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Abstract: Under the support of Multi-Regional Input–Output (MRIO) analysis, this study constructs
the Embodied Carbon Emission Transfer Network (ECETN) using the input–output tables of 42 sectors
in 31 provinces of China in 2012, 2015, and 2017 and applies a series of complex network measurement
indicators and analysis methods to describe its evolution features. The results show that the embodied
carbon emission transfers between provinces generally narrow over time. With its high clustering
coefficient and short average path length, ECETN has small-world characteristics and behaves
sensitively, and changes in individual provinces can quickly spread and affect the entire system. In
addition, the clustering effect and the spatial spillover structural properties of ECETN are explored
based on the block model analysis. Finally, Quadratic Assignment Procedure (QAP) is used to analyze
and quantify the contribution of provincial structural roles to ECETN, and it is found that spatial
adjacency and differences in strength-in, strength-out, and betweenness centrality have significant
positive effects, while differences in eigenvector centrality, clustering coefficient have significant
negative effects. The restructuring of domestic trade can help achieve national emission reduction.
These findings can provide more insights for the government to formulate future development
directions and policies to reduce emissions further.

Keywords: embodied carbon emissions; inter-provincial trade; multi-regional input–output table;
network analysis; spatial-temporal evolution analysis

1. Introduction

Climate change has become an issue of concern around the world. The Sixth Assess-
ment Report of the Intergovernmental Panel on Climate Change (IPCC) shows that the
global climate change problem has already become quite serious [1]. The report clarifies
that achieving the goal of limiting global temperature rise to 1.5 °C is still possible, but
immediate action needs to be taken [2]. CO2, the most significant greenhouse gas, also
bears the brunt of widespread attention.

China is an emerging economy and needs to maintain rapid economic development to
eliminate poverty and achieve prosperity. China’s energy mix is dominated by fossil fuels,
which is difficult to change in the short term, making it particularly challenging to reduce
carbon emissions [3,4]. However, China has long attached great importance to the issue of
climate change and has made the active response to climate change a significant strategy
for national economic and social development [5]. After years of unremitting pursuit and
efforts, China has achieved remarkable results in energy conservation and emission reduc-
tion, submitted the “Enhanced Actions on Climate Change: China’s Intended Nationally
Determined Contributions” to the United Nations in 2015 [5], and pledged to the world at
the 2020 United Nations General Assembly to strive to peak CO2 emissions by 2030 and
work towards achieving carbon neutrality by 2060.
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The international community has reached a certain degree of consensus on CO2
emission reduction [6]. However, there are still large differences among countries on the
division of responsibility for carbon emissions, especially on the attribution of embodied
carbon emissions in trade [7,8], and scholars try to assign responsibility for embodied CO2
emissions in international trade. Many studies attempt to quantify the CO2 emissions
embodied in trade, and from these studies, it is found that the percentage of total embodied
CO2 emissions increases over time [9]. In 2020, China proposed to establish a “dual
circulation” development pattern in which domestic economic cycle plays a leading role
while international economic cycle remains its extension and supplement. This accelerates
the fragmentation of the supply chain, making the spatial separation of production and
consumption widespread [6,10]. The level of embodied carbon emission transfers generated
by inter-provincial trade in China has exceeded that of international trade [11]. Therefore,
the carbon emission transfers caused by inter-provincial trade is also critical in formulating
emission reduction policies.

The concept of embodied carbon can be traced back to the working group conference
on energy analysis of the International Federation of Institutes for Advanced Studies
(IFIAS) in 1974. The conference first introduced the concept of embodied energy to measure
the total amount of energy consumed directly and indirectly in producing a product or
service, which was later extended to the study of carbon emissions, resulting in the term
embodied carbon [12,13]. With the development of economic and trade globalization, the
environmental problems caused by trade have become increasingly prominent, and the
research on carbon embodied in trade has gradually become a hot topic. For example, Yang
et al. (2022) constructed an embodied carbon calculation model in China’s export trade and
found that the embodied carbon mainly came from the secondary industry, accounting for
more than 90% of the total embodied carbon, while the proportion of embodied carbon in
the primary and tertiary industries was relatively low [14]. Li et al. (2021) evaluated the
total embodied carbon emissions in China’s exports and 14 sectors from 1992 to 2020 [15].
Based on cross-country panel data, Qayyum et al. (2021) investigate the relationship
between economic complexity and embodied carbon emissions [16]. Huo et al. (2021)
identified the drivers of emission changes at global and regional scales by quantifying the
evolution of carbon emissions in services trade from 2010 to 2018 [17].

The input–output model, founded by Leontief in 1936 [18]. In the 1970s, Leontief
pioneered the application of this method to research in environmental protection and
obtained the Environmentally Extended Input–Output Analysis (EEIOA) by incorporating
environmental data into the economic input–output table [19–21]. In the past few years,
with the increasingly severe problem of climate change, the Multi-Regional Input–Output
(MRIO) model based on EEIOA is widely used in exploring the relationship between
human economic activities and climate change [22]. Several scholars used the model to
study the embodied carbon emissions in trade in a particular country or major world
economy. Li et al. (2020) confirmed the nonlinear relationship between trade volumes and
carbon emissions between developed and emerging economies using the MRIO model [23].
Long et al. (2018) used the MRIO model to empirically analyze and compare the direct and
total CO2 emission intensities of China and Japan from 2000 to 2014 and bilateral economic
activities such as imports, exports, production, and consumption [24]. Based on the MRIO
model, Zhang et al. (2021) investigated the global pollution paradise phenomenon in
43 countries and 56 major sectors from 2000 to 2014 [25]. Zhang et al. (2019) analyzed the
embodied carbon emissions in trade within Brazil, Russia, India, China, and South Africa
(BRICS) and between the BRICS group and other economies [26].

The above studies only consider the embodied emissions in trade from a global and
national perspective, ignoring the differences between different regions within a country.
Studying the embodied carbon emissions in trade between different regions or provinces is
necessary. For example, Zhou et al. (2018) estimated the embodied carbon emissions of
various regions in China from 2002 to 2012, studied how they transferred through major
regions and key sectors [27]. Yuan et al. (2022) calculated the carbon footprints of nine



Int. J. Environ. Res. Public Health 2022, 19, 6794 3 of 26

provinces in the Yellow River Basin of China and estimated the embodied carbon emission
transfers between provinces and industrial sectors [28]. Lv et al. (2019) conducted an
empirical study on the inter-provincial embodied carbon emission transfers in China and
analyzed the spatial correlation and influencing factors [29].

In order to profoundly investigate the relational characteristics within the system,
complex network theory and its metrics provide a new approach to analyzing the system
and its individuals from a global perspective [30]. In the past few years, with the continuous
research of complex network theory, it is widely used in the research of energy [31],
economy [32], transportation [33–35], and other disciplines, and some scholars also apply
it to the study of embodied carbon emission transfers. Based on the input–output tables of
China from 2002 to 2015, Wang et al. (2021) constructed six embodied carbon emission flow
networks containing 30 sectors and analyzed them by complex network metrics to obtain
the overall structural characteristics, key sectors, and critical flow paths [36]. Li et al. (2020)
used a series of network tools to describe the evolution characteristics of the global carbon
flow network from 1995 to 2011 [6].

