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Abstract: Enzyme activation is a powerful means of achieving biotransformation function, aiming to
intensify the reaction processes with a higher yield of product in a short time, and can be exploited
for diverse applications. However, conventional activation strategies such as genetic engineering
and chemical modification are generally irreversible for enzyme activity, and they also have many
limitations, including complex processes and unpredictable results. Recently, near-infrared (NIR),
alternating magnetic field (AMF), microwave and ultrasound irradiation, as real-time and precise
activation strategies for enzyme analysis, can address many limitations due to their deep penetrability,
sustainability, low invasiveness, and sustainability and have been applied in many fields, such as
biomedical and industrial applications and chemical synthesis. These spatiotemporal and controllable
activation strategies can transfer light, electromagnetic, or ultrasound energy to enzymes, leading to
favorable conformational changes and improving the thermal stability, stereoselectivity, and kinetics
of enzymes. Furthermore, the different mechanisms of activation strategies have determined the
type of applicable enzymes and manipulated protocol designs that either immobilize enzymes on
nanomaterials responsive to light or magnetic fields or directly influence enzymatic properties. To
employ these effects to finely and efficiently activate enzyme activity, the physicochemical features
of nanomaterials and parameters, including the frequency and intensity of activation methods,
must be optimized. Therefore, this review offers a comprehensive overview related to emerging
technologies for achieving real-time enzyme activation and summarizes their characteristics and
advanced applications.

Keywords: activation strategies; enzyme activity; near infrared; alternating magnetic field; mi-
crowave; ultrasound irradiation

1. Introduction

Enzymes, as natural biocatalysts, are widely used in chemical synthesis, biosensors,
biopharmaceuticals, and genetic engineering owing to their excellent specificity, selectivity,
and high efficiency [1–3]. However, the activity of natural enzymes is easily affected by the
temperature, pH, and the surrounding environment because of their poor stability, difficult
separation from the reaction medium, and activity inhibition, leading to the limitation
of many practical applications. Hence, the precise enhancement of protein activity is
important to understand complex biological signaling networks and to control biological
function. Many efforts have been devoted to improving enzyme activity by means of
various methods that were classified into conventional and real-time strategies to make
enzymes exert a better potency.

Conventional methods of improving enzyme activity mainly include designing en-
zyme variants, chemical modifications, immobilization strategies, or relying on changes in
the temperature, pH, and ionic strength. However, the enzyme activity is not increased
precisely, and the process of changing enzymatic characteristics by using these conventional
strategies is generally tedious and unfocused, while also requiring massive amounts of
reactants, long reaction times, and high catalyst loads. For instance, enzyme mutation
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can promote favorable changes in enzymatic properties to obtain high catalytic activ-
ity, thermostability and stereoselectivity through rational design, directed evolution, and
semirational design [4]. However, the process of screening mutants is laborious and time-
consuming and may lead to hazardous mutations [5]. Chemical modification refers to
the direct binding of an enzyme to another molecule to control many biological systems.
Nevertheless, the main problem of chemical modification is that it may be difficult to
achieve fully controllable modification and requires customized modification for each en-
zyme [6]. Meanwhile, enzyme immobilization can lead to the loss of activity, leakage from
the carrier, and mass transfer limitations [7–9]. At the same time, enzymes are unstable
outside of an optimal temperature, pH, and ionic strength range. These drawbacks impede
the long-term operational reaction of enzymes and cannot fulfill sustainable, real-time
controllable biocatalysts.

To overcome these disadvantages of conventional methods, many studies have paid
close attention to exploring efficient activation means to achieve precise and rapid control
of enzyme activity. Therefore, real-time activation includes near-infrared (NIR), alternating
magnetic field (AMF), microwave, and ultrasound irradiation, which can make it available
to remotely and spatiotemporally improve enzyme activity and maximize their biological
function (Figure 1). Due to their sustainability, low invasiveness, and easy tunability, these
technologies are highly appropriate for real-time controlling of enzymatic conformation,
activity, and other properties and have emerged as an effective toolkit in various fields, such
as cancer therapy, the food industry, and environmental engineering [10–13]. Furthermore,
real-time activation strategies can also intensively improve the reaction rate, shorten the re-
action time, and reduce the mass transfer resistance. According to the different mechanisms
of real-time strategies, nanomaterials such as plasmonic nanoparticles that are responsive to
NIR and magnetic nanoparticles stimulated by AMF have been widely applied for enzyme
immobilization to transfer energy to control enzyme activity. Microwaves, ultrasound,
and AMF can directly influence enzymatic behavior only for certain enzymes without the
assistance of nanomaterials. However, few reviews have been published in recent years
systematically elucidating and summarizing four different real-time activation strategies
of enzymes. Thus, this review provides a deep understanding and accessible discussion
associated with the mechanism of real-time activation of enzyme activity. Additionally, it is
involved in activating factors influencing enzyme catalytic performance as well as their
prospective applications.
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2. Near-Infrared Strategy
2.1. Mechanism

Near-infrared (NIR) is considered to be an emerging strategy that enables accurate,
remote, and noninvasive biotransformation to control enzyme activity. The universal NIR-
activated strategy is the combination of enzymes and plasmonic nanoparticles by using
immobilization methods such as cross-linking, physical adsorption, and encapsulation [14].
In the near-infrared (NIR) spectral regions, NIR-responsive nanomaterials exhibit promi-
nent optical properties, including localized surface plasmon resonances (LSPRs) at the
interface between nanoparticles and enzymes, which can convert optical energy to internal
energy with high efficiency [15–18]. Therefore, the plasmonic effect of nanomaterials can
make it available to achieve the remote and spatiotemporal activation for biocatalytic
processes upon NIR irradiation.

