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ABSTRACT

The Hi-C method has revolutionized the study of
genome organization, yet interpretation of Hi-C inter-
action frequency maps remains a major challenge.
Genomic compartments are a checkered Hi-C inter-
action pattern suggested to represent the partition-
ing of the genome into two self-interacting states as-
sociated with active and inactive chromatin. Based
on a few elementary mechanistic assumptions, we
derive a generative probabilistic model of genomic
compartments, called deGeco. Testing our model, we
find it can explain observed Hi-C interaction maps
in a highly robust manner, allowing accurate infer-
ence of interaction probability maps from extremely
sparse data without any training of parameters. Tak-
ing advantage of the interpretability of the model
parameters, we then test hypotheses regarding the
nature of genomic compartments. We find clear evi-
dence of multiple states, and that these states self-
interact with different affinities. We also find that the
interaction rules of chromatin states differ consider-
ably within and between chromosomes. Inspecting
the molecular underpinnings of a four-state model,
we show that a simple classifier can use histone
marks to predict the underlying states with 87% ac-
curacy. Finally, we observe instances of mixed-state
loci and analyze these loci in single-cell Hi-C maps,
finding that mixing of states occurs mainly at the cell
level.

INTRODUCTION

In the past decade, genomic methods (1–7) have highlighted
that the spatial organization of the genome is closely inter-
twined with a wide variety of physiological processes, in-
cluding transcription (8–11), replication (12–14), sex chro-
mosome inactivation (15–18), development (19–22), mito-
sis (23–27) and spermatogenesis (28–31). One of the most

popular of these methods is Hi-C (1,32,33), a genome-wide
assay which uses proximity ligation to measure interaction
frequencies between every pair of loci in the genome within
a cross-linked population of cells. Since genome structure is
highly stochastic, the resulting Hi-C interaction frequency
matrix represents not a single structure but a distribution of
structures. Structural features of the genome which are con-
sistent in the cell population, constrain this distribution and
manifest as patterns in the interaction map. The identifica-
tion of such patterns, their interpretation, and their molec-
ular specification remain outstanding challenges in the field
of genome organization.

Hi-C interaction patterns appear across many scales.
At the whole-chromosome level, intrachromosomal (cis)
interactions are much more frequent than interchromo-
somal (trans) interactions, due to a combination of the
physical separation of chromosomes into territories and
the stochastic positioning of territories within the nucleus
(34,35). Within chromosomes, interaction frequency be-
tween pairs of loci tends to decrease––on average––as a
function of their genomic distance, often following a power-
law decay (36–38). Although these large-scale structures
are not locus-specific, they can provide useful informa-
tion on general polymer properties and have also sepa-
rately been found useful in genome assembly-related ap-
plications (39–44). At the multi-Mb scale, genomic com-
partments are a checkered interaction pattern found both
in and between chromosomes (1,45,46). Genomic compart-
ments were initially suggested to represent a partitioning
of loci into two states, where loci of similar states interact
more frequently than loci of different states. At the sub-Mb
scale, Topologically Associating Domains (TADs) are pat-
terns of genomic domains in which loci within a domain
interact with each other more frequently than with loci out-
side the domain (46–48). Although both genomic compart-
ments and TADs form secluded self-interaction domain-
like structures in Hi-C maps, TADs have been suggested
to be driven by at least one completely different mecha-
nism, namely the action of cohesin-mediated loop extrusion
which can be stopped at boundaries which often involve
CTCF (49–53).
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In this work, we focus on genomic compartments while
also accounting for larger structures. Relative to TADs, for
which a plethora of approaches have been developed to
detect and model (54,55), the method used for identifying
genomic compartments in the original Hi-C paper (1) is
still the standard for detecting genomic compartments. This
typically involves normalizing the interaction matrix by av-
erage interaction frequency per genomic distance and then
applying Principal Component Analysis. The first eigenvec-
tor is then taken to represent the genomic compartment sig-
nal, where positive values are assigned to one compartment
and negative values to the second compartment. Although
widely used, this heuristic is intrinsically limited as it is not
a model. Therefore, it is not an explanation of the obser-
vations, it does not explicitly test hypotheses about the un-
derlying mechanisms, its parameters are not directly inter-
pretable, and it is not generative or predictive. Additionally,
this method suffers from technical limitations including in-
sensitivity to scaling, an arbitrary threshold for partition-
ing of states, occasionally poor performance on noisy and
sparse data, and an underlying implicit two-state assump-
tion. In spite of these limitations, the PCA-based analysis
has proved quite useful in providing a genomic track that
heuristically quantifies genomic compartment signal. Most
notably, comparing this track with other genomic features
shows some correspondence between the interaction states
(compartments) with known chromatin epigenetic states
(1): compartment A is usually euchromatic and tends to
have higher GC content, higher gene density and histone
marks associated with active chromatin; Compartment B is
usually heterochromatic and tends to have lower GC con-
tent and gene density, and is enriched in lamina-associated
domains and repressive histone marks.

A range of computational techniques has been used to
analyze and model genomic compartments. One set of ap-
proaches is the data-driven heuristic partitioning of loci to
compartments (compartment ‘calling’), usually based on
unsupervised learning, comparable to the common PCA
method (1,56): Rao et al. (45) used Gaussian HMM cluster-
ing of interchromosomal interactions to define six subcom-
partments from human Hi-C maps, and observed character-
istic histone marks; Yaffe et al. (57) used k-means clustering
on interchromosomal contacts to identify three compart-
ments; Nichols et al. (58) used k-means clustering to parti-
tion human Hi-C maps to four compartments, also match-
ing different histone marks; Zheng et al. (59) used a proba-
bilistic approach to calculate the CScore reflecting the like-
lihood of being associated with A or B states; and Rowley
et al. (9) proposed an improved heuristic called the A–B in-
dex based on associating the interactions of high-resolution
bins with a low-resolution genomic compartments track.
Another set of approaches predict genomic compartment
interaction patterns from one-dimensional features, usually
with machine learning approaches: MEGABASE (60) uses
a neural network to predict subcompartments from histone
mark ChIP-seq data, and can be used with the MiChroM
(61) physical model to directly predict the Hi-C matrix from
histone modifications tracks; Rowley et al. (9) used a regres-
sion model to predict interactions from GRO-Seq and ar-
chitectural protein binding site data in non-mammalian eu-
karya; Fortin et al. (62) use DNA methylation correlation