This paper combines MRIO and complex network analysis methods to empirically
investigate the carbon emission transfers embodied in inter-provincial trade in China.
First, using inter-provincial trade input–output tables and provincial CO2 emissions data,
we account for the embodied carbon emissions of 42 sectors in 31 Chinese provinces in
2012, 2015 and 2017. Second, the Embodied Carbon Emission Transfer Network (ECETN)
is constructed by utilizing the carbon emission transfer relationships among provinces.
The network topological structure characteristics, province roles, clustering characteristics
and spatial spillover structure characteristics are evaluated and analyzed using complex
network theory. Third, correlation and regression analyses using the Quadratic Assignment
Procedure (QAP) are employed to identify the interlinkage and potential drivers between
provincial roles and embodied carbon emission transfers. Finally, we present policy rec-
ommendations based on our results for coordinating inter-provincial emission reductions
and cutting carbon emissions even more. We explore the complex interaction between
economic trade and the environment from a systemic perspective, taking into consideration
both the independence of the subjects of each province and their interconnectedness, and
we concentrate on both economic activities and their environmental impacts. In addition,
by discussing China’s CO2 emissions at the provincial level, we can help understand the
main contradictions in each province, formulate localized emission reduction policies, and
achieve China’s carbon peak target earlier.

In addition to this introduction, the rest of the paper is organized as follows. In Section 2,
the embodied carbon emissions in inter-provincial trade are measured based on MRIO
analysis and construct the ECETN. In addition, complex network theory, QAP analysis,
and the data used are described. Section 3 presents the results of the empirical study.
Conclusions as well as policy implications are given in Section 4.

2. Research Methods and Data
2.1. MRIO Analysis

In this study, the 31 provinces of China are studied, so we use the MRIO model. The
basic structure of the Chinese MRIO table used in this study is shown in Table 1. There
are m provinces in the model, each consisting of n intermediate use sectors and k final use
categories. Where zsr

ij denotes the intermediate use capital flow from sector i in province s to
sector j in province r, and zsr

ij is an element of the intermediate use matrix Z. ysr
iµ represents

the final-use capital flow of sector i in province s used in category µ of province r and is an
element of the final use matrix Y. xs

i represents the total capital output/input of sector i
in province s and is an element of the total output/input matrix X. es

i denotes the export
capital flow of sector i in province s and is an element of the export matrix E. Is

i denotes the

import capital flow of sector i in province s and is an element of the import matrix I. I f ,s
µ

is the capital flow of import for the final use of category µ in province s. vs
i represents the

value of the initial capital invested in sector i of province s and is an element of the initial
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input capital matrix V. ds
i is the direct carbon emissions from sector i in province s during

the production process.
In Table 1, we can get the following equilibrium relations in the direction of rows:

∑
r

∑
j

zsr
ij + ∑

r
∑
µ

ysr
iµ + es

i = xs
i (1)

In the direction of the columns, we can obtain the following equilibrium relations:

∑
s

∑
i

zsr
ij + vr

j + Ir
j = xr

j (2)

Using matrix operations, we can rewrite Equation (1) as follows:

X = Z + E + Y (3)

By introducing the intermediate input coefficient matrix A, we can obtain Z = AX.
The basic element asr

ij = zsr
ij /xr

j of matrix A is the intermediate input coefficient of sector i
in province s to sector j in province r. It represents the capital required to be invested in
sector i in province s for each unit of product produced in sector j in province r. Based on
this, Equation (3) can be rewritten as:

X = AX + E + Y (4)
X1

X2

...
Xm

 =


A11 A12 · · · A1m

A21 A22 · · · A2m

...
...

. . .
...

Am1 Am2 · · · Amm




X1

X2

...
Xm

+


E1

E2

...
Em

+


Y1

Y2

...
Ym

 (5)

In MRIO analysis, the import and export of provinces are usually not considered, then
Equation (5) can be rewritten as:


X1

X2

...
Xm

 =


A11 A12 · · · A1m

A21 A22 · · · A2m

...
...

. . .
...

Am1 Am2 · · · Amm




X1

X2

...
Xm

+



Y11 + ∑
j 6=1

Y1j

Y22 + ∑
j 6=2

Y2j

...
Ymm + ∑

j 6=m
Ymj


(6)

Further, the output of each province can be written as:

Xs = As1X1 + As2X2 + · · ·+ AsmXm + Yss + ∑
j 6=s

Ysj (7)

Xs = AssXs + Yss + ∑
j 6=s

(
AsjX j + Ysj

)
(8)

Xs = (I − Ass)−1

[
Yss + ∑

j 6=s

(
AsjX j + Ysj

)]
(9)

According to Equation (9), we can get the input–output relationship of each province.
The input–output relationship within the province is:

Rss = (I − Ass)−1 ×Yss (10)
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Table 1. Chinese MRIO table.

Input Output

Intermediate Use Final Use

Total OutputProvince 1
· · ·

Province m Province 1
· · ·

Province m
Exports

Sector 1 · · · Sector n Sector 1 · · · Sector n Category 1 · · · Category k Category 1 · · · Category k

Intermediate
input

Sector 1 z11
11 · · · z11

1n
· · ·

z1m
11 · · · z1m

1n y11
11 · · · y11

1k
· · ·

y1m
11 · · · y1m

1k e1
1 x1

1

Province 1
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

...
...

Sector n z11
n1 · · · z11

nn z1m
n1 · · · z1m

nn y11
n1 · · · y11

nk y1m
n1 · · · y1m

nk e1
n x1

n
...

...
...

...
...

Sector 1 zm1
11 · · · zm1

1n
· · ·

zmm
11 · · · zmm

1n ym1
11 · · · ym1

1k
· · ·

ymm
11 · · · ymm

1k em
1 xm

1

Province m
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

...
...

Sector n zm1
n1 · · · zm1

nn zmm
n1 · · · zmm

nn ym1
n1 · · · ym1

nk ymm
n1 · · · ymm

nk em
n xm

n

Imports I1
1 · · · I1

n · · · Im
1 · · · Im

n I f ,1
1 · · · I f ,1

k · · · I f ,m
1 · · · I f ,m

k
Value-added v1

1 · · · v1
n · · · vm

1 · · · vm
n

Total input x1
1 · · · x1

n · · · xm
1 · · · xm

n

Direct carbon emissions d1
1 · · · d1

n · · · dm
1 · · · dm

n
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The input–output relationship among provinces is:

Rsr = (I − Ass)−1 × (AsrXr + Ysr) (11)

where Rss denotes the matrix of input–output relationships among sectors within province
s, and Rsr denotes the matrix of input–output relationships among sectors from province s
to province r.

2.2. Calculation of Carbon Emissions Embodied in Inter-Provincial Trade

We introduce emission intensity εs
i , which represents the total direct and indirect

carbon emissions of a unit of goods or services produced by sector i in province s. According
to the conservation law, the isolated system is always constant [37]. The embodied energy
balance of sector i in province s is shown in Figure 1, which can be expressed as:

Figure 1. Schematic diagram of the embodied energy balance principle for sector i in province s.

ds
i + ∑r ∑j

(
εr

j × zrs
ji

)
= ∑r

[
∑j

(
εs

i z
sr
ij

)
+ ∑µ

(
εs

i y
sr
iµ

)]
(12)

ds
i + ∑r ∑j

(
εr

j × zrs
ji

)
= εs

i x
s
i (13)

Then the whole input–output table can be expressed in matrix form as:

D + ZT × E = X× E (14)

According to the construction rules of the input–output table, it is known that (X−ZT)
is reversible. By transforming Equation (14) we can obtain:

E = (X− ZT)−1 × D (15)

Based on input–output relationships derived in Section 2.1, the embodied carbon
emission transfers by sector within province s can be calculated as:

Fss = diag(Es)× (I − Ass)−1 × diag(Yss) (16)

The calculation of embodied carbon emission transfers from province s to province
r is:

Fsr = diag(Es)× (I − Ass)−1 × diag(AsrXr + Ysr) (17)