Photothermal Effect: A few studies have been reported to demonstrate the mecha-
nisms of the influence of plasmonic effects at the interface of nanoparticles on enzyme
activity. First, the LSPRs of plasmonic nanoparticles can transform optical energy into
thermal energy, which leads to elevated local temperature on the nanoparticle surface and
enables them to act as nanoscale heating elements upon near-infrared irradiation. The
photothermal effect is the prevalent explanation to illustrate the mechanisms involved in
the enzyme activation [19–25]. The photothermal effect of plasmonic nanostructures is
suitable to increase the activity of thermophilic enzymes, which are highly stable and active
at high temperatures [20,25]. Our group found that light-driven heat on gold nanorods
can activate the activity of immobilized thermophilic enzymes, notably at different laser
powers (0.5–2 W) [20]. The results showed that the AuNP-enzyme nanobiocatalytic systems
exhibit higher catalytic efficiency (8-fold) than the free enzyme. However, light-to-heat
conversion can also threaten conventional enzyme conformations, thereby resulting in
the deactivation of the enzymes or a decrease in activity [26–28]. To address this issue,
extensive efforts have been devoted to developing appropriate conjunction strategies be-
tween conventional enzymes and plasmonic nanoparticles to overcome the limitation of
photothermal effects. For example, a simple and highly efficient stabilization approach was
designed for immobilizing enzymes on plasmonic nanoheaters and encapsulating them
through an in situ-polymerized porous organosilica layer [21]. The encapsulation strategy
not only improves the thermal stability and cycle of reuses but also enhances the catalytic
activity with NIR irradiation. Moreover, metal–organic frameworks (MOFs) can also be
exploited to prevent enzyme-AuNPs from thermal deactivation and decrease activity due
to their high thermal stability [23].

Additionally, de Barros et al. proposed that the photothermal effect can change en-
zyme kinetics under external light irradiation. They used lipase (CALB) adsorbed on the
surface of Au nanoparticles as a model system to explain the effect of LSPR excitation on the
enzymatic activity by exploring the well-known three-step catalytic mechanism of hydro-
lases. The result showed that both kcat and km of CALB-AuNPs catalyzed hydrolysis were
improved after NIR irradiation, indicating that laser irradiation can affect the enzymatic
activity due to the photothermal effect at the AuNPs surface [14]. To investigate which steps
of enzyme catalysis are affected by light, including chemical hydrolysis, product release,
or both steps, reaction-time courses were monitored under light conditions (Figure 2).
According to the experiment, light increased the k3 of AuNSt@CALB twofold by favoring
product release from the enzyme and hardly affected the kinetics of water attack of the
hydrolysis step (k1, k2). The promotion of enzyme kinetics confirmed that photothermal
heating of AuNPs remarkably changed the rate-limiting step of the enzymatic reaction by
accelerating the product release.
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Therefore, the enzyme activity can be improved by NIR-induced photothermal effects,
which are remarkably beneficial for many biocatalytic processes. Furthermore, mechanistic
studies of electron transport between nanoparticles (CdS) and enzymes induced by light
have been carried out, which arguably results in enzymatic activity changes [18]. These
studies revealed that the mechanism of light-activated enzyme activity is, to a large extent,
dependent on the category of enzyme and the properties of nanoparticles. Therefore,
a thorough comprehension of the interaction between the nanoparticle and enzyme is
beneficial for the construction of enzyme-nanomaterial biocatalysts. This activation strategy,
through combining enzymes with plasmonic nanomaterials stimulated by NIR, potentially
revealed that there was no limitation for the type of enzyme. The high photothermal effect
can quickly activate enzyme activity in a short time, but sometimes it may cause enzyme
inactivation.

Light-activated photoenzymes: Besides the photothermal effect of plasmonic nano-
materials that activate enzymes, there are also a few natural photoenzymes, including
protochlorophyllide oxidoreductase (POR), DNA photolyase, and fatty acid photode-
carboxylase (FAP) that can be directly activated by light when catalyzing biochemical
processes [29]. The specificity of these photoenzymes contains cofactors or groups with
light-harvesting properties, which can capture light energy to accelerate biocatalytic re-
actions. For example, the cofactor flavin adenine dinucleotide (FAD) of DNA photolyase
absorbs light to initiate cleavage of the two major DNA photodamages such as cyclobu-
tane pyrimidine dimers and photoproducts [30]. As the cofactor of FAP, FAD, with its
high light-absorbing properties, can promote the electron transfer from the substrate fatty
acids to FAD, which assists the decarboxylation of free fatty acids to n-alkanes or -alkenes
using light [31]. Furthermore, protochlorophyllide oxidoreductase can capture the excita-
tion energy to drive the subsequent hydride- and proton-transfer in the reduction of the
C17–C18 double bond of protochlorophyllide (Pchlide) to form chlorophyllide [32]. There-
fore, the light-activated photoenzymes can effectively improve their biotransformation
rate under light, and the photoexcited cofactor can be applied to create an enzyme with
light-harvesting properties [33].

2.2. NIR-Responsive Nanomaterials

Gold nanoparticles: The development of NIR-responsive nanoparticles plays an im-
portant role in enzyme activity activated by near-infrared light through their excellent
optical properties (Table 1). Gold nanoparticles are the most frequently used plasmonic
nanomaterial due to their light absorption, efficient photothermal conversion, high biocom-
patibility, and easy surface modification [34,35]. The localized surface plasmon resonances
of AuNPs are intensively influenced by the dimensions, morphology, and surrounding en-
vironment [36], thereby affecting the catalytic activity of immobilized enzymes under NIR
irradiation. NP size, which directly correlates with surface area and curvature, probably
influences enzyme attachment on NPs. Joyce et al. investigated the effect of NP size on the
catalytic activity of phosphotriesterase (PTE) by employing a series of AuNPs with increas-
ing size [37]. The results showed that the smaller-sized AuNPs (10 nm) exhibit the highest
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catalytic efficiency, which improves PTE kcat by up to 10-fold, while the 100 nm NPs only
increase PTE kcat by four-fold. This is because the rate-limiting step of enzyme−product
release can be affected by AuNP size and curvature. Furthermore, the 10 nm AuNPs
attained the highest conjunction efficiency with PTE at 97% and achieved a higher initial
rate in the reaction of substrate paraoxon conversion. Additionally, the morphology of
gold nanoparticles, including gold nanorods, gold nanospheres (AuNSp), and nanostars
(AuNSt), is also very significant because of their optoelectronic and physicochemical proper-
ties [38–40]. Gold nanorods (AuNRs), with sophisticated shapes and great optical plasmon
properties, are likely to be the most prevalent nanomaterials for enzyme immobilization,
and they have been used in disease therapy and biosynthesis [41]. Moreover, de Barros
et al. immobilized lipase on Au nanospheres and nanostars to compare the effect of NIR
excitation on the hydrolytic activity of AuNSt@CALB and AuNSp@CALB (Figure 3) [14].
It was found that AuNSt@CALB achieved higher enzyme activity than AuNSp@CALB.
This is because AuNSt has better matched LSPR positions that can significantly respond
to different light excitation wavelengths. Hence, these studies suggest that both the size
and shape of nanoparticles are important elements to determine the responsiveness to
NIR irradiation.