matrices to predict A/B compartments; Nichols et al. (58)
used a probabilistic model to predict human and drosophila
Hi-C interactions from histone marks; SNIPER (63) uses
a neural network to impute missing data in low-coverage
Hi-C maps and classify loci to subcompartments; Esposito
et al. (64) combine machine learning and polymer model-
ing to predict mammalian interaction maps from histone
marks; and Orca (65) uses a neural network to predict re-
gions of the Hi-C map from DNA sequence, with a trade-
off between resolution and size of the predicted region. Fi-
nally, a set of hypothesis-driven approaches based on poly-
mer modelling have shown that multistate chromosomes
can form interactions resembling genomic compartments:
Jost et al. (66–69) used lattice-based block copolymer mod-
els and kinetic Monte-Carlo simulations to reproduce Hi-C
maps from epigenetic states in various species; Mirny et al.
(70,71) used block copolymer models and Langevin dynam-
ics to reproduce compartment patterns observed in Hi-C;
and Nicodemi et al. (64,72–74) used strings and binders
polymer models to reproduce Hi-C maps at different scales
based on a set of chromatin states.

Here, we present deGeco, a generative probabilistic mod-
elling approach to genomic compartments, which attempts
to utilize some of the best properties of both hypothesis-
driven and data-driven approaches. On one hand, we derive
our model directly from a handful of explicit mechanistic
assumptions. This makes the parameters of our model in-
terpretable and makes the model suitable for testing biolog-
ical hypotheses, in contrast to black-box machine learning
approaches. On the other hand, the model does not require
polymer modelling and is data-driven, leveraging the data
to infer the values of genome-wide biological parameters.
After evaluating the performance and technical capabilities,
we proceed to test several biological hypotheses regarding
state-state interaction rules, interaction differences within
and between chromosomes, the number of states, molecu-
lar underpinnings of states, and state mixing.

MATERIALS AND METHODS

Full model description

Based on the assumptions described in the Results section,
we propose the following probabilistic model for pairwise
interaction probability between loci:

Pint (i, j ) = 1
Z

d(|i − j |)

× (
λ1

i λ
1
j W11 + λ1

i λ
2
j W12 + . . . + λS

i λS
j WSS

)
where λk

i is the probability over the cell population that

locus i is in the kth state (we assume
S∑

k = 1
λk

i = 1); Wkm

is a non-negative affinity between states k and m (we as-
sume Wkm = Wmk and

∑
k,m

Wkm = 1); d(|i − j |) is a distance-

dependent interaction function (we use |i − j |α based on
common polymer physics models and assume α < 0); and
Z is a normalization factor which ensures

∑
i, j

Pint(i, j ) = 1,

also known as the partition function. Locus interactions
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are symmetric, so Pint (i, j ) = Pint ( j, i ). We note that if
we define a matrix � of locus state probabilities such that
�ik = λk

i , the genomic compartments component can be
rewritten as matrix factorization:

Pint (i, j ) = 1
Z

d(|i − j |)(�W�T)
i j

For the genome-wide model (see Results), we modify the
distance-dependent function interactions such that if i, j
are in cis d = |i − j |α and if they are in trans d = β (β is a
parameter representing the general strength of trans inter-
actions). As described in the Results section, we later used
separate W matrices for cis and trans.

Since we do not have access to the true interaction prob-
abilities, we use Hi-C interaction frequencies to estimate
them. We assume that R Hi-C read pairs are multinomially
sampled from the interaction probability distribution Pint,
yielding the interaction frequency matrix X (so

∑
i≤ j

Xi j =
R). Thus, the probability of obtaining Hi-C interaction fre-
quency matrix X is:

P (X) =
(

R
X11, X12, . . . , XNN

) ∏
i, j

Pint(i, j )Xi j

where N is the number of bins in the matrix and Pint(i, j ) is
specified by the model. The log-likelihood of the full model
is then given by:

L (θ |X) = log
(

R
X11, X12, . . . , XNN

)

+
∑
i. j

Xi j log
(

1
Z

|i − j |α(
�W�T)

i j

)

where θ are the model parameters α, � and W. In order to
estimate the values of the parameters given a Hi-C inter-
action matrix X, we maximize this log-likelihood objective
function using the L-BFGS-B algorithm (via SciPy). Note
that given X the multinomial coefficient is constant and can
be ignored during maximization.

Optimizing the objective function

Unfortunately, the objective function is not concave, re-
quiring multiple initializations. To direct the search to-
wards good solutions, we developed a multi-resolution fit-
ting strategy consisting of running the model at a low res-
olution (large bin size) multiple times, and proceeding with
the best solutions as initialization points for refinement at
higher resolutions (small bin sizes). The underlying logic is
that a good solution at high resolution must be a good solu-
tion in low resolution. Note that when moving to a higher
resolution, the locus state probabilities are duplicated ac-
cording to the ratio of resolutions, for example the state
probability inferred for a 500 kb bin is duplicated into five
100 kb bins. Unless stated otherwise, the model was run 20
times at 500 kb with random seeds 1–20, the five best so-
lutions (by likelihood) were refined at 100 kb and then at
50 kb. We use the best solution (by likelihood) out of the
five refined solutions. Differences between the five best so-
lutions were small qualitatively and quantitatively, with the

mean state probability difference <0.1. Occasionally, one fit
did not converge.

Since the Hi-C matrix is very large in high resolutions,
especially when considering a whole genome, the memory
and CPU requirements quickly become prohibitive. To ad-
dress this, we developed a strategy for leveraging sparse data
structures and partition function estimation. Our strategy
is based on two observations. First, Hi-C interaction fre-
quency matrices, especially in high resolution, are sparse as
they are mostly populated with zeros. Second, when look-
ing at the sum

∑
i, j

Xi j log Pint(i, j ) in the objective func-

tion, entries in X that are equal to zero cancel out most
of the sum terms and obviate computation of the corre-
sponding entries in Pint. However, Pint(i, j ) still contains the
normalization term (partition function) Z = ∑

Pint(i, j ),
which requires to calculate values for all pairs of loci, even
those with corresponding values of zero in X. To work
around this, we note that Z can be viewed as a sum of two
groups of entries, those with corresponding non-zero val-
ues in X and those with corresponding zero values in X:
Z = ∑

nonzeros
Pint(i, j ) + ∑

zeros
Pint(i, j ). Then, we calculate∑

nonzeros
Pint(i, j ) fully, but rather than calculate

∑
zeros

Pint(i, j )

fully as well, we instead estimate it by taking a random sam-
ple of entries out of all entries in X that are equal zero (with-
out replacement). Thus, our implementation dramatically
reduces memory and CPU requirements by using the Hi-
C matrix in sparse form where only non-zero entries are
held in memory, and calculating Pint(i, j ) only for entries
corresponding with non-zero X entries or for entries corre-
sponding with a random subset of zero X entries. We chose
to use a number of sampled non-zero entries equivalent to
the number of zero entries.