2.3. Construction of the ECETN

Complex network theory and its metrics provide a new perspective for us, making
it possible to analyze the characteristics of the network from a global viewpoint [35,38].
It transforms the inter-provincial embodied carbon emission transfer relationships into
a network consisting of nodes and connected edges, where nodes denote provinces and
edges are used to represent the embodied carbon emission transfer relationships between
provinces. The inter-provincial embodied carbon emission transfer relationships can be
represented by set G(t) = {V(t), E(t)}, where G(t) denotes the ECETN for year t. The
set V(t) = {v1(t), v2(t), ..., vm(t)} represents the provinces in ECETN in year t. The set
E(t) = {esr(t)}m×m represents the embodied carbon emission transfers between provinces
in year t. esr(t) represents the embodied carbon emission transfers from province s to
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province r in year t. We set the total embodied carbon emission transfer from province s to
province r in year t as f sr(t), which is calculated as:

f sr(t) = ∑i ∑j f sr
ij (t) (18)

where f sr
ij (t) is an element in matrix Fsr(t). If f sr(t) > 0 then esr(t) = 1, the weight of the

edge is wsr(t) = f sr(t); otherwise esr(t) = 0, that is:

esr(t) =
{

0, if there is no embodied carbon emission transfer from province s to province r.
1, if there is embodied carbon emission transfer from province s to province r .

(19)

The above steps allow us to construct a directed weighted network for each studied
year to describe its embodied carbon emission transfers in inter-provincial trade.

2.4. Indicators for Analyzing the ECETN

In this section, we analyze the ECETN using the complex network theory metrics,
which are detailed below.

2.4.1. Centrality Analysis

Centrality reflects the status and role of each node in the network [39]. In this paper, we
use degree centrality, betweenness centrality, closeness centrality and eigenvector centrality
to evaluate.

(1) Degree Centrality
In a network, the interconnectedness of the nodes gives them the ability to influence

each other. Therefore, we use the degree of each province to show its importance. In the
directed network, the degree of a node can be classified as degree-out and degree-in. The
degree-out of the node i refers to the number of edges that point from the node i to other
nodes, the degree-in of the node i refers to the number of edges that point to the node i from
other nodes. They denote the number of embodied carbon outflow and inflow relationships
in ECETN, respectively. The expressions are calculated as:

kout
i = ∑j eij (20)

kin
i = ∑j eji (21)

where kout
i and kin

i are the degree-out and degree-in of node i in ECETN, respectively.
In addition, we use the total weight of edges connected to the node to describe the

strength. The higher the strength of the node, the stronger its influence. Similarly, in the
directed network, the strength of a node can be divided into strength-out and strength-in.
In ECETN, the strength-out reflects the total export of embodied carbon emissions of the
node, and the strength-in reflects the total import of embodied carbon emissions of the
node. The expressions are calculated as:

sout
i = ∑j wij (22)

sin
i = ∑j wji (23)

where sout
i and sin

i are the strength-out and strength-in of node i in ECETN, respectively.
(2) Betweenness Centrality
Betweenness centrality is defined by the number of shortest paths passing through the

node, and it is used to measure the bridge properties and media capabilities of the node. In
ECETN, provinces with high betweenness centrality are the key channels for controlling
the embodied carbon emission transfers, they can absorb transfers from multiple provinces,
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and then transfer the embodied carbon emissions to other provinces. The normalized
betweenness centrality of node i is calculated as:

Bi =

∑
j 6=l 6=i

(
Ljl(i)

/
Ljl

)
(N − 1)(N − 2)

/
2

(24)

where Ljl is the number of all shortest paths from node j to node l that exist in the network,
Ljl(i) is the number of all shortest paths from node j to node l and passing through node i,
and N is the number of nodes in the network.

(3) Closeness Centrality
The reciprocal of the sum of the shortest path lengths from the node to all other nodes

is used to determine the closeness centrality. The greater the closeness centrality of a
node, the closer it is to other nodes, and the lower the closeness centrality, the farther it
is from other nodes. If the provinces with high closeness-out are affected somehow, the
effect can quickly spread to other associated provinces through the shortest path. As a
result, the effect can spread to most provinces or the entire network in the shortest possible
time. For provinces with high closeness-in, if other provinces in the network are affected
somehow, they can be affected in the shortest time. The closeness-out and closeness-in are
calculated as:

Ccout
i =

[
1

N − 1 ∑
j 6=i

d(i, j)

]−1

(25)

Ccin
i =

[
1

N − 1 ∑
j 6=i

d(j, i)

]−1

(26)

where d(i, j) is the shortest path length from node i to node j.
(4) Eigenvector Centrality
Eigenvector centrality considers that the importance of a node depends on both the

number of its neighbors and the importance of its neighboring nodes. In ECETN, a node
with huge embodied carbon emissions is definitely a critical node. However, if there is an
embodied carbon emission transfer between a node and a critical node, that node can also
be considered a relatively central node. Eigenvector centrality emphasizes the surroundings
of the node, and nodes can increase their importance by connecting many other important
nodes. The eigenvector centrality of node i is calculated as:

Eci = λ−1 ∑N
j=1 eijε j (27)

where λ and ε j are the maximum eigenvalue of the adjacency matrix and its eigenvector,
respectively.

2.4.2. Topology Analysis

(1) Network Density
The network density is defined as the ratio of the actual number of edges M to the

maximum possible number of edges, which reflects the sparsity of the network. In the
directed network its expression is defined as:

ρ =
M

N(N − 1)
(28)

(2) Network Efficiency
The average shortest path length is usually used to measure the network efficiency.

However, if there are multiple subgraphs in the network, the average shortest path between
different subgraphs is infinite, which is not suitable for comparison. Therefore, network
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efficiency is achieved by calculating the reciprocal of distances between nodes, which is
defined as:

E =
1

N(N − 1) ∑
i 6=j

1
dij

(29)

Network efficiency reflects the ease of embodied carbon emission transfer between the
two provinces, that is, how many intermediate provinces embodied carbon emissions need
to pass through before they are transferred to the target province. The higher the network
efficiency, the faster the embodied carbon emissions are transferred to the whole network.

(3) Clustering coefficient
The clustering coefficient measures the probability that a node is connected to its

neighbors, which evaluates the extent of nodes clustered together. If a node in the network
has a high clustering coefficient, there is a close connection between it and its neighbors.
Therefore, in ECETN, the clustering coefficient measures the relationship between the node
and its trading nodes. In the directed weighted network, the clustering coefficient of a
single node and the average clustering coefficient of the whole network are calculated
as [40–42]:

Ci =
1

si(ki − 1) ∑
j,h

wi,j + wi,h

2
ei,jei,hej,h (30)

C =
1
N ∑

i∈N
Ci (31)

where si is the strength of node i, and ki is the degree of node i. The average clustering
coefficient of the network quantizes the connections between nodes in the network. If
C = 1, then all nodes are connected, while if C tends to 0, the network is more loosely
connected.

(4) Assortativity
Assortativity considers the possibility of connecting nodes mainly from the perspective

of network structure [43]. We use the assortativity coefficient (also known as Pearson
Coefficient) to portray it, its expression is defined as:

r =
∑
i,j

(
aij −

kikj
2M

)
kik j

∑
i,j

(
kiδij −

kikj
2M

)
kik j

, r ∈ [−1, 1] (32)

where δij is the Kronecker delta. The essence of assortativity is the degree-degree correlation,
which reflects the degree relationship between an interconnected pair of nodes. r > 0
indicates that the entire network is assortative, and embodied carbon emissions tend to
transfer to provinces with similar degrees. r < 0 represents that the entire network exhibits
disassortative, and embodied carbon emissions tend to transfer to provinces of different
degrees. r = 0 indicates that there is no obvious tendency for the connection between
nodes, and the embodied carbon emission transfers exhibit stochasticity.