Table 1. NIR-responsive nanoparticles for immobilized enzyme and their applications.

Material Enzyme Application Ref.

Gold nanorod
Dextran hydrolase,
glucose oxidase,
horseradish peroxidase

Microreactor [22]

Polydopamine-coated
gold nanorods Papain Deep-tumor therapy [10]

Gold nanorods Acylpeptide hydrolase
ST0779

Alzheimer’s disease
therapy [41]

Gold nanoparticles Bovine pancreatic
ribonuclease Colon cancer therapy [34]

Ultrasmall platinum
nanoparticle

Glucoamylase (GA),
ProteinaseK,
Deoxyribonuclease I

Off-on control of
enzyme activity. [42]

Ti3C2TX nanosheets Lipase Improve the hydrolysis
activity [43]

Gold nanorod Acylpeptide hydrolase,
Pig pancreatic lipase Aldol reaction [20]

Gold nanoparticle Alkaline phosphatase Prostate cancer
therapy [35]

Graphene oxide Horseradish
peroxidase

Colorimetric
immunoassay [44]

CdS Nitrogenase MoFe Dinitrogen reduction [18]

Other NIR-responsive nanomaterials: In addition to Au nanoparticles, other nanopar-
ticles with photothermal effects, including platinum (Pt) nanoparticles and Ti3C2TX
nanosheets, are also exploited as nanoheaters that can convert NIR light into heat [28,42,43].
Interestingly, Pt nanoparticles are usually inserted into the interior of the enzyme structure
due to their ultrasmall size to control the off-on switching of enzyme activity. Zhang et al.
fabricated a thermoresponsive enzyme-Pt-polymer biocatalytic system by embedding Pt
nanoparticles inside an enzyme decorated with an amphiphilic copolymer of acrylamide
and acrylonitrile [42]. The thermosensitive copolymer can become microscale aggregates
at a temperature below the UCST to encapsulate the enzyme structure, thereby inhibiting
the catalytic activity. Nevertheless, the local heat of Pt nanoparticles under NIR irradiation
can enable soluble copolymer to release enzyme activity. This suggests that it is possible
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to achieve precise and real-time enzyme activation switching. Furthermore, some special
nanoparticles, including the abovementioned CdS nanocrystals and graphene oxide (GO),
can absorb photons with various energy levels (wavelengths) because of their band gap
energy upon NIR irradiation [18,43,44]. Therefore, these nanoparticles can be involved in
the electron transfer of redox enzymes to manipulate catalytic activity [45].
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2.3. Applications

Cancer therapy: The unique optical properties of plasmonic nanoparticles upon NIR
irradiation have been widely applied for photothermal therapy and photodynamic therapy
of cancer [46–49]. Many specific enzymes can selectively target the desired cells or degrade
crucial biomacromolecules in tumors, making them prevalent as therapeutic agents for
some diseases, which is called enzymatic therapy [50,51]. Therefore, the construction
of enzyme-nanoparticle complexes is a promising platform that can contribute to multi-
functional cancer therapy strategies by combining photothermal therapy and enzymatic
therapy in one system [34,35]. However, the limited penetration depth of cancer therapy
has been a major obstacle for many therapeutic strategies. In recent years, there has been
growing interest in the second NIR (NIRII) window (1000–1350 nm) since it exhibits deeper
tissue penetration, lower background signal, and higher maximum permission exposure
than the traditional first NIR (NIR-I) window (650–950 nm) [52–54]. In addition, papain
(pap), with superior proteolytic activity, good biocompatibility, and thermostability, can
be used to deplete the tumor extracellular matrix (ECM), which is considered to be a
physical barrier impeding tumor therapy. A recent study was devoted to establishing an
NIR-II light-activated AuNR@mPDA-Pap nanosystem consisting of an AuNR core and
a PEGylated mPDA shell for stromal depletion and deep-tumor therapy (Figure 4) [10].
AuNR@mPDA-Pap exhibited an excellent photothermal conversion efficiency of 56.5%,
good photostability, and effective deep tissue ablation of up to 5 mm under NIR-II irradi-
ation. The results also demonstrated that ECM digestion and tumor penetration are the
result of the synergistic effect between the photothermal effect and enzymes because NIR-II
treatment can penetrate deep tissue effectively and enhance the thermophilic enzymatic
activity of degrading tumor stroma by the photothermal effect. Moreover, many studies
have carried out enzyme-assisted photodynamic therapy (PDT) based on nanomaterials,
which is also becoming an accepted therapeutic tool for cancer and many diseases [55–58].
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Neurodegenerative disease therapy: In addition to tumor therapy, enzyme-nanoparticle
complexes show potential application for the therapy of neurodegenerative disease.
Alzheimer’s disease, one of the most common neurodegenerative diseases, is caused
by an abnormal accumulation of amyloid-β (Aβ) in different parts of the brain [59]. There-
fore, great efforts have been made to develop theranostic strategies to degrade Aβ aggre-
gates, including anti-Aβ aggregate agents, hyperthermia, and amyloid-degrading enzymes
(ADEs) [60–62]. Based on this, our group designed a novel multifunctional anti-Aβ agent
GNRs-APH-scFv (GAS) by combining AuNPs with an ADE (thermophilic APH ST0779)
and modified it with a single-chain variable fragment (scFv12B4) that can target Aβ lev-
els with high specificity (Figure 5) [41]. It is worth noting that the photothermal effect
of the AuNPs upon NIR irradiation can activate not only thermozyme activity but also
degrade the aggregates. Moreover, all the control groups, including APH and scFv alone, as
well as the conjunction of APH and scFv, GNRs-APH, and GNRs-scFv, showed decreased
degradation of Aβ fibril aggregation compared to GNRs-APH-scFv. This indicated that
GAR-mediated hyperthermia and enzymatic therapy exhibited synergistic effects on disso-
ciating Aβ aggregates and inhibiting Aβ-mediated toxicity. Thus, this GAR nanoplatform
provided innovative prospects for biomedical theranostics for AD treatment.