Calculating correlations

All correlations between Hi-C matrices (data or reconstruc-
tions) were calculated after distance normalization, to mit-
igate the effect of distance-dependent interaction signal.
Normalization was performed by dividing each matrix en-
try by the average value of its diagonal. Spearman correla-
tion was used unless stated otherwise.

Since the Hi-C matrix is sampled from the true inter-
action probabilities, we cannot expect the correlation be-
tween them to be 1. To estimate the optimal possible cor-
relation between the Hi-C matrix and the model inferred
interaction probabilities (as shown in Figure 2A), we emu-
lated a situation in which the true interaction probabilities
are known by sampling pairwise interactions with replace-
ment from the model interaction probabilities and calcu-
lating the correlation the between the sampled matrix and
the ‘true’ probabilities. This sampling was performed in-
dependently twenty times at the same resolution and read
depth as the Hi-C data, after removing NaN rows and
columns. Then, Spearman correlation was calculated be-
tween each sampled matrix and the ‘true’ interaction prob-
abilities, after distance normalization of both. The opti-
mal possible correlation was defined as the average of these
correlations.



1106 Nucleic Acids Research, 2023, Vol. 51, No. 3

Datasets

Human genome hg38 version was used, except for single-
cell Hi-C data which was hg19 and was lifted over.
GM12878 Hi-C matrix by Rao et al. (45) was ob-
tained from the 4D Nucleome data portal (75) and
used in all analyses unless specified otherwise. The ma-
trix was balanced and binned by cooler (76). Anal-
yses were not performed on chromosomes X and Y.
GM12878 single-cell Hi-C data by Kim et al. (77) was
obtained from https://noble.gs.washington.edu/proj/schic-
topic-model/. Histone modification GM12878 ChIP-Seq
data tracks (fold-change over input) were obtained from
ENCODE (78) for H3K27ac, H3K27me3, H3K36me3,
H3K4me1, H3K4me2, H3K4me3, H3K79me2, H3K9ac,
H3K9me3 and H4K20me1. Histone tracks were binned to
50Kb bins by taking the average fold-change over input
across the entire bin, considering missing values as zero. To
reduce effects of outliers, every histone track had its highest
1% of values trimmed to the 99th percentile level.

Model robustness analysis

For the analysis in Figure 3B: Interactions were sampled
from the unbalanced GM12878 Hi-C matrix of chromo-
some 19 without replacement, followed by balancing and
binning (where relevant) by cooler (76). To fit the model at
various resolutions, the model was run with 10 random ini-
tializations at 500 kb resolution, and these were further re-
fined to 100, 20 and 10 kb resolutions. To evaluate perfor-
mance, the best solution (by likelihood) was chosen for each
resolution.

To verify model generalization, we randomly removed
30% of the pixels of the 100 kb Hi-C matrix, used our
model to estimate the interaction probabilities, and calcu-
lated Spearman correlation on the left-out pixels. We find
that the correlation on the left-out pixels is equal to the cor-
relation achieved when using the entire dataset (0.72 in both
cases), indicating the model is not overfitting the data.

For the analysis in Figure 3C: Interaction probabilities
and locus state probabilities were inferred by a two-state
model fitted to GM12878 Hi-C matrix of chromosome 19.
These were treated as the ‘true’ probabilities, and we tested
the ability of the model to recover these from extremely
sparse data. Sparse interaction maps were generated by
multinomially sampling from the ‘true’ interaction proba-
bilities. Sampling level matched 0.1–1 Mb genome-wide in-
teractions, similar to the sequencing depth achieved in re-
cent single-cell Hi-C maps. To fit the model at various reso-
lutions, the model was run with 10 random initializations at
1 Mb resolution, and these were further refined to consecu-
tively higher resolutions. To evaluate performance, the best
solution (by likelihood) was chosen for each resolution.

Analysis of histone modifications

Analysis of histone modifications was performed at 50Kb
resolution. To avoid complications due to state mixing,
analyses were performed only on bins in which one state
is dominant (state probability > 0.6). This resulted in 4667,
13 136, 694 and 327 bins for states 1, 2, 3 and 4. To clas-
sify the locus state for each of these bins from the lo-

cus histone modifications data, chromosomes were split
into test and train sets, which contained the odd and even
chromosomes, respectively. The training set was scaled to
zero mean and unit standard deviation, and the test set
was scaled according to the mean and standard deviation
learned from the training set. To avoid effects due to classes
3 and 4 being much smaller, their samples in the train-
ing set were each duplicated 15 times. No duplication was
done on the test set. A multiclass logistic regression clas-
sifier was trained using the multinomial loss and elastic
net regularization (scikit-learn (79) implementation). The
C (inverse of regularization strength) and L1/L2 ratio hy-
perparameters were optimized using 10-fold cross valida-
tion on the training set and searching over a 10 × 10 grid
in the ranges (0,1) for C and (1e–4,1e4) for L1/L2 ratio.
The overall accuracy was calculated as the fraction of cor-
rect classifications in the test set. To offset differences in the
sizes of the classes in the test set, the confusion matrix was
row-normalized.

State mixing analysis

To simulate state-mixing scenarios in single cells, we first
created average interaction probability profiles for three
groups shown in Figure 7A: a region with higher state 3
(blue), a region with higher state 7 (green) and a mixed 3 + 7
region (green-blue). To this end, we collected rows in the
Hi-C matrix with a similar interaction profile to each of
the three regions from the entire chromosome. To reduce
the effects of genomic distance, we considered only inter-
actions at >2 Mb distance in all mixing analyses. Finally,
the rows of each of the three groups were averaged and con-
verted to probabilities by normalizing to one, adding 1e–10
as pseudocounts, and renormalizing, producing probability
vectors p3, p7 and p3+7. In addition, we created probability
vectors for each of the three groups based only on distance-
dependent interaction signal (sometimes referred to as ‘ex-
pected’ signal), by replacing every entry in the Hi-C matrix
with the average interaction frequency of its diagonal. We
refer to these as pexp3, pexp7 and pexp3+7.