(5) Network Motif
The network may contain a variety of subgraphs, some of which occupy a significantly

higher proportion than the proportion of these subgraphs in the corresponding random
network, and these subgraphs are called motifs. Motif identification helps to identify
typical local connectivity patterns in the network. To determine whether the subgraph j
in the network is a motif, we can compare the occurrence number of the subgraph N(j)
in the actual network with the average occurrence number 〈Nr(j)〉 in the corresponding
random network, and we usually require R(j) = N(j)

〈Nr(j)〉 > 1.1. The network motif allows
to observe the local relationship patterns and inter-provincial interactions of embodied
carbon emission transfers in ECETN.



Int. J. Environ. Res. Public Health 2022, 19, 6794 10 of 26

2.4.3. Clustering Analysis

We are more interested in whether the nodes in the network aggregate together in a
certain way, in addition to knowing the fundamental statistics of the network. The block
model is a method of partitioning nodes based on structural information. It is a method of
studying the network location model and a descriptive algebraic analysis of social roles.
The block model can partition a complex network into several sub-blocks to concisely
describe the whole network. It can be used to profile the main connectivity modes and
functional roles in the network. Block model analysis was first proposed by White in
1976 [44] and has since been further improved and generalized and gradually used to
study some specific problems [41,45]. Based on Wasserman et al. (1994) [41] and Lv et al.
(2019) [29], we can divide the network into four attribute categories: main inflow block,
main outflow block, bidirectional spillover block, and agent block. The proportion of actual
internal relationships is greater than the expected proportion of internal relationships in
the main inflow block, receiving more contacts from other blocks. The number of external
contacts is significantly higher than the number of internal contracts. The proportion
of actual internal relationships in the main outflow block is smaller than expected. The
external contacts received are significantly lower than the number of contacts sent. The
bidirectional spillover block has a larger proportion of actual internal relationships, and
it receives fewer contacts but sends more internal and external contacts. The agent block
receives fewer contacts but sends more external and internal contacts. The proportion of
actual internal relationships is smaller than the expected internal relationships. By explicitly
examining how all blocks send and receive contacts with each other, we can perform a
descriptive analysis of each block and ultimately achieve a study of the entire embodied
carbon emission transfer system.

2.5. QAP Analysis

In ECETN, the structural role of provinces may have a certain impact on network
performance. Therefore, we assume that degree-in, degree-out, strength-in, strength-
out, closeness-in, closeness-out, betweenness centrality, eigenvector centrality, clustering
coefficient, and spatial adjacency relationship of each province can affect the network.
Based on the above analysis, we can build the model:

G = f (Kin, Kout, Sin, Sout, Ccin, Ccout, B, Ec, C, SR) (33)

All indicators in the model are in matrix form. G is the adjacency matrix of ECETN. Kin,
Kout, Sin, Sout, Ccin, Ccout, B, Ec and C are the difference matrices constructed based on the
degree-in, degree-out, strength-in, strength-out, closeness-in, closeness-out, betweenness
centrality, eigenvector centrality, and clustering coefficient of all provinces, respectively.
SR is the spatial adjacency relationship among provinces, and takes the value of 1 if two
provinces are adjacent, and 0 if they are not.

In this study, there are certain relationships between matrices we choose for influence
factor analysis, and the values of matrices are not independent of each other. Therefore,
many traditional statistical analysis methods may lead to multicollinearity, making the
calculated results have a large standard deviation and further affecting the results. In
this paper, to better obtain credible results, we use QAP analysis to test the relationship
between provincial roles and embodied carbon emission transfers and further analyze the
impact of provincial roles on ECETN [46,47]. QAP analysis is a nonparametric test based on
permutation, which tests the relationship between relational variables and does not focus
on the overall distribution. Compared with the traditional parametric method, the QAP
is more robust and does not require the assumption that the variables are independent of
each other [48]. The QAP permutes the rows and columns of a given matrix simultaneously,
which does not destroy the original data and ensures that the independent and dependent
variable matrices are dependent on each other in rows and columns [49,50].
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2.6. The Data

This study analyzes the spatial and temporal evolution of embodied carbon emissions
from inter-provincial trade in 31 Chinese provinces (including provinces, municipalities,
and autonomous regions, excluding Hong Kong, Macao, Taiwan, and the South China
Sea islands). The inter-provincial trade input–output tables for 2012, 2015, and 2017 are
taken from Carbon Emission Accounts & Datasets (CEADs) (https://www.ceads.net/
data/input_output_tables, accessed on 14 May 2022), which is an essential database for
researchers conducting input–output studies in China. It provides a complete set of input–
output tables [51,52], including 42 sectors in 31 provinces. In particular, the input–output
tables also provide the total carbon emissions of each sector [53–56], including coal, oil,
natural gas, electricity, etc., which is crucial to our analysis of embodied carbon emissions.

3. Empirical Results
3.1. Evolution of Carbon Emissions Embodied in Inter-Provincial Trade in China
3.1.1. Evolution of Embodied Carbon Emissions under the Provincial Perspective

We calculate the embodied carbon emissions of 31 provinces using inter-provincial
trade input–output tables of China for 2012, 2015, and 2017. The total scale of embodied
carbon emissions in inter-provincial trade in China increased from 8889.36 Mt CO2 in 2012
to 8925.22 Mt CO2 in 2015 and to 8935.26 Mt CO2 in 2017. For each province, its embodied
carbon emission scale in 2012, 2015, and 2017 is shown in Figure 2.

(a) (b) (c)

Figure 2. Embodied carbon emissions by province in China. (a) The scale of intra-provincial and
inter-provincial embodied CO2 emissions in each province. (b) The scale of embodied CO2 emissions
generated by intermediate use and final use in each province. (c) The scale of embodied CO2

emissions from different categories of final use in each province.

According to the scale of intra-provincial and inter-provincial embodied CO2 emissions
of each province in Figure 2a, intra-provincial trade embodied CO2 emissions occupied
the majority of total emissions, accounting for 84.34%, 82.69%, and 79.61% in 2012, 2015,
and 2017, respectively, while inter-provincial trade embodied CO2 emissions accounted
for a small share. In terms of embodied CO2 emissions, Hebei, Shanxi, Inner Mongolia,
Liaoning, and Henan played an important role in inter-provincial embodied CO2 emissions.

https://www.ceads.net/data/input_output_tables
https://www.ceads.net/data/input_output_tables
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These provinces were all from the north and rich in coal, minerals, and other resources.
Their energy needed not only to meet the development of their own province but also to
export to other provinces, resulting in a significant inter-provincial transfer of embodied
carbon emissions.

Based on the scale of embodied CO2 emissions generated by intermediate use and
final use in each province in Figure 2b, we find that embodied CO2 emissions due to
intermediate use accounted for the majority of total emissions, with the share of the total
in 2012, 2015 and 2017 being 91.07%, 91.77%, and 88.80%, respectively. Shandong, Hebei,
Jiangsu, Inner Mongolia, Shanxi, Liaoning, Henan, and Guangdong were the main direct
carbon emission provinces, mostly located in northern China.

The scale of embodied CO2 emissions from different categories of final use in each
province is shown in Figure 2c. In terms of household consumption, rural residential
consumption accounted for 14.22%, 14.28%, and 15.84% in 2012, 2015, and 2017, respectively,
and the corresponding urban residential consumption was 48.89%, 46.79%, and 48.63%,
respectively. From 2012 to 2017, the Chinese urban population increased year by year, and
on average, the urban and rural populations were similar in size, accounting for 55.67%
and 44.33%, respectively. However, the embodied CO2 emissions of urban residential
consumption were more than three times higher than those of rural areas. Therefore, in the
process of urban and rural development, urban residential lifestyles need to be gradually
improved and transformed into low-carbon consumption [4].