Degradation and synthesis of organic compounds: Many important chemical reactions
that can be applied for the degradation of organic pollutants and synthesis of chemical in-
termediates rely on highly chemo-, regio-, and stereoselective enzymes. Therefore, enzyme-
nanomaterial composites activated by NIR are a potential way to route chemosynthetic
pathways efficiently. Pan et al. constructed sporopollenin-exine-capsule (SEC) micromotors
loaded with horseradish peroxidase (HRP) and modified with polydopamine (PDA) for
the degradation of organic pollutants [63]. When exposed to NIR irradiation, HRP will
be released from the hollow structure of SECs. As a result, the degradation efficiency for
organic degradation of PDA-coated SEC micromotors under NIR irradiation was higher
than that without NIR irradiation, accelerating the release of the HRP enzyme. Moreover,
bubble generation with the trigger of NIR light enhanced the diffusion of the enzyme and
increased the reaction between the enzyme and organic pollutant, thus improving the
degradation efficiency. Li et al. used the NIR irradiation to activate enzyme-conjugated
gold nanorod composites (EGCs) to catalyze the aldol reaction, which is one of the impor-
tant reactions to form carbon-carbon bonds in organic chemistry [20]. Notably, the EGCs
achieved higher catalytic efficiency and excellent conversion in a short time when exposed
to NIR compared to the free enzyme. These studies showed the great potential of remote
and real-time enzyme activation strategies that can be used for industrial applications.
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Figure 5. Inhibition of Aβ-mediated toxicity by GAS used for AD treatment. Reprinted with 
permission from Liu et al., Ivyspring International Publisher

Figure 5. Inhibition of Aβ-mediated toxicity by GAS used for AD treatment. Reprinted with
permission from Liu et al., Ivyspring International Publisher [41].

3. Microwave Radiation Strategy
3.1. Mechanism

Thermal effect: Microwave radiation refers to electromagnetic waves with frequencies
between 300 MHz and 300 GHz, and it easily clusters into bundles, is highly oriented,
and linearly propagates. The mechanism of microwave heating is that microwaves can
change the vibrational energy of many molecules with dielectric properties, which convert
the energy of electromagnetic radiation into heat [64]. Compared to traditional heating,
microwave heating exhibits several key features: (1) rapid heating because direct microwave
irradiation heats instead of thermal conduction; (2) selective heating because of the different
absorption and loss of microwave energy by diverse substances; and (3) the electromagnetic
field effect [65].

Considering the aforementioned advantages, recent years have witnessed a rapid
increase in the effect of microwave radiation on biological applications [66–68]. The main
mechanism of enzyme activation under microwave radiation is that noncovalent inter-
actions involving hydrogen bonding, hydrophobic bonding, and van der Waals forces
that maintain a stable secondary structure of enzymes can be affected by electromagnetic
energy. Zhang et al. [69] explored the influence of microwave radiation on the secondary
structure of glucoamylase. The results showed that the composition of α-helices decreased
gradually, while the composition of β-sheets, β-turns, and random coils increased under
microwave radiation. This conformational change of the enzyme, generally from compact
to flexible, remarkably influences enzymatic activity and properties, including thermal
stability [70], selectivity [71], and kinetics [72]. Furthermore, microwave radiation can also
affect the interaction between the enzyme active site and the substrate. Rokhati et al. [73]
demonstrated that microwave-assisted cellulase exhibited higher Vmax and lower Km for
hydrolyzing chitosan than using the shaker incubator, suggesting stronger binding between
enzyme and substrate. The kinetic changes shortened the reaction time and improved the
catalytic efficiency of cellulase under microwave irradiation.
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Nonthermal effect: A few studies have been reported to demonstrate that some
microwave-assisted reactions might be due to their nonthermal effect [74–76]. However,
whether microwave radiation has an underlying nonthermal effect that can influence
enzymatic reactions is under debate [77,78]. Nagashima et al. explored nonthermal mi-
crowave effects on β-glucosidase (optimal temperature: 60 ◦C) under 2.45 and 5.80 GHz
microwave irradiation with an incubator to control the reaction temperature [79]. A
2.45 GHz microwave-treated enzyme exhibited maximal activity at 50 ◦C but became in-
active at 60 ◦C. Moreover, the β-glucosidase exhibited a higher activity to catalyze the
reaction within 20 min, while the convention heating required 30 min. Thus, 2.45 GHz
microwaves not only decreased the optimum temperature but also improved the reaction
rate, indicating the specific effect of microwaves compared to conventional heating. In
contrast, 5.80 GHz microwaves did not make a difference in this reaction. They proposed a
possible explanation at the molecular level that 2.45 GHz can affect water molecules and
buffering ions, which might play an important role in the hydrolysis reaction by forming
ion bonds with carboxyl groups on Glu or Asp of the enzyme, but 5.80 GHz only affected
water molecules. Similarly, Young et al. also confirmed that β-glucosidase (CelB) from
the hyperthermophilic archaeon (optimal temperature: 110 ◦C) could be activated at far
below its optical temperature under 300 W microwave irradiation and that enzyme activity
increased four-fold compared with the reaction without microwave radiation (Figure 6) [80].
However, a mesophilic homolog of CelB did not show any improvement under the same
conditions. The potential mechanism was that the oscillating electric field could stimulate
a dipole alignment of the hyperthermophilic peptide bonds, thereby promoting molecular
motion. Although many reports have proposed the nonthermal effect of microwaves,
whether the specific microwave effect exists is still ambiguous, and it seems to depend
on the electric field frequency, power, temperature, or type of enzyme. In addition, it has
been suggested that these studies lacked efficient experimental strategies, specific detection
criteria, and reasonable discussion [81].