To simulate single-cell interaction profiles from each of
the scenarios, we used the scHi-C experiment GM12878
cells by Kim et al. (77). Single-cell maps were used at 500 kb
resolution due to their sparsity. Out of 4545 cells, maps of
1164 cells were chosen which had at least five reads in the
mixed region in chromosome 19. We started by calculating
the average interaction frequency profiles within the mixed
region for each of the single-cell maps, yielding 1164 in-
teraction frequency vectors Xdata . We first simulated cell-
level mixing, by sampling 1164 interaction frequency vec-
tors Xcell multinomially from p3+7, matching the number of
sampled reads in each vector to the number of reads in the
respective vector in Xdata . To simulate population-level mix-
ing, we sampled 1164 interaction frequency vectors Xpop,
where half are sampled multinomially from p3 and the other
half are sampled from p7, again matching the number of
reads to Xdata .

To quantify whether a single-cell interaction frequency
vector x is more likely to come from cell-level or population-
level mixing, we first note that the probability of observing
an interaction frequency vector x given a probability vector

https://noble.gs.washington.edu/proj/schic-topic-model/
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p is:

P (x|p) =
( ∑

xi
x1, x2, . . . , xn

) ∏
i

pxi
i

Next, we define the mixing log ratio (MLR) for an inter-
action frequency vector x to be:

MLR (x) = log

(
x|p3+7

max
(
x|p3, x|p7

)
)

− log

(
x|pexp3+7

max
(
x|pexp3, x|pexp7

)
)

Finally, we calculated MLR value for Xcell , Xpop and
Xdata .

RESULTS

Probabilistic model of genomic compartments

We propose a generative probabilistic model for genomic
compartments based on the following four elementary as-
sumptions on the mechanisms of the underlying system:

1. Every genomic locus in every cell is in one of S states.
At the population level, every genomic locus is associated
with a probability of being in each state.

2. Locus states are statistically independent.
3. Pairwise interaction probability decreases with genomic

distance.
4. Pairwise interaction probability is specified by an affinity

between the states of the respective loci.

These assumptions are sufficient to formulate the follow-
ing model for the probability of observing a pairwise inter-
action between loci i and j :

P (i, j ) = 1
Z

d (|i − j |)

× (
λ1

i λ
1
j W11 + λ1

i λ
2
j W12 + . . . + λS

i λS
j WSS

)
where λk

i is the probability over the cell population that lo-
cus i is in the kth state; Wkm is a non-negative affinity be-
tween states k and m (note that the term affinity is used to
refer to the weights but does not imply any actual physical
force); d(|i − j |) is a distance-dependent function (we use
|i − j |α based on common polymer physics models); and Z
is a normalization factor. Note that Wkm = Wmk since in-
teraction is a symmetric property, and that from our first

assumption we get
S∑

k = 1
λk

i = 1.

We note that if we define a matrix � of locus state prob-
abilities such that �ik = λk

i , this model can be rewritten in
matrix form (Figure 1):

P (i, j ) = 1
Z

d (|i − j |) · (
�W�T)

i j

In this form, the model can be interpreted as perform-
ing a form of matrix factorization of the genomic compart-
ments signal into the right-stochastic state locus probability

matrix and the symmetric non-negative state-state affinity
matrix. Accordingly, we call the model and its implemen-
tation deGeco (decomposition of genomic compartments).
We note that if we set S = 2, W = I2 and d(|i − j |) to
be a non-parametric function, the model resembles the ap-
proach of Zheng et al. (59).

As we cannot directly measure the interaction probabili-
ties, we assume that the Hi-C experiment samples read-pairs
independently from the underlying interaction probabili-
ties. Thus, given a Hi-C interaction matrix, we can estimate
the maximum likelihood parameters �, W and α. Since the
size of Hi-C matrices can be prohibitive, we developed a
multiresolution fitting scheme using sparse data structures,
which reduces the memory and CPU time requirements to
get a good fit (see Methods). Alternatively, given parame-
ter values, we can generate an interaction probability ma-
trix or an Hi-C-like interaction frequency matrix sampled
from these probabilities. Since the model parameters are in-
terpretable and biologically meaningful, we can also simu-
late genomic perturbations and predict their effects on the
Hi-C matrix.

Explaining intrachromosomal genomic compartments with a
two-state model

We first asked how well a two-state model can explain intra-
chromosomal (cis) interaction maps. We selected the deeply
sequenced GM12878 interaction map of Rao et al. (45) at
50 kb resolution, and fit the model separately to each chro-
mosome (see Methods). Given the estimated parameters,
we could calculate a predicted interaction probability ma-
trix, and compare it to the Hi-C matrix. Since most of the
variation in interaction maps can be explained by distance-
dependent interaction, we calculated the Spearman corre-
lation coefficient between the Hi-C and predicted matrices
after first normalizing each of them by distance-dependent
interaction. Importantly, the Hi-C matrix reflects a very
sparse random sample from the true interaction probabili-
ties, which sets an upper bound on the optimal possible cor-
relation. Thus, we estimated for each chromosome the opti-
mal possible correlation (see Methods) and compared this
to the correlation achieved by the two-state model (Figure
2A). We find that the two-state model achieves a mean cor-
relation of 0.54 (0.10 s.d.), and that this is on average 0.11
(0.04 s.d.) less than the optimal possible correlation. This
correspondence is also apparent when visually comparing
the data and the model (Figure 2B and C). Interestingly,
we noticed that the model does not explain well TAD pat-
terns (Figure 2D), supporting the notion that TADs are not
simply small compartment domains but are rather due to a
distinct mechanism (70,80). Thus, a simple two-state model
is sufficient to capture most of the explainable variation in
the data.

As the two-state model explains most the genomic com-
partments pattern, we next decided to take advantage of the
interpretability of our model and turned to investigate the
inferred parameters. Specifically, we wanted to verify that
the inferred affinities are consistent across chromosomes, to
check that the affinity between states is lower than the self-
affinities of both states and to examine the hypothesis that
the state self-affinities are equal. Examining the inferred
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Figure 1. Overview of probabilistic model of genomic compartments. We assume that the Hi-C interaction frequency matrix is sampled from an underlying
interaction probability matrix P. Interaction probabilities Pi, j result from two components: a distance-based interaction probability function d(|i − j |)
and a state-based interaction probability component representing the genomic compartment signal. In the state-based interaction probability of two loci
depends on the probability of each locus to be in each of the states (represented by matrix �) and the affinities of these states to each other (represented
by matrix W). We show that the state-based interaction probability component is equivalent to a multiplication of these matrices.