3.1.2. Evolution of Embodied Carbon Emissions under the Sectoral Perspective

The scale of embodied carbon emissions from intermediate use and final use in each
sector is shown in Figure 3a. We find that the embodied carbon emissions from intermediate
use in most sectors far exceed those from final use. The three sectors with the largest
embodied carbon emissions are S13 (Manufacture of non-metallic mineral products), S14
(Smelting and processing of metals), and S25 (Production and distribution of electric power
and heat power), accounting for 10.35%, 15.99%, and 49.76% of the total, respectively.

The scale of embodied CO2 emissions from different categories of final use in each
sector is shown in Figure 3b. It can be seen that the embodied carbon emissions of S25
(Production and distribution of electric and heat power) and S32 (Information transfer,
software, and information technology services) due to final use are high, accounting for
30.90% and 18.66% of the total, respectively.

(a) (b)

Figure 3. Embodied carbon emissions by sector in China. (a) The scale of embodied CO2 emissions
from intermediate use and final use in each sector. (b) The scale of embodied CO2 emissions from
different categories of final use in each sector.

3.2. Evolution of Structural Characteristics of ECETN

We construct ECETNs for 2012, 2015, and 2017, respectively. In this paper, we use
inter-provincial trade input–output tables of China for our research. All provincial sec-
tors consume energy to a greater or lesser extent and produce certain embodied carbon
emissions so that the constructed ECETN is a fully connected network containing 31 nodes
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and 930 edges. Using complex network theory for network topology analysis in a fully
connected network will reduce the validity of the results, making it difficult to reveal the
structural characteristics of the network indeed.

We rank all edges in the network according to the embodied carbon emission transfers
from large to small and analyze the cumulative distribution of the weights. The results
are shown in Figure 4. It is clear from the figure that 50% of the edges in the three original
ECETNs in 2012, 2015, and 2017 carry more than 90% of the total weight of the whole
network. To better highlight the important embodied carbon transfer relationships, we
introduce a filtering procedure to keep the edges that occupy 90% of the weight of the
original network and filter out the edges that occupy only 10% of the weight. We finally
obtain the corresponding ECETNs for 2012, 2015, and 2017. To make the observation more
intuitive, we visualize the network structure and its embodied carbon emission transfers, as
shown in Figures 5–7. In the figure, the left panel shows the network topology, and the right
panel clearly shows the embodied carbon emission transfers and its scale between provinces.
In the topology diagram, the size of the node indicates the total amount of embodied carbon
transfers passing through the province, and the thickness of the edge indicates the amount
of embodied carbon transfer between provinces. We find that the key provinces can be
divided into two main categories: one is economically developed provinces, which are
mainly importers of embodied carbon emissions, and the other is provinces rich in natural
resources, which are mainly exporters of embodied carbon emissions. With the gradual
development of transportation, geographical factors have less influence on trade, and the
distribution of critical provinces becomes extensive.
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Figure 4. Cumulative fraction of edges by weight.
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Figure 5. Inter-provincial embodied carbon emission transfers in 2012.
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Figure 6. Inter-provincial embodied carbon emission transfers in 2015.
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Figure 7. Inter-provincial embodied carbon emission transfers in 2017.

We calculate the structural characteristic indicators of the ECETN corresponding to the
three years using complex network theory, and the obtained results are shown in Table 2.
As density decreases, the network becomes sparse. During the study period, the average
shortest path decreases from 1.590 to 1.586 and then decreases to 1.560 in 2017, indicating
that provinces are becoming more connected. It can also be observed that the number
of edges and the average degree of the network gradually decrease while the average
strength increases significantly, which indicates that the total amount of embodied carbon
emission transfers is increasing. From the perspective of each province, the number of
provinces with which there are significant embodied carbon emission transfer relationships
gradually decreases, and embodied carbon emission transfers tend to concentrate in a
few provinces. This performance can be confirmed in the trend of network efficiency.
Nevertheless, these three networks still have characteristics of the high clustering coefficient
and short average path length, which means they all have small-world characteristics, and
the network performance is fragile and sensitive. Changes in embodied carbon emissions
of key provinces will rapidly affect most provinces and thus lead to changes in the whole
network. This also means that energy conservation and emission reduction policies in
key provinces will significantly reduce the carbon emission level of the whole country. In
addition, the assortativity of all three networks is less than 0, indicating that the embodied
carbon emissions tend to transfer among provinces with different node degree values.
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Table 2. Calculation results for structural characteristic indicators of ECETN.

Year Number
of Node

Number
of Edge

Average
Degree

Average
Strength

Network
Density

Network
Efficiency

Clustering
Coefficient

Average Path
Length Assortativity

2012 31 434 14.000 40.404 0.467 0.864 0.657 1.590 −0.272
2015 31 432 13.935 44.844 0.465 0.861 0.620 1.586 −0.254
2017 31 414 13.355 52.871 0.445 0.824 0.663 1.560 −0.319

The network motif can effectively reflect the local relationship pattern of the net-
work [57]. We focus on the subgraph structure composed of 3 provincial nodes, and all
possible interaction patterns among the 3 nodes in the directed network are shown in
Figure 8. The statistical significance description for each network motif is usually achieved
by a normalized Z-score, which is calculated as described in the study by Zeng et al. [35].
By calculating each subgraph, we finally get the Triad Significance Profile (TSP) in ECETN
as shown in Figure 9, which reflects the importance of the 16 different triads in the network.
It can be seen from the figure that the ECETNs in 2012 and 2015 show similar local rela-
tionship patterns, with higher significance levels for the motifs M5, M12, and M16. The
importance of M1 significantly increases, and the importance of M5 and M16 decreases in
the network in 2017.

Figure 8. All possible interaction modes among the three nodes in the directed network.
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Figure 9. The TSP in ECETN.

3.3. Provincial Roles

In this subsection, we use different indicators to measure the importance of provinces
from different perspectives. In the constructed ECETN for the study years, we calculate the
centrality indicators for all provinces, and the calculation results are detailed in Table A1 in
Appendix A.
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3.3.1. Provinces with Large-Scale Influence

Jiangsu, Zhejiang, Guangdong, and Beijing generally have a high degree-in in these
three years, with an average of about 27, indicating that the embodied carbon emissions of
about 27 of the 31 provinces studied are transferred to these provinces. These provinces
with higher degree-in values relative to others can receive transfers from multiple provinces,
resulting in large-scale influences on the entire network. If their consumer trade is con-
trolled, the provinces that supply them will also be affected. We find that these provinces
with larger degree-in values are generally provinces with a high level of domestic economic
development, and most of them are in the south. These provinces require trade imports
from most provinces due to their rapid development. It is worth noting that the degree-in
values of Shanghai, Shandong, Hubei, and Tianjin show a significant downward trend
in the three years, indicating that their import trade provinces are significantly reduced,
showing a trend of concentration to a few provinces, while Henan, Hunan, and Yunnan
show a significant increase in degree-in, indicating that they carry out trade imports from
more provinces.

By observing the degree-out values of various provinces, we find that Hebei, Henan,
and Inner Mongolia generally have higher degree-out in these years, with an average
of about 24, indicating that the embodied carbon emissions of these provinces can be
transferred to the other 24 provinces. These provinces conduct trade exports to multiple
other provinces, thus affecting the entire network. If their trade exports are controlled,
provinces importing from them will also be affected. It can also be seen that these provinces
with high degree-out values are all in the north, are rich in resources, and export to most
other provinces, resulting in a large amount of embodied carbon emissions transfers. In
addition, we find that most provinces show a decreasing trend in degree-out values during
these years.