Biomolecules 2022, 12, x FOR PEER REVIEW 9 of 21 
 

microwave-treated enzyme exhibited maximal activity at 50 °C but became inactive at 60 
°C. Moreover, the β-glucosidase exhibited a higher activity to catalyze the reaction within 
20 min, while the convention heating required 30 min. Thus, 2.45 GHz microwaves not 
only decreased the optimum temperature but also improved the reaction rate, indicating 
the specific effect of microwaves compared to conventional heating. In contrast, 5.80 GHz 
microwaves did not make a difference in this reaction. They proposed a possible explana-
tion at the molecular level that 2.45 GHz can affect water molecules and buffering ions, 
which might play an important role in the hydrolysis reaction by forming ion bonds with 
carboxyl groups on Glu or Asp of the enzyme, but 5.80 GHz only affected water mole-
cules. Similarly, Young et al. also confirmed that β-glucosidase (CelB) from the hyperther-
mophilic archaeon (optimal temperature: 110 °C) could be activated at far below its optical 
temperature under 300 W microwave irradiation and that enzyme activity increased four-
fold compared with the reaction without microwave radiation (Figure 6) [80]. However, a 
mesophilic homolog of CelB did not show any improvement under the same conditions. 
The potential mechanism was that the oscillating electric field could stimulate a dipole 
alignment of the hyperthermophilic peptide bonds, thereby promoting molecular motion. 
Although many reports have proposed the nonthermal effect of microwaves, whether the 
specific microwave effect exists is still ambiguous, and it seems to depend on the electric 
field frequency, power, temperature, or type of enzyme. In addition, it has been suggested 
that these studies lacked efficient experimental strategies, specific detection criteria, and 
reasonable discussion [81].  

 
Figure 6. The Effect of microwave irradiation on different enzyme activity including Pfu CelB (β-
glucosidase from Pyrococcus furiosus), Pdu CelB (β-glucosidase from Prunus dulcis), Tm GalA (α-
galactosidase from Thermotoga maritima), and SsoP1 (carboxylesterase from Sulfolobus solfataricus 
P1). Reprinted with permission from Douglas et al., American Chemical Society [80]. 

Overall, microwave irradiation normally generates efficient internal heating by di-
rectly transferring microwave energy to the enzyme, solvent, and reagent in the reaction 
mixture, and it can reduce the reaction time with a higher yield than conventional heating. 
However, almost all studies referring to the enzyme activation by microwave radiation 
are limited to several types of enzymes, including lipase, hydrolase, and glucosidase. Fur-
thermore, even for the same type of enzyme, such as glucosidase, microwaves still have 
different or no activation effects on some enzymes from various sources [82]. Thus, many 
efforts should be devoted to further studying the mechanism of microwave-activated en-
zymes to advance the application of microwaves in various enzyme reactions. 

3.2. Applications 
Chemical industry: Microwave radiation, as a clean and green energy source, has 

attracted increasing attention in organic syntheses, such as peptide synthesis and drug 
synthesis [83]. Many researchers have shown interest in enzymatic reactions combined 

Figure 6. The Effect of microwave irradiation on different enzyme activity including Pfu
CelB (β-glucosidase from Pyrococcus furiosus), Pdu CelB (β-glucosidase from Prunus dulcis),
Tm GalA (α-galactosidase from Thermotoga maritima), and SsoP1 (carboxylesterase from
Sulfolobus solfataricus P1). Reprinted with permission from Douglas et al., American Chemical
Society [80].

Overall, microwave irradiation normally generates efficient internal heating by directly
transferring microwave energy to the enzyme, solvent, and reagent in the reaction mixture,
and it can reduce the reaction time with a higher yield than conventional heating. However,
almost all studies referring to the enzyme activation by microwave radiation are limited
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to several types of enzymes, including lipase, hydrolase, and glucosidase. Furthermore,
even for the same type of enzyme, such as glucosidase, microwaves still have different
or no activation effects on some enzymes from various sources [82]. Thus, many efforts
should be devoted to further studying the mechanism of microwave-activated enzymes to
advance the application of microwaves in various enzyme reactions.

3.2. Applications

Chemical industry: Microwave radiation, as a clean and green energy source, has
attracted increasing attention in organic syntheses, such as peptide synthesis and drug
synthesis [83]. Many researchers have shown interest in enzymatic reactions combined with
microwaves to improve chemical synthesis [84–86]. Cases of α-chymotrypsin-catalyzed
one-pot Biginelli reactions under microwave radiation in which the useful products
3,4-dihydropyrimidin-2-(1H)-ones (DHPMs) have been reported (Figure 7) [87]. DHPMs
can be used as significant drug intermediates, including antioxidants, antiepileptics, and
calcium channel antagonists [88,89]. After microwave radiation, α-chymotrypsin attained
higher yields (86%) of DHPM in a shorter time (55 min) than upon conventional heat-
ing, which suggested synergism between microwaves and the enzyme. Barsode et al.
investigated the impact of microwave radiation on the synthesis of isoamyl butyrate ester
catalyzed by lipase [90]. Microwave radiation remarkably decreased the activation energy
of the reaction, showing that microwave irradiation can accelerate the formation of the
transition state of enzyme substrates to improve the reaction rate.
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Notably, ionic liquids (ILs), as a greener alternative to organic solvents [91,92], are
ideal solvents for enzyme-catalyzed reactions under microwave radiation because of their
excellent microwave-absorbing ability, high boiling point, and low vapor pressure [93]. Cur-
rently, a lipase-mediated, microwave-assisted anthocyanin lipophilization with ILs, which
can improve the biomedical properties of anthocyanins, including the anti-inflammatory
and antioxidant properties, has been reported for the first time [94,95]. Microwaves sig-
nificantly reduced the reaction time and achieved maximum product generation. On the
other hand, ILs comprised of imidazolium-based cations and triflate anions showed better
performance in terms of improving the substrate solubility and stability and activity of
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the biocatalyst. Moreover, the combination of ILs and microwaves exhibited synergistic
effects for enzymatic synthesis of biodiesel production, improving enzyme activity and
reusability of enzymes and ILs [13]. Overall, these promising results demonstrated that
microwave radiation and ILs involved in enzyme reactions are a prospective strategy that
can be applied to biomedicine and industrial production.