Figure 2. Two-state intrachromosomal (cis) model performance. The model was fitted to GM12878 Hi-C by Rao et al. (45) at 50kb resolution. (A) Distance-
normalized Spearman correlation between the Hi-C interaction frequency matrix and the model’s inferred interaction probability matrix. The optimal
possible correlation for the model at matching resolution and sequencing depth is shown as reference (see Methods for details). (B) Chromosome 19 Hi-C
interaction frequencies (distance-normalized, upper triangle) versus the model-inferred interaction probabilities (distance-normalized, lower triangle) and
their Spearman correlation ρ. (C) Chromosome 19 Hi-C correlation matrix (distance-normalized, upper triangle) versus the model-inferred genomic com-
partments component (distance-normalized, lower triangle) and their Spearman correlation ρ. (D) Closeup of a chromosome 19 3.5Mb region, showing
Hi-C interaction frequencies (distance-normalized, upper triangle) versus the model-inferred interaction probabilities (distance-normalized, lower trian-
gle). Genomic compartments appear in both the data and model, but TADs are apparent only in the data.
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Figure 3. Model robustness at low sequencing depth. (A) Comparison of chromosome 19 interaction frequencies and model inferred interaction proba-
bilities at 20kb resolution when using 100%, 10% and 0.5% of the data. Matrices were distance-normalized. (B) Model performance and stability when
fitted to down-sampled chromosome 19 data at various resolutions. Left: distance-normalized Spearman correlation between the sampled Hi-C inter-
action frequencies and the model-inferred interaction probabilities. Right: mean absolute difference in state probabilities between a model fitted on the
entire data and a model fitted on down-sampled data. (C) Model performance and stability at single-cell Hi-C sequencing depths. We inferred interaction
probabilities on chromosome 19 at 20 kb resolution, treating these as ‘true’ interaction probabilities, and sampled interactions from these probabilities.
Left: distance-normalized Spearman correlation between the ‘true’ interaction probabilities and the interaction probabilities inferred from the sampled
interactions. Right: mean absolute difference between the ‘true’ state probabilities and the state probabilities inferred from the sampled interactions.
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affinity matrix across all chromosomes, we find the average
affinity between states to be 0.0007 (0.002 s.d.), while the
self-affinities of both states were ∼0.5, with an average dif-
ference of 0.05. Finally, we noted that the inferred power-
law exponent was –0.95 (0.02 s.d.), consistent with previous
observations of a value of –1 expected of a fractal globule
(1). Thus, the inferred parameters of the intrachromosomal
(cis) two-state model are generally in line with the standard
simple view of genomic compartments.

Recovering genomic compartments from sparse data

In Hi-C, read-pairs populate an interaction matrix whose
size is the square of the number of bins. As a result, interac-
tion maps are essentially always inadequately sampled and
cost-restrictive sequencing depth directly affects the map
resolution. To address this challenge, recent efforts have
attempted to use black-box machine learning, trained on
highly sampled Hi-C interaction maps, to enhance sparsely
sampled interaction maps (81–84). We thus decided to eval-
uate the ability of our model to maintain its predictive per-
formance using extremely shallow sequencing. To test the
ability of our model to infer parameters and interaction
probabilities on sparse data, we randomly down-sampled
the GM12878 chromosome 19 interaction map at differ-
ent sampling rates. We then applied the model to each ran-
dom sample and compared the model’s predicted interac-
tion probability with the original unsampled interaction
frequency matrix across resolutions ranging from 500kb
to 10 kb-size bins, indicating how much performance de-
creases due to sequencing depth. We also compared the
state probabilities inferred from each sample to the state
probabilities that were inferred from the original data, to
test the stability of the inferred parameters. Remarkably,
we find only negligible deterioration in performance upon
down-sampling (Figure 3A and B). Comparing the two-
state model reconstruction to a reconstruction based on
the first PCA eigenvector at a 0.1% sampling rate, we find
our model outperforms the PCA reconstruction (Supple-
mentary Figure S1). Even when taking only 0.5% of the
reads (equivalent to ∼20M reads genome-wide) at 10 kb
resolution, correlation decreases by only 0.02 and the aver-
age error in state probabilities is 0.07 (0.05 s.d.). Thus, our
model can reconstruct high-quality interaction maps from
extremely sparse interaction maps, simply based on mech-
anistic assumptions without any without any prior training
on external data.

Given the ability of the model to perform well on very
poorly sampled interaction maps, we asked how well the
model would work on single-cell Hi-C maps. To evaluate
this, we took the interaction probability matrix predicted
from GM12878 chromosome 19, and treated this map as
the ‘true’ interaction probabilities. We then randomly sam-
pled interactions from these probabilities, at coverage lev-
els similar to that of single-cell maps (100k–1M interactions
genome-wide). Finally, we applied our model to these sam-
pled matrices, allowing us to evaluate the model’s ability to
recover the ‘true’ interaction probabilities and state proba-
bilities. Applying our model, we find that the model recovers
the ‘true’ parameters (correlation > 0.9, mean state proba-
bility error < 0.1) with as few as 100k reads at 0.5 Mb reso-
lution, 250k reads at 0.25 Mb resolution, and 750k reads at

0.1 Mb resolution (Figure 3C). We conclude that our model
is applicable to single-cell Hi-C data, provided they are suf-
ficiently sampled.