Henan, Shaanxi, Hebei, Jiangsu, Zhejiang, and Guangdong have high degree values
in ECETN, which shows that there are embodied carbon emission transfer relationships
between these provinces and many other provinces, and there is a strong spatial correlation.
Their trade and carbon emission policies can have a large scale of influence in the country,
reflecting their relative importance. We distinguish degree-in, degree-out, and degree for
analysis, making it possible to understand the degree of influence scale of each province
with more precision and detail, which is a good reference for policymakers and planners.

3.3.2. Provinces with Strong Influence

It can be seen from the table that Beijing, Zhejiang, Jiangsu, and Guangdong have
higher strength-in values, which shows that other provinces transfer more embodied
carbon emissions to them. It also reflects that these provinces have higher import trade
demand from other provinces due to economic development. Beijing is the main port of
China. Guangdong, Jiangsu, and Zhejiang are the three wealthiest provinces. Due to the
scarcity of energy resources, they need to import large amounts of energy and energy-
intensive products from other provinces. The strength-in of Tianjin, Shandong, and Hubei
decrease significantly, indicating an increased level of self-sufficiency within their provinces
and a decrease in import trade from other provinces. The strength-in of Henan, Hunan,
Guangdong, Chongqing, Guizhou, and Shaanxi increases significantly, indicating that the
higher development growth rate in these provinces requires higher import trade from other
provinces.

The strength-out of Inner Mongolia, Hebei, and Shanxi far exceeds that of the other
provinces, implying that they have the strongest influence on the other provinces in the
network. In China, coal accounts for the largest share of total energy consumption, and
the carbon emissions from mining and washing of coal are also significant. These three
provinces are also rich in coal resources, have more fundamental industries, supply much
energy to support the growth of other provinces, and export much energy, resulting
in high embodied carbon emission transfers. Generally speaking, the strength-out of
most provinces still shows a rising trend year by year, among which Heilongjiang, Jilin,
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Liaoning, Shandong, and Hubei are more prominent. It can be seen from this that the rapid
development of China’s economy is still inseparable from the support of coal, minerals,
and other resources.

In terms of the strength values of the provincial nodes, Hebei, Henan, Beijing, and
Inner Mongolia far exceed the other provinces, while Zhejiang, Jiangsu, and Guangdong are
slightly lower. Embodied carbon emissions transfer to and from these provinces is high, and
they are the core provinces in the entire network. The embodied carbon emission transfer
strength in Tibet, Qinghai, Hainan, and Ningxia is consistently low. On the one hand, they
are located in remote areas with generally underdeveloped economies and low levels of
industrial development. On the other hand, they are not responsible for major energy
production, resulting in less embodied carbon emission transfers from inter-provincial
trade products.

3.3.3. Provinces with Strong Intermediary Ability

Henan, Hebei, Shaanxi, Jiangsu, and Zhejiang have high betweenness centrality.
Nodes with high betweenness centrality generally maintain close contact with other
provinces and firmly control the whole network. Therefore, these provinces should co-
ordinate and communicate with each other to establish regional coordinated emission
reduction strategies. Henan has a particular geographical location in China and also plays
a key role as a bridge in the network, so special consideration should be given to Henan
Province when formulating policies. Betweenness centrality rankings for most provinces
do not change much over the years studied. Notably, the betweenness centrality indicators
of Shandong, Anhui, and Inner Mongolia decrease significantly, and their intermediary
role in the network gradually weakens. Shandong and Anhui have almost or even no
intermediary role at all. In contrast, the betweenness centrality indicators of Xinjiang
and Guangdong gradually increase and eventually play an essential intermediary role in
ECETN of 2017. Hainan, Tibet, Gansu, Qinghai, and Ningxia have the lowest betweenness
centrality. They are geographically remote, have weak economic foundations, and are
technologically backward, so they are on the fringes of the network and are controlled by
other provinces.

3.3.4. Provinces with Strong Central Ability

Jiangsu, Zhejiang, Guangdong, and Beijing all have higher closeness-in values in the
years studied, suggesting that the embodied carbon emission transfers from all provinces to
them are more closely related and they are more susceptible to other provinces. It can be
seen that the closeness-in of Shanghai, Anhui, Hubei, and Shandong gradually decreases,
which means that the embodied carbon emission transfer relationships of other provinces to
them gradually becomes looser. Henan, Hunan, Shaanxi, and Jiangxi gradually increase the
value of closeness-in and become more and more closely linked to other provinces. Among
the years studied, Henan and Hebei have high closeness-out values, and their own changes
propagate rapidly throughout the network. Xinjiang, Shandong, and Shanghai show a
remarkable increase in closeness-out and gradually become new centers in the network. At
the same time, Anhui, on the contrary, exhibits a rapid decline in its closeness-out.

3.3.5. Provinces with High Eigenvector Centrality

Henan, Shaanxi, and Hebei have high eigenvector centrality indicators, and they
consistently rank in the top three over time through embodied carbon emission transfers
with several core provinces. In the years under study, eigenvector centrality for Shanghai
gradually increases, illustrating that its embodied carbon emission transfer contacts with
core provinces are gradually increasing, with more frequent trade exchanges and a larger
trade scale. On the contrary, the indicator of Anhui gradually decreases, indicating that
the transfers between Anhui and the core provinces gradually decrease. Therefore, when
formulating national emission reduction policies, it is necessary to consider the direct
economic impact and the indirect economic impact.
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3.4. Clustering and Spatial Spillover Structure Characteristics

We binarize the adjacency matrix of ECETN and use the Convergent Correlation
(CONCOR) method to analyze the spatial clustering of the embodied carbon emission
transfers. To ensure the best clustering effect, we set the maximum segmentation depth to 2
and the convergence criterion to 0.2, according to the practice of some scholars [29,50,58,59].
This can divide the studied provinces into four blocks, calculate the subgroup network
density, and perform clustering analysis on the blocks according to their characteristics. It is
worth noting that, through our observation, there is almost no embodied carbon emission
transfer between Tibet and other provinces in the three networks studied. When blocking
all 31 provinces, Tibet is always divided into a separate block, which seriously affects
blocking effectiveness. Therefore, we classify Tibet as an isolated block according to its
connections with other provinces and remove Tibet from the network when we block it.

The block division and spillover effect analysis in the corresponding ECETN for 2012,
2015, and 2017 are shown in Table 3. These provinces in Block I and Block II are generally
more economically developed provinces in the eastern and central parts of China and
are divided into two blocks due to their respective higher intra-block contacts. The rapid
economic development of these provinces is accompanied by increased demand for trade
with other provinces, especially the need to obtain energy resources, leading to a large-scale
transfer of embodied carbon emissions to them. These provinces in Block III play the role
of intermediary and bridge in ECETN. For example, Henan and Hebei mainly undertake
the industrial transfer from Beijing, Tianjin, and the developed eastern provinces. There are
many provinces in Block IV, and the north has rich resources such as coal, oil, and natural
gas. The northwestern provinces cover a large area, are sparsely populated, and ecologically
fragile, making environmental management difficult, but also rich in mineral resources.
The southwestern provinces are also rich in mineral resources, especially non-ferrous metal
resources, accounting for nearly half of China’s total reserves. Due to the geographical
constraints, the economic conditions of these provinces are relatively backward, and the
export of mineral resources leads to a significant transfer of embodied carbon emissions.