Food industry: Applications to food industrial fields are expected, as microwave
radiation has excellent properties, including efficient heating and energy consumption [96].
Specifically, microwaves can break noncovalent molecules of food to change the physico-
chemical properties, contribute to the pretreatment of food, and have a synergistic effect
with enzymes in food processing. It was reported that transglutaminase (TGase) could
be used to enhance the cross-linking of myofibrils of surimi, which can improve the gel
strength of surimi products [97]. Based on this, Cao et al. explored the effects of TGase on
the gel properties of surimi under microwave radiation [98,99]. Microwave-assisted Tgase
remarkably improved gel strength by catalyzing covalent cross-linking of proteins to form
a compact and uniform net structure. Furthermore, microwave-accelerated cellulase can
catalyze chitosan hydrolysis into low molecular weight chitosan, which has been widely
applied in the food industry, agriculture, and biomedicine [100,101]. Therefore, many
studies have confirmed that microwave radiation can be utilized extensively for either
enzyme-catalyzed chemical reactions, the food industry, or other application fields.

4. Ultrasound Strategy
4.1. Mechanism

Ultrasound refers to sound waves with frequencies ranging from 20 kHz to 5 MHz and
has received remarkable attention due to its great directionality, strong penetrating ability,
and concentrated sound energy. Ultrasound can generate cavitation phenomena and bubble
collapse processes that eliminate mass transfer resistance, improve the transport process
and intensively increase the pressure and temperature as well as the intense shear forces
inside the bubble [102,103]. Based on this, ultrasound has been widely applied to improve
the rates of many chemical, physical, and biological processes, including enzyme-catalyzed
bioprocesses. Over the past decades, many reviews have discussed the effect of ultrasound
irradiation on enzyme properties [104–106]. Firstly, the mechanism of ultrasound-activated
enzyme activity is that the consecutive wave and cavitation bubbles upon ultrasound can
make favorable conformational changes by altering the loop and domain regions of the en-
zyme to improve enzymatic properties [104]. Similar to the microwave strategy, ultrasound
energy can change the proportion of the enzymatic secondary structure, including α-helices,
β-sheets, β-turns, and random coils, depending on the characteristics of the enzyme and
ultrasound parameters [107–109]. It has been reported that these conformational changes
could reduce the activation energy because of the available release of the substrate from the
active site of the enzyme, thereby improving catalytic efficiency and enzyme activity [110].
Jadhav et al. has confirmed that the conformational changes influenced enzyme kinetics
by improving the reaction rate by 1.45 fold upon ultrasound [111]. Furthermore, after
ultrasound treatment, the enzyme kinetics exhibited an increment in Vmax and reduction
in Km, which enhanced the affinity between enzyme and substrate. Besides, the hydrody-
namic shear force due to the quick breakdown of microbubbles generated by the cavitation
effect can depose large materials into small particles, which extends the surface area of sub-
strates for the enzymatic attack, improves the transport phenomenon, and diminishes mass
transfer resistance, thereby enhancing the catalytic performance of enzymes. Moreover,
ultrasonic shockwaves produced by the sudden collapse of microbubbles also improve the
stability of enzymes and inhibit harmful protein aggregation [112]. It was worth noting
that cavitation plays a different role in enzyme-mediated heterogeneous and homogeneous
systems. In heterogeneous systems cavitation acts mainly through physical effects and
mainly chemical effects in homogeneous systems [113]. These studies demonstrated that
ultrasound irradiation could be applied as an effective protocol for enzyme activation.
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Effect of Parameters: The parameters of ultrasound irradiation, including the fre-
quency, intensity/power, amplitude, and duty cycle, play an important role in enzymatic
properties and activity. First, ultrasound frequency can influence cavitation bubble col-
lapse, which determines active or inactive conformational changes in enzymes. Many
studies have confirmed that a higher frequency could decrease enzyme activity or even
denature the enzyme because of the dramatically rising temperature caused by bubble col-
lapse [112–114]; when cellulase is exposed to an optimum ultrasound frequency, favorable
conformational changes [115]. Furthermore, ultrasound intensity may induce a cavitation
effect and mechanical oscillation, which affect the rearrangement of hydrogen bonds or
van der Waals forces [111,116]. However, high intensity can generate free hydroxyl and
hydrogen radicals, which destroy the enzyme structure and denature the Lipozyme 435.
In addition, the duty cycle of irradiation is also one of the important parameters for con-
trolling enzyme activity. The duty cycle often influences the exposure time of enzymes
to ultrasound and energy consumption. It was worth noting that continuous ultrasound
might cause damage to the structure of lipase CALB due to the excessive heat induced by
the cavitation effect (Figure 8) [111]. Overall, enzyme activity and conformation stability
are sensitive to ultrasound parameters; thus, optimizing the conditions of ultrasound
parameters is necessary to obtain highly active enzymes.
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Therefore, as an effector of such local variation, ultrasounds show significant benefits,
such as enhanced selectivity and lower energy consumption, and have the potential to
influence the activity of enzymatic reactions. However, the stability of enzymes is highly
required when using ultrasounds for enzyme activation since the high energy input might
occasionally inactivate the enzyme.

