it represents a host-cen-
tered biological bias. The virus may experience stronger selection at regions with high fitness
consequences but that generate a relatively moderate host response compared to other sites
with low fitness consequences that generate a relatively strong host response. Moreover, there
is little reason to believe that influenzamust escape an antibody by directly reducing the bind-
ing of that antibody. There are other possible scenarios for immune evasion, e.g. avidity modu-
lation as stated above. Thus, we expect that the geometric constraints we have identified here
will be more useful in future modeling work than the IEDB epitope groups we have defined.
Moreover, we expect that similar geometrical constraints will exist in other viral spike glyco-
proteins, and in particular in other hemagglutinin variants.

By contrast to the clear geometric constraints we observed for the pre-fusion structure, we
found no comparable result for the post-fusion structure. There are perhaps several good rea-
sons to expect this result. First, the transition state is likely very short-lived, such that the
human immune system is not able to generate antibodies against it. Second, due to the short-
lived functional nature of the transition state, there is likely relatively little selection for folding
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stability. Therefore, for the post-fusion structure we do not expect to observe the RSA–rate cor-
relation that exists in the pre-fusion structure and in most other proteins. Third, models de-
scribing the transition from the pre-fusion to the post-fusion state show that the HA1 chain
dissociates from the HA2 chain [39]. Subsequently, the HA2 chain carries out virtually all of
the fusogenic functions. Thus, the HA1 chain is likely the functional unit in the first step of
entry and the HA2 chain is likely the functional unit in the second. However, there is almost
no rapid evolution happening in the HA2 chain, i.e., the HA2 chain does not seem to experi-
ence any positive diversifying selection.

Remarkably, the sites we found that experienced the most positive selection showed mini-
mal overlap with the sites found to be minimally sufficient for explaining the major antigenic
transitions in H3N2, as determined by HI assays with ferret antisera [21]. While both groups
of sites lie near the sialic-acid binding region, the vast majority of positively selected sites are lo-
cated basally to sialic acid whereas sites identified by HI assays lie predominantly on the apical
side (Fig 4). This finding suggests that HI assays and positive selection analyses reflect distinct
biological mechanisms. For example, HI assays might not accurately reflect selection pressures
in vivo. Such a result would suggest that influenza is not under pressure to directly escape anti-
body binding. Alternatively, it is possible that the standard manner for obtaining ferret antisera
simply may not represent a good proxy for the cyclical nature of human influenza infections
[40]. Indeed, recent evidence suggests that, at least for the pandemic H1N1 strain, cyclical in-
fections can shift the antibody response toward the receptor-binding region [41]. In future
work, disentangling the different mechanisms reflected by HI assays and by positive-selection
analyses will likely be crucial for improved prediction of HA evolution and of optimal
vaccine strains.

Materials and Methods

Obtaining influenza data and preparing sequences
All of the data we analyzed were taken from the Influenza Research Database (IRD) [42]. The
IRD provides IEDB immune data curated from the data available in the Immune Epitope Data-
base [43].

We used sequences that had been collected since the 1991–1992 influenza season. Any sea-
son before the 1991–1992 season had an insufficient number of sequences to contribute much
to the selection analysis. The sequences were filtered to remove redundant sequences and labo-
ratory strains. The sequences were then aligned with MAFFT [44]. Since it is known that there
have been no insertions or deletions since the introduction of the H3N2 strain, we imposed a
strict opening penalty and removed any sequences that had intragenic gaps. In addition, we
manually curated the entire set to remove any sequence that obviously did not align to the vast
majority of the set; in total the final step only removed about 10 sequences from the final set of
3854 sequences. For the subsequent evolutionary rate calculations, we built a tree with FastTree
2.0 [45].

Computing evolutionary rates and relative solvent accessibilities
To compute evolutionary rates, we used a fixed effects likelihood (FEL) approach with the
MG94 substitution model [24, 46, 47]. We used the FEL provided with the HyPhy package
[24]. For the full setup see the linked GitHub repository (https://github.com/wilkelab/
influenza_HA_evolution). As is the case for all FEL models, an independent evolutionary rate
is fit to each site using only the data from that column of the alignment. Because our data set
consisted of nearly 4000 sequences, almost every site in our alignment had a statistically signifi-
cant posterior probability of being either positively or negatively selected after adjusting via the
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false discovery rate (FDR) method. As shown in Fig 3, all evolutionary rates fall into a range be-
tween dN/dS = 0 and dN/dS = 4.

We computed RSA values as described previously [28]. Briefly, we used DSSP [48] to com-
pute the solvent accessibility of each amino acid in the hemagglutinin protein. Then, we used
the maximum solvent accessibilities [49] for each amino acid to normalized the solvent accessi-
bilities to relative values between 0 and 1. We found that RSA calculated in the trimeric state
produced better predictions than RSA calculated in the monomeric state. Thus, we used multi-
meric RSA in all models in this study. Both multimeric and monomeric RSA are included in
the supplementary data.