In ECETN for 2015, Most of the provinces in Block I are the fusion of the provinces
in Block I and Block II in 2012. Due to the rapid construction and development of the
transportation network, accessibility is significantly improved, resulting in an increase in
the number of provinces within the main inflow block and stronger connections between
provinces. Block II and Block III are closely related to other blocks, respectively, and they
determine the direction of the embodied carbon emission transfers of the whole network.
By comparison, we find that the number of provinces in the main outflow block in 2015
is significantly reduced compared to 2012, and the provinces in the northeast and north,
which are mainly reduced, change from the main outflow block to the bidirectional spillover
block. This shows that during the year, the export volume of these provinces rich in mineral
resources decreased, and the trade volume of imports from other provinces increased.

In ECETN for 2017, The provinces included in Block I do not change much, and the
economically developed provinces are always in the main inflow block. The provinces
within the Block III are relatively scattered, and each plays its own bridge role in differ-
ent regions of China. The number of contacts sent from the Block IV to other blocks is
significantly high.
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Table 3. Block division and spillover effects of ECETN.

Year Block Provinces
Contacts Received Contacts Sent Expected

Internal
Relationship

Actual
Internal
Relationship

Characteristic
Inside Outside Inside Outside

2012 I Beijing, Anhui, Hunan, Guangdong, Zhejiang, Liaoning, Jiangsu, Shaanxi
(8)

54 139 54 79 24.14% 40.60% Main inflow

II Tianjin, Chongqing, Shandong, Shanghai, Jiangxi, Hubei (6) 10 127 10 43 17.24% 18.87% Main inflow
III Henan, Jilin, Hebei (3) 4 45 4 57 6.90% 6.56% Agent
IV Fujian, Inner Mongolia, Guangxi, Hainan, Heilongjiang, Sichuan,

Guizhou, Yunnan, Shanxi, Gansu, Qinghai, Ningxia, Xinjiang (13)
19 36 19 168 41.38% 10.16% Main outflow

2015 I Beijing, Tianjin, Hunan, Guangdong, Shandong, Shanghai, Chongqing,
Zhejiang, Jiangsu, Jiangxi, Hubei (11)

73 184 73 41 34.48% 64.04% Main inflow

II Shaanxi, Yunnan, Henan, Anhui (4) 12 73 12 70 10.34% 14.63% Bidirectional spillover
III Liaoning, Qinghai, Heilongjiang, Inner Mongolia, Shanxi, Jilin, Hebei (7) 26 27 26 99 20.69% 20.80% Bidirectional spillover
IV Hainan, Guangxi, Guizhou, Sichuan, Gansu, Fujian, Ningxia, Xinjiang (8) 7 30 7 104 24.14% 6.31% Main outflow

2017 I Beijing, Shanghai, Hunan, Guangdong, Anhui, Shaanxi, Chongqing,
Zhejiang, Yunnan, Jiangsu (10)

79 168 79 46 31.03% 63.20% Main inflow

II Jiangxi, Henan, Hebei (3) 5 66 5 52 6.90% 8.77% Bidirectional spillover
III Hainan, Qinghai, Tianjin (3) 0 5 0 9 6.90% 0.00% Agent
IV Heilongjiang, Hubei, Shandong, Guangxi, Liaoning, Inner Mongolia,

Sichuan, Guizhou, Jilin, Shanxi, Gansu, Fujian, Ningxia, Xinjiang (14)
49 41 49 173 44.83% 22.07% Main outflow
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The block division in ECETN for the years studied is shown in Figure 10. As we can
see from the figure, inter-provincial trade and its corresponding embodied carbon emission
transfers are likely to appear in adjacent provinces due to geographical location, transporta-
tion costs, and trade demands, which can be referred to as geographical dependence [29].
To further analyze the spatial correlation of each divided block, the density matrix and
the image matrix of block clustering in ECETN are calculated as shown in Table 4. The
image matrix can visually reflect the spillover effect of embodied carbon emissions and
clearly show the conduction mechanism between blocks. In general, the embodied carbon
emission is transferred mainly to the economically developed eastern and central provinces
in 2012, mainly to the eastern and southern provinces in 2015. The distribution of major
transfer inflow provinces in 2017 is more dispersed but still concentrated in the eastern and
southern regions. It can be seen that with the rapid economic development of the provinces,
the demand for energy use increases, and the eastern and central provinces find it challeng-
ing to achieve self-sufficiency and need to rely on the energy-rich northern provinces for
energy supply. At the same time, provinces in the Yangtze River Delta and Pearl River Delta
regions have shifted their high-energy-consuming and high-polluting industries to their
neighboring provinces with weaker economic development due to improved industrial
structure and higher carbon emission standards. Therefore, the Chinese government and
relevant departments should formulate corresponding policies and strengthen interregional
cooperation and exchanges, which can effectively solve the problems of disharmony and
disunity caused by objective factors such as geographical location.

(a)

(c)(b)

Figure 10. Block division of ECETN. (a) Composition of the blocks in China in 2012. (b) Composition
of the blocks in China in 2015. (c) Composition of the blocks in China in 2017.
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Table 4. Density matrix and image matrix of blocks in ECETN.

Year Block
Density Matrix Image Matrix

I II III IV I II III IV

2012 I 0.964 1.000 0.750 0.125 1 1 1 0
II 0.750 0.333 0.278 0.026 1 0 0 0
III 0.875 0.833 0.667 0.538 1 1 1 1
IV 0.788 0.821 0.564 0.122 1 1 1 0

2015 I 0.709 0.682 0.104 0.034 1 1 0 0
II 0.977 1.000 0.536 0.375 1 1 1 0
III 0.844 0.679 0.619 0.268 1 1 1 0
IV 0.864 0.750 0.071 0.125 1 1 0 0

2017 I 0.878 0.800 0.000 0.157 1 1 0 0
II 1.000 0.833 0.333 0.452 1 1 0 0
III 0.267 0.111 0.000 0.000 0 0 0 0
IV 0.929 0.976 0.048 0.269 1 1 0 0

3.5. Analysis of Influencing Factors of ECETN

We used 5000 random permutations to perform correlation analysis on the possible
influences of ECETN, and the results of the analysis are shown in Table 5. Through corre-
lation analysis, we find that strength-in difference, strength-out difference, betweenness
centrality difference, and spatial adjacency always exhibit positive effects. The positive cor-
relation coefficient of the spatial adjacency of provinces indicates that the embodied carbon
emissions tend to be transferred between adjacent provinces. The differences in eigenvector
centrality and clustering coefficient always show a significant negative effect, which reflects
that the similarity of eigenvector centrality and clustering coefficient promotes the transfer
of embodied carbon emissions between provinces.

Table 5. QAP correlation analysis results of ECETN.

Variable 2012 2015 2017
ObsValue Significance ObsValue Significance ObsValue Significance

Kin −0.024 0.237 −0.071 ** 0.024 0.052 * 0.066
Kout −0.044 0.257 0.047 0.205 −0.119 ** 0.043
Sin 0.211 *** 0.000 0.261 *** 0.000 0.303 *** 0.000
Sout 0.221 *** 0.001 0.214 *** 0.001 0.106 * 0.089
Ccin 0.109 ** 0.048 −0.009 0.462 −0.066 0.190
Ccout −0.088 0.143 −0.021 0.413 0.141 ** 0.040
B 0.203 *** 0.005 0.098 ** 0.023 0.269 *** 0.002
Ec −0.224 *** 0.000 −0.206 *** 0.000 −0.192 *** 0.001
C −0.218 *** 0.000 −0.173 *** 0.000 −0.138 ** 0.034
SR 0.065 ** 0.032 0.033** 0.038 0.115 *** 0.000

* is significant at the 10% level; ** is significant at the 5% level; *** is significant at the 1% level.