4.2. Applications

Ultrasound-assisted enzyme reactions with optimal parameters have been proposed in
food processing and preservation, as well as for industrial applications. For example, Soares
et al. explored lipase-catalyzed goat cream hydrolysis under ultrasound to obtain short-
chain fatty acids that could be used for flavoring in the food industry [12]. It was observed
that ultrasound-pretreated lipase promoted cream hydrolysis at lower temperatures than
nontreated lipase, which could reduce undesirable thermal effects and make it available
for industrial processing. Furthermore, the proper ultrasound has improved the activity
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of cellulase to hydrolyze brown rice with increased kinetics parameters and favorable
conformational change in order to obtain high qualities and productivities [117]. This result
also confirmed that sonicated cellulase exhibited prospective application as an efficient
technique in whole-grain processing. Amyloglucosidase (AMG) can be applied for starch
saccharification to produce glucose for different industries, including the production of
perfumes, medicines, and alcoholic beverages. It has been confirmed that ultrasound was
able to improve the activity and stability of AMG at nonoptimal pH and temperature,
expanding the scope of industrial applications of AMG [118]. Another example was that
ultrasound promoted xylanase to catalyze the hydrolysis of xylan to xylooligosaccharides,
which can stimulate the growth of beneficial bacteria, maintain gastrointestinal health,
and improve the bioavailability of calcium [119]. The results showed that the combination
of enzymes and ultrasound had a synergistic effect on xylan hydrolysis, increasing the
reducing sugar content by approximately 50%. The existence of cetirizine in wastewater can
pose a threat to aquatic c ecosystems, including endocrine disruption and other hazardous
side effects. Notably, ultrasound-assisted enzymes can also be applied to biomedicine
yield. In addition to food processing, ultrasound irradiation has been explored in the lipase-
catalyzed synthesis of propyl caprate, which was widely used as a fragrant compound
and an intermediate for drug molecules preparation. With the optimum parameters of
ultrasound, the synthesis efficiency catalyzed by lipase has been enhanced in a shorter
time. Moreover, the stability and reusability of the enzyme also increased upon ultrasound
compared to conventional synthesis. Thus, ultrasound application showed great potential
to improve the performance of biocatalyst in this esterification reaction [120]. Many studies
have demonstrated that ultrasound has great potential in enzymatic industrial applications
because it can improve enzyme properties and catalytic activity under optimal conditions.

5. Alternating Magnetic Field Strategy
5.1. Mechanism

Over the past decades, the application of alternating magnetic fields has been a new
trend in enzyme activation due to their deep tissue penetration and precise on-off control.
There are two strategies to activate enzymatic bioprocesses under AMF [121]. One is
to control the activity of the enzyme by influencing the enzymatic structure containing
iron cofactors such as heme [122,123]. Another strategy is to immobilize the enzyme on
magnetic nanomaterials and then utilize the nanoscale effect of the particles under the
AMF to control the activity of the enzyme [124]. However, most studies have concentrated
on the latter strategy, and only a few studies have investigated the effect of direct AMF-
enzyme activation because of the limited type of enzyme-containing iron cofactors such as
horseradish peroxidase (HRP).

Enzyme with iron cofactors: Studies concerning the effects of magnetic fields on
enzyme activities have been reported [125–127]. External magnetic fields can cause con-
formational changes in proteins by interacting with specific ions, including magnesium,
manganese, calcium, or iron, as specific cofactors [128]. Many reactions concerning charge
transfer catalyzed by oxidoreductase can be promoted by a magnetic field, which can
potentially control enzyme catalytic properties. Many studies have observed that HRP
activity, with heme as a cofactor, is significantly dependent on the characteristics of the
magnetic field. The catalytic center of HRP consists of Fe3+ in the hem group and two
calcium ions, which are important for enzyme function and conformation. When exposed
to a magnetic field, the reduced form of the heme may exhibit paramagnetic or diamagnetic
properties [129,130]. Therefore, it is proposed that a magnetic field can promote charge
transfer in the active center, improving the rate of the enzymatic reaction.

Combination enzyme with magnetic nanoparticles: Recently, magnetic nanoparticles,
due to their high specific surface area, good biocompatibility and dispersion, simple
separation, and easy modification have been widely used for enzyme immobilization
to control the activity of enzymes upon AMF [131–137]. Magnetic nanoparticles occur
molecular vibrations due to the changing magnetic field, which depends on the frequency
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of the magnetic field. Under a lower magnetic frequency, magnetic nanoparticles oscillate
and perform similar to microscopic stirrers to facilitate mass transfer processes, accelerating
the reaction rate. Xia et al. found that when exposed to an AMF frequency of 600 Hz, the
reaction rate of Fe3O4-NH2-PEI (1200)-laccase increased approximately 1.16 times greater
than conventional mechanical stirring [134]. The results also demonstrate that increasing
the frequency ranging from 50 to 600 Hz induces a rapid direction change of the enzyme-
nanoparticle complex, which enhances the mobility of Fe3O4-NH2-PEI (1200)-laccase and
thus increases the reaction rate. Liu et al. reported that magnetic cross-linked lipase
aggregates (MCLEAs), acting as microscopic stirrers under AMF, can effectively improve
the resolution of (R,S)-2-octanol [137].