Evolutionary rate-distance correlations
To create the structural heat map of correlations shown in Fig 1B, we first needed to calculate
the correlations between evolutionary rates and pairwise distances, calculated in turn for each
location in the protein structure as the reference point for the distance calculations. Conceptu-
ally, we can think of this analysis as overlaying a grid on the entire protein structure, where we
first calculate the distance to various grid points from every Cα in the entire protein, and then
compute the correlation between the set of distances to the sites on the grid and the evolution-
ary rate at those sites. In practice, we calculated the distance from each Cα to every other Cα.
We then colored each residue by the correlation obtained between evolutionary rates and all
distances to its Cα.

Statistical analysis and data availability
All statistical analyses were performed using R [50]. We built the linear models with both the
lm() and glm() functions. For cross validation, we used the cv.glm() function within the
boot package. Residual standard error values were computed by taking the square root of the
delta value from cv.glm(). With the exception of graph visualizations, all figures in this
manuscript were created using ggplot2 [51].

A complete data set including evolutionary rates, epitope assignments, RSA, and proximity
to the receptor-binding site is available as S1 Dataset. Raw data and analysis scripts are avail-
able at https://github.com/wilkelab/influenza_HA_evolution. In the repository, we have in-
cluded all human H3 sequences from the 1991–1992 season to present combined into a single
alignment. We have cleaned the combined data to only include sequences with canonical
bases, non-repetitive sequences, and we have hand filtered the data to ensure all included se-
quences align appropriately to the 566 known amino acid sites. In addition, we have built a tree
and visually verified that there were no outlying sequences on the tree for the combined set.

Technical considerations for analysis
The site-wise numbering for the H3 hemagglutinin protein reflects the numbering of the ma-
ture protein; this numbering scheme requires the removal of the first 16 amino acids in the
full-length gene. Thus, for protein numbering purposes, site number 1 is actually the 17th
codon in full-length gene numbering. The complete length of the H3 hemagglutinin gene is
566 sites while the total length of the protein is 550 sites. It is important to point out that the
mature H3 protein has two chains (HA1 and HA2) that are produced by cutting the presursor
(HA0) protein between sites 329 and 330 in protein numbering. In addition, as a result of clon-
ing and experimental diffraction limitations, most (or likely all) hemagglutinin structures do
not include some portion of the first or last few amino acids of either chain of the mature pro-
tein, and crystallographers always remove the C-terminal transmembrane span from HA2. For
example, the structure we used (PDBID: 4FNK) in this study does not include the first 8 amino
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acids of HA1, the last 3 amino acids of HA1, or the last 48 amino acids of HA2. As a result,
HA1 includes sites 9–326 and HA2 includes sites 330–502. The complete data table in the proj-
ect repository lists the gene sequence from one of the three original H3N2 (Hong Kong flu)
hemagglutinin (A/Aichi/2/1968), the gene numbering, the protein numbering, the numbering
of one H3N2 crystal structure, historical immune epitope sites from 1981, 1987 and 1999, and
every calculated parameter used (and many others than were not used) in this study. In general,
the most common epitope definitions in use today are those employed by Bush et. al 1999 [4].
Throughout this work, we refer to the Bush et. al 1999 epitopes as the“historical epitope sites”.

Supporting Information
S1 Dataset. Complete data set including evolutionary rates, solvent accessibilities, proximi-
ties to the receptor-binding region, and epitope status for all sites.
(CSV)

S1 Text. Analysis of available IEDB human epitope data.
(PDF)

S1 Fig. Dependence of dN/dS on solvent exposure and proximity to the receptor-binding
region. (A) dN/dS vs. RSA. The size of the dots represents 1/Distance. (B) dN/dS vs. 1/Distance.
The coloring of the dots represents RSA. The distance to the sialic acid-binding region is the
single strongest quantitative predictor of evolutionary rate ratio in hemagglutinin.
(TIFF)

S2 Fig. Distance to receptor-binding site and solvent exposure for epitope and non-epitope
sites. (A) Distribution of distances to residue 224, for historical epitope and non-epitope sites.
(B) Distribution of distances to residue 224, for IEDB non-linear epitope and non-epitope
sites. (C) Distribution of relative solvent accessibilities, for historical epitope and non-epitope
sites. (D) Distribution of relative solvent accessibilities, for IEDB non-linear epitope and non-
epitope sites. Under both historical and IEDB epitope definitions, epitope sites are closer to the
sialic acid-binding region and have higher RSA than non-epitope sites.
(TIFF)
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