Differences in cis and trans interactions of genomic compart-
ments

Trans interactions are less frequent than cis interactions,
and in the context of genomic compartments trans interac-
tions are often considered a mere extension of the genomic
compartments observed in cis. Indeed, it is common to ig-
nore either trans interactions or cis interactions when ana-
lyzing genomic compartments, under the implicit assump-
tion that they follow similar principles. We decided to use
our model to revisit analyses performed by Imakaev et al.
(56) and test this hypothesis directly. First, we modified our
model to cope with whole-genome modelling. Briefly, this
involved optimization of the inference method (the whole-
genome interaction frequency matrix is >150 times larger
than the interaction frequency map of the largest chromo-
some), as well as modifying the distant-dependent interac-
tion term so it still uses a power-law decay in cis but uses a
constant background interaction level β in trans. After fit-
ting the two-state model to the genome-wide GM12878 in-
teraction map at 100 kb resolution, we find self-affinities of
0.51 for state 1, 0.48 for state 2, and 0.01 affinity between
the states (Figure 4A). Next, we created a saddle plot of
the GM12878 interaction map on chromosomes 1 and 2
by sorting both the rows and columns according to their
inferred probability of being in state 1 (Figure 4B). We ex-
pected the quadrants of the saddle plot to roughly reflect the
state affinity matrix, and this is indeed what we observed.
Next, we created separate saddle plots for chromosome 1,
chromosome 2, and their trans interactions (Figure 4C).
We observe that the two cis saddle plots are similar to each
other with approximately equal self-affinities for state 1 and
state 2, while the trans saddle plot is different with state 1
showing notably higher self-affinity than state 2, suggesting
that state interaction affinities may differ between cis and
trans. To allow our model to account for these differences,
we extended our model to use two separate state affinity ma-
trices for cis and trans. Refitting this extended model, we in-
fer cis and trans affinity matrices and find that they match
the observed cis and trans saddle plots (Figure 4D and E),
so that state 1 self-affinity in cis is similar to that of state 2
(0.49 state 1 versus 0.51 state 2) but is much higher in trans
(0.66 state 1 versus 0.27 state 2). Comparing the inferred
state probabilities to histone modification data, we find that
state 1 is correlated with active chromatin marks (‘compart-
ment A’) while state 2 is anti-correlated (‘compartment B’).
We find qualitatively similar cis and trans affinity matri-
ces when repeating the analysis in additional cell lines (H1-
ESC, HFF and mouse ESC). Thus, in line with the observa-
tions of Imakaev et al. (56), our results suggest that a whole-
genome model of genomic compartments must incorporate
different interaction rules in cis and trans, with active chro-
matin self-associating more frequently in trans than inactive
chromatin. The difference between the two states may also
allow to distinguish the two states without referring to ex-
ternal datasets as is done in PCA-based compartment anal-
ysis.
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Figure 4. States interact differently within and between chromosomes. (A) State-state affinity matrix from whole genome fit of two-state model at 100 kb
resolution. (B) Joint saddle plot of chromosomes 1 and 2. The rows and columns of the distance-normalized Hi-C interaction frequency matrix were sorted
by P(s1), the probability to be in state 1. cis and trans data were normalized to have the same mean interaction frequency. (C) Separate saddle plots of
chromosomes 1 and 2 in cis and trans. cis and trans data were normalized to have the same mean interaction frequency. (D) State-state cis and trans affinity
matrices from whole genome fit of two-state model with separate affinity matrices. (E) Separate saddle plots of chromosomes 1 and 2 in cis and trans using
the inferred interaction probabilities rather than the Hi-C interaction frequencies.

Extending the number of states

We next used the model to investigate the number of states
in a principled manner. While a two-state model explained
much of the relevant variation in the data, previous work
has suggested the possibility of additional compartments
or subcompartments (45). We first used our model to iden-
tify regions in which a two-state model is clearly insufficient.
For example, the chromosomal region shown in Figure 5A
clearly deviates from a checkered pattern and thus a simple
two-state model would not be sufficient, as verified by fitting
our two-state model. In order to select a reasonable number
of states, we first fitted the entire genome using 2–8 states
at 50kb resolution. Next, we calculated for each model the
mean reconstruction error for the interaction profile of ev-
ery genomic bin (a row/column in the interaction map). We
reasoned that if the number of states is too low, there would
be some subset of rows that would show a high reconstruc-
tion error. We thus examined the standard deviation of the
mean row reconstruction error as a function of the number
of states in the model, expecting the standard deviation to
decrease as the number of states increases. The resulting plot
exhibited knee points at four and seven states (Figure 5B).
Preferring a simpler model, we chose to proceed with a four-
state model. Revisiting the example region in Figure 5A, we
find that the four-state model is far superior in capturing
the observed pattern. Indeed, comparing the two-state and
four-state genome-wide models (Figure 5C), we find that
the four-state model achieves a higher Spearman correla-
tion (two-state: 0.54, 0.1 s.d.; four-state: 0.64, 0.1 s.d.) and
is closer to the optimal possible correlation (two-state: 0.15,

0.08 s.d.; four-state: 0.11, 0.04 s.d.). Finally, we verified that
both the four-state and seven-state models also performed
robustly at high resolutions and low sampling rates, sim-
ilarly to the two-state model (Supplementary Figure S2).
Our results suggest that at least four states may be needed
in order to adequately describe genomic compartments.

It has been shown that on the whole chromosome level,
while the relative nuclear positions of chromosomal terri-
tories are highly stochastic, certain pairs of chromosomes
tend to interact more frequently with others (1,85). Poly-
mer simulations have suggested that chromatin activity-
based segregation may be sufficient to explain chromosome
nuclear positioning (86). We asked whether chromosome-
level interactions can be explained by our model or whether
other mechanisms are involved. We thus calculated a
chromosome-level interaction map for GM12878, reobserv-
ing the known tendency of small gene-rich chromosome
to interact. We then used our 4-state model to predict
a chromosome-level interaction probability map. We find
that the predicted and observed matrices correspond well
(Spearman correlation 0.93) (Figure 5D and E), suggesting
that chromosome-level interaction can be largely explained
by local state-based interaction.