For the higher magnetic frequency, the magnetothermal effect of magnetic particles
occurs due to Neel or Brown relaxation loss. The Brown relaxation loss comes from the
friction between rotating magnetic nanoparticles and the liquid under the AMF, and the
Neel relaxation loss comes from the magnetic moment changing in the nanoparticles with
the direction changing the external field [133]. Notably, the magnetic-induced heat effect,
unlike the photothermal effect caused by NIR, only elevates the local temperature on the
nanoscale rather than increasing the environmental temperature in the solution. For exam-
ple, Xiong et al. covalently bound β-galactosidase (β-Gal) to a ferrimagnetic vortex-domain
nanoring (FVIO), and they observed that enzyme activity could be stimulated by local
heating on the surface of FVIO under an AMF of 345 kHz in almost real-time [124]. Fur-
thermore, two thermophilic enzymes, α-amylase (AMY) and L-aspartate oxidase (LASPO),
immobilized on iron oxide NPs through four different conjunction methods, were efficiently
activated by an AMF of 410–829 kHz (Figure 9) [135]. It was also observed that the localiza-
tion of the enzyme molecules on the NP surface is critical to maximizing this activation
effect. This may be the result of different heat transfer mechanisms and the different rigidi-
ties of the enzyme in the region attached to the carrier. The kinetic parameters of enzymes
also can be affected by the magnetothermal effect. For example, Knecht et al. incorporated
Fe3O4 nanoparticles and a thermophilic dehalogenase into a bisacrylamide cross-linked
polyacrylamide hydrogel network and explored the kinetic change in the presence of an
AMF [132]. It was found that the Km decreased due to the improved affinity between
enzymes and substrates when heated with an AMF, and the Kcat increased because of the
heat-induced higher product turnover. Additionally, the selective heating of AMF provides
a potential application allowing other nonthermophilic enzymes to work together with
thermophilic enzymes.
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These studies confirmed that enzyme activity could be spatiotemporally and pre-
cisely activated due to the thermal effect on the surface of magnetic particles under AMF.
Although the frequency of AMF can affect the mechanism of activation, there is still no
definite division of the low- or high-frequency range. Sometimes, the enzyme activity
could not be greatly increased (approximately two-fold) because of the poor magnetother-
mal conversion efficiency. In addition to improving enzyme activity, it has been reported
that magnetic fields can also be used in biological macromolecule assembly. For instance,
HRP molecule assembly can be activated by AMF due to the high magnetization, which
suggests the feasibility of molecular assembly by magnetic interactions [138]. Under stim-
ulation by AMF, the HRP molecules oscillate with the external field and then induce
antiparallel magnetic moments, which can generate anisotropic and attractive interactions.
This provides a promising potential for the application of AMF-controlled biomolecule
assembly techniques.

5.2. Applications

Industrial applications: Over the past few years, AMF-mediated enzyme activation
technology has been widely applied in industrial applications such as the pharmaceu-
tical industry, degradation of contaminants, and the production of industrial raw mate-
rial [134–136,139]. Phenolic compounds are troublesome pollutants produced by a variety
of industries. Xia et al. immobilized laccase on polyethyleneimine (PEI)-modified amine-
functionalized Fe3O4 nanoparticles, and the oxidation rate of catechol was enhanced under
AMF [134]. Moreover, another work reported by the same group engineered a strategy
by constructing a newly fixed bed reactor and achieved the continuous degradation of
phenolic compounds at a high gradient magnetic field [139]. They further investigated
the different impacts between continuous and batch treatment, finding that the rate of
continuous treatment on the bed for 18 h was 2.38 times higher than batch treatment for six
cycles. It is worth noting that the degradation rate was maintained at over 70% within 48 h
when treated with Fe3O4-NH2-PEI laccase in the fixed bed reactor, which showed great
potential for the continuous degradation of phenol compounds in industrial wastewater.
In addition to its application in contamination control, AMF-mediated enzyme activation
is also used to produce industrial raw materials. Cui et al. designed a three-phase fluidized
bed reactor with magnetically immobilized cellulase that can produce chitooligosaccharides
from chitosan [140]. They found an apparent increase in chitooligosaccharide production
under AMF, which is very attractive in the food and pharmaceutical industries [141].

Moreover, the resolution of optical enantiomers of many organic compounds plays an
important role in producing medicine, agriculture, fragrances, and flavors. Enzymes with
high stereo-regioselectivity are widely used in catalyzing preferable and worthwhile enan-
tiomers, which is called enzymatic kinetic resolution [136,142,143]. Liu et al. constructed
magnetic cross-linked lipase aggregates (MCLEAs), which revealed an efficient enhance-
ment in separating (R,S)-2-octanol under AMF [137]. AMF-mediated enzyme activation
shows promising potential in enhancing the reaction rate as well as enzyme stability in enzy-
matic kinetic resolution, and it is worth further exploration in the pharmaceutical industry.

Biomedicine applications: AMF-activated enzyme-magnetic nanomaterial compos-
ites can also be applied to achieve multifunctional tumor therapy strategies. Fan et al.
constructed a magnetic field-based platform by immobilizing glucose oxidase (GOx) on a
ferrimagnetic vortex iron oxide nanoring (Fe3O4 NR) for tumor therapy (Figure 10) [144].
Notably, Fe3O4 NRs can not only be used as immobilized supports of enzymes but also
exhibits peroxidase nanozyme activity that can transform hydrogen peroxide generated
by GOx into •OH to implement cascade reactions. These reactive oxygen species (ROS)
molecules induce cell death and tissue destruction and are the main cytotoxic species
that kill tumor cells. The results showed that AMF could precisely activate and enhance
the activity of Fe3O4 NR@GOx to produce significant ROS due to AMF-induced heat
conversion in a distance-dependent manner. Thus, Fe3O4 NR@GOx has a remarkable
improvement in the tumor suppression effect when exposed to AMF. The construction of
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magneto-responsive enzyme−nanozyme cascade catalysts is a promising platform that
could contribute to multifunctional cancer therapy and even metabolic processes in living
organisms.
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6. Conclusions

This review summarizes the recent progress made in real-time activation strategies,
highlighting the significant role of controlling enzyme activity. NIR strategy can activate
enzyme activity by combining biocatalysts with plasmonic nanomaterials, which generate a
photothermal effect or electron transfer stimulated by light to improve activity. Microwave
and ultrasound irradiation generally alter enzymatic structure into favorable and flexible
conformation by influencing noncovalent interaction to increase the stability, selectivity, or
kinetics of enzymes. However, further studies with respect to the mechanism of these two
activation strategies are necessary to carry out since a number of different types of enzymes
are not responsive to microwave and ultrasound, and there are no reasonable studies and
discussions. AMF can activate not only some special oxidoreductases such as HRP but also
enhance the potency of enzymes immobilized on magnetic nanomaterials due to the local
heating on the surface. Moreover, the dimensions, morphology of nanoparticles, intensity,
frequency of real-time activation strategies, and reaction solvents have remarkable impacts
on controlling enzyme activity. Hence, parameter optimization is obviously significant
when applying these activation strategies to improve enzymatic properties. It is known that
remote-controlled enzyme technologies have been widely used in the chemical synthesis,
biomedical, and food industries. Furthermore, the combination of different real-time acti-
vation strategies may potentially become a novel prospective protocol to exert synergistic
effects for maximizing enzyme activity [145].
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