Interpreting model parameters

Following the selection of the four-state model, we turned
to inspect the properties of the inferred parameters includ-
ing the state affinity matrices and the locus state probabil-
ities. Interestingly, we find that the cis state affinity matrix
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Figure 5. Extending the model beyond two states. (A) Modelling a complex region in chromosome 22 (50 kb resolution). Top: Hi-C interaction frequencies.
Middle: interaction probabilities inferred by a two-state model, accompanied by locus state probabilities P(s) (blue state 1, orange state 2). Bottom: middle:
interaction probabilities inferred by a two-state model, accompanied by locus state probabilities P(s) (blue state 1, orange state 2, green state 3, red state
4). (B) Standard deviation of the mean row reconstruction error as a function of the number of states in the model. Arrows indicate knee points at four and
seven states. (C) Distance-normalized Spearman correlation between the Hi-C interaction frequency matrix and the model’s inferred interaction probability
matrix, for whole-genome two-state and four-state models. The optimal possible correlation for each model at matching resolution and sequencing depth is
shown as reference (see Methods for details). (D) GM12878 chromosome-level interaction frequency matrix. (E) chromosome-level interaction probability
matrix inferred by whole-genome four-state model.
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Figure 6. Analysis of four-state model parameters. All results shown were taken from fitting the whole-genome four-state model at 50Kb resolution. (A)
State affinity cis matrix. (B) State affinity trans matrix. affinities matrices for the 4-state fit at 50 kb resolution showing different cis and trans affinities for all
states. (C) Heatmaps representing the distribution of histone modification frequency for 10 different ENCODE (78) ChIP-Seq histone modification tracks,
separated by state. (D) Histograms of locus state probabilities genome-wide. (E) Pearson correlation matrix of locus state probabilities. (F) Confusion
matrix depicting locus state prediction by an elastic net multinomial logistic regression classifier from locus histone modifications.
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Figure 7. Analysis of state mixing. (A) Evidence of state mixing in chromosome 19. The interaction pattern marked in the green-blue rectangle appears to
be a mix of the interaction pattern marked in the blue rectangle and in the green rectangle. Locus state probabilities P(s) are shown for states 3 and 7 taken
from the seven-state model. (B) Averaged interaction profiles for the green-blue, blue, and green regions. (C) Schematic of simulated single-cell Hi-C profiles
generated by the two simulated mixing scenarios. Top: In cell-level mixing, sparse single-cell interaction profiles are sampled from the previously shown
green-blue interaction profile. Bottom: In population-level mixing, sparse single-cell interaction profiles are sampled 50% from the previously shown green
interaction profile and 50% from the blue interaction profile. (D) Violin plots of the distributions of the mixing log ratio for cell-level mixing simulation,
population-level mixing simulation, and real single-cell Hi-C data from Kim et al. (77). Mixing Log Ratio represents the logarithm of the ratio between
the likelihood of a single-cell profile given cell-level mixing and the likelihood of the single-cell profile given population-level mixing, after accounting for
expected distance-dependent differences (see Methods). Kolmogorov-Smirnov P-values are shown.
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is diagonal, suggesting little interaction between any of the
states (Figure 6A). In contrast to the two-state model, we
observe differences in state self-affinities (0.16, 0.17, 0.32,
0.35 for states 1, 2, 3, 4, respectively). However, we find that
the trans state affinity matrix is notably different from that
of cis (Figure 6B): The matrix is no longer diagonal, al-
beit off-diagonal values are low and could be attributed to
noise (≤0.06), and the state self-affinities also differ consid-
erably, e.g. state 1 has the lowest self-affinity in cis (0.16)
but the highest self-affinity in trans (0.32). Examining locus
state probabilities, we find that each state displays a distinct
multimodal distribution of probabilities, suggesting that the
states are not redundant (Figure 6D). This is further sup-
ported by calculating the correlations between all pairs of
states, demonstrating no pair of states is highly correlated
(Figure 6E). Taken together, these results support the no-
tion of four individual states, each with distinctive cis and
trans affinities governing interactions.

Histone modifications underlie interaction states

We next asked what molecular markers may underlie the
four states inferred by our model. To this end, we assembled
ten ENCODE (78) GM12878 histone modification ChIP-
Seq tracks. As our model assigns a state probability to each
genomic locus (50 kb bin), we first assembled for each state
the set of bins in which that state has a probability of at
least 0.6. This yielded 4667, 13 136, 694 and 327 bins for
states 1, 2, 3 and 4, respectively. We first examined visu-
ally the distributions of each of the histone modifications
for each of the four states (Figure 6C). For each of the hi-
stone modifications, we see potentially informative differ-
ences between the states, with the most prominent differ-
ences in the distributions of H4K20me1. In spite of these
aggregate differences, it is unclear to what extent these could
be used to predict locus state based on locus histone modi-
fications. We thus addressed this question directly by train-
ing an elastic net multinomial logistic regression classifier to
predict locus state from histone modifications. Training the
classifier on odd-numbered chromosomes and testing on
even-numbered, we obtain an overall test accuracy of 0.87,
with classification errors tending to occasionally misclassify
state 3 as 2 and state 4 as 1 (Figure 6F). Finally, we calcu-
lated the Spearman correlation of each of the state proba-
bilities with each of the histone tracks as well as the PCA
first eigenvector (Supplementary Figure S3). We find that
despite no correlation between the four states (Figure 6E),
states 1 and 4 are similarly positively correlated with several
histone marks associated with active chromatin, while states
2 and 3 are negatively correlated with these marks (e.g. cor-
relations 0.56, −0.50, −0.56, 0.57 with H3K27ac for states
1–4, respectively). Interestingly, states 2 and 3 differ in their
correlation with H3K27me3 (−0.17 for state 2 versus 0.25
for state 3), possibly suggesting that state 2 specifically rep-
resents polycomb-associated heterochromatin. States 1 and
4 mainly differ in their correlation with H3K9me3 (−0.09
for state 1 versus 0.20 for state 4), which has been shown
to occasionally appear in euchromatin (87). We thus con-
clude that the four inferred states are indeed distinct and are
marked with characteristic combinations of histone modi-
fications.

Single-cell analysis of state mixing

Lastly, we asked whether the mixing of states at a given lo-
cus, which is an inherent feature of our model, occurs at the
population or cell level. For example, consider a locus which
is inferred to be 50% state 1 and 50% state 2. In population-
level mixing, the apparent mixing of states results from the
equal mixing of two populations, one in which the locus is
completely in state 1 and the other in which the locus is
completely in state 2. An alternative scenario is cell-level
mixing, consisting of one homogenous population in which
the locus itself is in a mixed intermediate state at the single-
cell level. While we derived the model with population-level
mixing in mind, the formulation of our model cannot dis-
tinguish between these two scenarios. To address this ques-
tion, we identified within the GM12878 interaction map an
area in chromosome 19 which shows evidence of state mix-
ing (Figure 7A). Within this area, we observed a genomic
region whose interaction pattern appears to be a mixing
of the interaction patterns of two nearby regions. We first
checked that our model identifies this pattern as mixed, and
found that the seven-state model indeed identifies one re-
gion as higher state 3, another as higher state 7, and the
mixed region as a mix of 3 + 7 (Figure 7A). Next, we elected
to use 1164 single-cell Hi-C maps measured by Kim et al.
(77) to distinguish between population-level and cell-level
mixing. We reasoned that if the mixing of the 3 + 7 re-
gion is cell-level, a single-cell interaction profile of the 3 + 7
region would be more likely to resemble the bulk interac-
tion profile of the mixed 3 + 7 region than the bulk inter-
action profile of state 3 or state 7 regions (Figure 7B and
C). If the mixing of the 3 + 7 region is population level,
the opposite would be more likely. We verified the plausi-
bility of this approach by simulating population and cell-
level mixing scenarios (see Methods). Single-cell interaction
profiles were sampled either from the bulk mixed 3 + 7 re-
gion interaction profile (cell-level mixing), or from the two
bulk 3/7 state region interaction profiles (population-level
mixing, 50% each state). We then calculated for each sim-
ulated single-cell interaction profile the log ratio between
its likelihood of coming from the mixed state and its like-
lihood of coming from one of the pure states. This log
ratio was further normalized to account for expected dif-
ferences in distance-dependent interaction between the ge-
nomic regions (see Materials and Methods), and is hereon
referred to as mixing likelihood ratio (MLR). Examining
the resulting MLR distributions in the two simulated mix-
ing scenario (Figure 7D), we find that the MLRs in the cell-
level mixing simulation tend to be positive (median 0.76)
while the MLRs in the population-level mixing simulation
tend to be negative (median −0.96), suggesting the two sce-
narios can be distinguished with this approach (one-sided
Kolmogorov–Smirnov P-value < 10−193). Finally, to exam-
ine which of the two scenarios better fits the data, we cal-
culated the MLRs for the measured single cell Hi-C data.
We find that the resulting MLRs tend to be positive (me-
dian 0.82) and the distribution overall is more consistent
with the cell-level mixing scenario (one-sided Kolmogorov-
Smirnov P-value < 10−93). While not excluding the possibil-
ity of population-level mixing occurring elsewhere, our re-
sults suggest that the observed mixed pattern is mostly due
to cell-level mixing.
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DISCUSSION

In this work, we present deGeco, a probabilistic modelling
approach rooted both in data-driven and hypothesis-driven
approaches. On one hand, this provides us with an ex-
plicit model that has biologically interpretable parameters
and can be used to test biological hypotheses by simple
modifications. On the other hand, this enables us to utilize
the power of the large amounts of available data to solve
inverse-type problems, such as estimating the locus states
across the genome or the affinities between different states
within and between chromosomes.

We evaluate the robustness of our model with respect
to the amount of sequencing reads, as sequencing depth
of Hi-C libraries is still cost-prohibitive due to the huge
space of possible pairwise interactions. We show that ap-
proximately 20M read pairs are sufficient to accurately in-
fer model parameter values which are very close to those in-
ferred from a 4000M read pair map, even at 10 kb bin reso-
lution. This is notable in the context of several recent meth-
ods for reconstructing interaction maps from very sparse
data by first training deep-learning models on well-sampled
high-resolution maps (81–84). It would be interesting to
consider augmenting the Hi-C map with approaches such
as Boost-HiC (88) prior to using our model to enhance
its performance in sparse scenarios even further, although
this may come at the cost of increased computational re-
sources for high-resolution maps. Although our method is
currently limited to genomic compartments and larger in-
teraction patterns, it is notable that simply by the virtue of
its few mechanistic assumptions, it is able to perform this
type of reconstruction from very little data without prior
training. We also try to push the limits of the method by
attempting to apply it to single-cell Hi-C maps, and find it
can correctly infer genomic compartments at lower resolu-
tions (250–500 kb) for reasonably well-sampled single-cell
maps.

Due to the size of mammalian Hi-C interaction matrices,
which poses a significant computational hurdle, computa-
tional methods often resort to operating on smaller scales,
such as single chromosome interactions or small genomic
windows. This often carries the implicit assumption that
the rules for interaction are consistent across the genome.
We enabled whole-genome inference with our model by de-
veloping an optimized sparse representation coupled with
a sampling-based estimation of the partition function (see
Materials and Methods). We then used this to interro-
gate the entire genome simultaneously, and surprisingly
found that state-state affinities between chromosomes dif-
fer considerably from those within chromosomes. In addi-
tion to the implications of these findings for future genome-
wide models, it would be interesting to further explore the
physical basis of these differences by using complementary
modelling techniques, especially those based on polymer
models.

Since ‘all models are wrong, but some are useful’, it
is often useful to inspect where a model was wrong. Al-
though a two-state model explained most of the explain-
able variance in the GM12878 interaction map, we used
the model to identify regions which were clearly not ex-
plained well by two states. This led us to evaluate the num-

ber of states, finding that four and seven states might be
reasonable choices. Naturally, other choices are possible,
and these could change between cell types and species. Al-
though several others have proposed that more than two
states should be considered (9,45,57,58,64,68,71), without
an explicit model it is difficult to distinguish an interaction
state from an interaction pattern. For example, a mixing of
states could create an interaction pattern that would seem
different from those of the individual states, and would be
falsely identified as a separate state by approaches such as
clustering.

What mechanisms drive genome compartmentalization?
Biomolecular condensates which may include DNA, RNA
and proteins are a key feature of subnuclear structures in-
cluding the nucleolus, nuclear speckles, polycomb bodies
and transcription factories (89). One possible mechanism
for creating these structures is liquid-liquid phase separa-
tion, often mediated by multivalent molecules (90). In spite
of their stochastic nature, such compartments are tightly as-
sociated with critical nuclear functions including RNA pro-
cessing and transcription. However, it often unclear what
are the molecular features that direct specific genomic loci
to certain compartments. Pursuing the molecular basis of
the four-state model, we find characteristic state probabil-
ities and histone marks for each of these, ultimately con-
structing a simple classifier that predicts locus state from
histone marks with 87% accuracy. Although it has been
shown that chromatin features can be separated into states
(91,92), and that these can be used to predict spatial interac-
tions (9,69), it remains to be seen whether there is a simple
mapping between chromatin states and interaction states.
We propose that in future work our model could be used
as a mechanistic modelling framework for connecting ge-
nomic features to observed interaction maps via a layer of
underlying interaction state probabilities.

Finally, we decided to investigate one of the assump-
tions of the model, namely that within single cell every lo-
cus is in exactly one state so that any mixing of states at
a locus is due to population-level mixing (averaging over a
heterogenous cell population). However, if we would have
changed the assumption so that even within a single cell a
locus can be in multiple states, e.g. interacting simultane-
ously like two other states, the model formulation would
be the same. We thus decided to use single-cell Hi-C data
to find whether there is evidence for cell-level mixing, and
coupled with probabilistic simulations conclude that cell-
level mixing may indeed explain the state-mixing observed
in this region. In this respect, it is important to note that
cell-level mixing can appear artificially due to genomic bin
size: if loci of different states occupy the same genomic bin,
the bin might seem to interact simultaneously with multiple
states. Further study will be required to assess the extent
of state mixing across the genome in different cell types,
and whether they have unique chromatin features which
are not simply a weighted average of the respective state
features.

In conclusion, we envision this approach as a probabilis-
tic modelling framework for further hypothesis-driven in-
vestigation and interpretation of genomic compartments as
well as other interaction patterns such as TADs and point
interactions.
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