We select the significant influencing factors in the correlation analysis as explanatory
variables. We also use 5000 random permutations for the QAP regression analysis, and
the regression results of ECETN with each explanatory variable are shown in Table 6. In
general, the six explanatory variables of strength-in difference, strength-out difference,
betweenness centrality difference, eigenvector centrality difference, clustering coefficient
difference, and spatial adjacency relationship can always have a significant impact on
ECETN. It is worth noting that the positive influence of the strength-in difference is the
largest, the negative influence of the eigenvector centrality difference is the largest, and
the positive influence of the spatial adjacency relationship gradually increases. This shows
that the larger the difference in strength-in between provinces, the larger the embodied
carbon emission transfers; the more similar the eigenvector centrality between provinces,
the larger the scale of the embodied carbon emissions transfers. Geographically contiguous
provinces are increasingly prone to transfer embodied carbon emissions, and embodied
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carbon emission transfers between non-contiguous provinces are decreasing. Our analysis
is crucial in establishing a link between provincial roles and embodied carbon emissions
transfers.

Table 6. QAP regression analysis results of ECETN.

Dependent
Variable

Inter Provincial Embodied
Carbon Emission Transfer
Network

2012 2015 2017
Standardized
Coefficient

Significance
(p-Value)

Standardized
Coefficient

Significance
(p-Value)

Standardized
Coefficient

Significance
(p-Value)

Influencing
factors
(difference
matrix)

Kin — — −0.073 0.414 0.131 ** 0.032
Kout — — — — −0.107 0.154
Sin 0.360 *** 0.000 0.329 *** 0.000 0.345 *** 0.000
Sout 0.232 *** 0.000 0.182 *** 0.000 0.157 *** 0.001
Ccin 0.223 *** 0.005 — — — —
Ccout — — — — 0.129 0.111
B 0.184 *** 0.000 0.184 *** 0.000 0.197 *** 0.000
Ec −0.409 *** 0.000 −0.381 *** 0.000 −0.378 *** 0.000
C −0.187 *** 0.005 −0.266 *** 0.000 −0.108 ** 0.033
SR 0.075 *** 0.002 0.082 *** 0.007 0.091 *** 0.001

Determination
cofficient

R2 0.372 0.352 0.378
Adjusted R2 0.364 0.343 0.370

* is significant at the 10% level; ** is significant at the 5% level; *** is significant at the 1% level.

4. Conclusions and Policy Implications

Based on the empirical results, we can draw the following conclusions. First, The
rapid economic development led to increased CO2 emissions from 2012 to 2017, and the
total scale of embodied carbon emissions continued to rise. Second, The share of embodied
CO2 emissions in inter-provincial trade increased from 13.66% in 2012 to 17.31% in 2015
and 20.39% in 2017. Third, the density of ECETN continued to decrease from 0.467 in 2012
to 0.445 in 2017, indicating that the network gradually became sparse. On the contrary,
the scale of the embodied carbon emission transfers gradually increased, showing that
from the perspective of each province, the transfer of embodied carbon emission tended
to concentrate in a few provinces. The ECETN maintained a high clustering coefficient
and a small average path length, implying that this network was sensitive and changes in
carbon emission policies in some provinces could quickly affect the whole network. Fourth,
provinces play different roles in the ECETN and exhibit different levels of importance. Fifth,
the embodied carbon emissions show obvious regional disequilibrium characteristics. Sixth,
by quantifying the contribution of provincial structural roles to the transfer of embodied
carbon emissions, we find that strength-in difference, strength-out difference, betweenness
centrality difference, and spatial adjacency have significant positive effects, and eigenvector
centrality difference and clustering coefficient difference have significant negative effects.

Based on the findings of this paper, we can draw the following policy implications.
First, we should focus more on reducing embodied CO2 emissions. The continuous expan-
sion of the transfer of embodied CO2 emissions increases the differences in CO2 emissions
between provinces. Resource-rich provinces can formulate strict emission policies to pro-
mote energy use efficiency and industrial structure upgrading to reduce carbon emissions.
Second, provinces can develop different emission reduction plans according to their differ-
ent roles in ECETN. Jiangsu, Zhejiang, Guangdong, Beijing, and other central provinces in
the network should take the lead in reducing emissions and provide financial and technical
support. Henan, Hebei, and Shaanxi as bridges can promote the diffusion of advanced
technology among different subgroups in the network. Economically backward provinces
such as Qinghai, Gansu, Ningxia, and Hainan need to increase network participation and
accelerate the deployment of advanced CO2 emission control technologies. Third, consid-
ering the dependence of provinces on the transfer of embodied carbon emissions, China
can implement a coordinated cross-provincial emission reduction strategy. The spatial
aggregation effect of embodied carbon emission transfers is noticeable, and coordinated
emission reduction policies can be implemented for provinces with the same spillover
effect. Provinces that play the same role in the network can join forces to impose stricter
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regulations on carbon emissions at the source, promoting substantial reductions across the
country. Fourth, China is now rich in renewable energy, with leading new energy technolo-
gies and industry scale at the forefront of the world. We need to increase the proportion of
clean energy and renewable energy to achieve green production and consumption.

With rich research content and multiple perspectives, this study analyzes the spatial
and temporal evolution characteristics of carbon emissions embodied in inter-provincial
trade in China from the perspective of the system, region, and province, assisting pol-
icymakers in developing more effective and targeted national and provincial emission
reduction policies. In contrast to the existing literature, this paper is the first to incorporate
the topological characteristics of individuals into the analysis of the drivers. It is helpful to
fully understand the effect of trade structure on embodied carbon emissions. This study
provides a complete analytical framework for future embodied carbon emission analysis,
which can also be used to study other embodied energy analyses of regional categories in
different dimensions such as countries, provinces, cities, etc. The limitations of this paper
are, first, our current work mainly focuses on static analysis; second, the uncertainty of the
MRIO model itself leads to some errors in the analysis results [60]; and third, our analysis
is based on the total trade scale of provinces, without further fine-grained studies on the
impact of different trade types. Given these limitations, we have three main directions for
future research: first, to realize the dynamic simulation of carbon emission reduction by
adjusting the network structure of ECETN; second, to realize a more accurate calculation of
the embodied carbon emissions based on the MRIO model combined with appropriate ap-
proaches; third, carbon emissions from the production and consumption sides and carbon
emissions from different sectors can be further distinguished for more profound studies
to determine a more comprehensive embodied carbon emission transfer relationship and
further promote carbon emission reduction in China.
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Appendix A

Table A1. Calculation results of the centrality indicators for each province.

Index Province Degree-In Degree-Out Degree Strength-In Strength-Out Strength Betweenness Closeness-In Closeness-Out Eigenvector
2012 2015 2017 2012 2015 2017 2012 2015 2017 2012 2015 2017 2012 2015 2017 2012 2015 2017 2012 2015 2017 2012 2015 2017 2012 2015 2017 2012 2015 2017

1 Beijing 26 27 27 15 10 10 41 37 37 154.80 150.18 176.97 24.02 18.36 18.90 178.82 168.54 195.87 0.01847 0.01738 0.00409 0.938 0.968 0.968 0.714 0.600 0.667 0.312 0.275 0.293
2 Tianjin 18 19 3 8 5 6 26 24 9 38.04 40.91 3.84 11.42 7.68 14.15 49.47 48.59 17.98 0.00013 0.00034 0.00000 0.732 0.769 0.526 0.545 0.526 0.588 0.203 0.190 0.079
3 Hebei 21 12 21 26 26 22 47 38 43 61.44 20.89 77.55 148.95 148.43 133.51 210.39 169.32 211.06 0.14629 0.04326 0.09371 0.811 0.638 0.811 1.000 0.938 0.938 0.363 0.315 0.348
4 Shanxi 3 7 3 22 20 19 25 27 22 3.50 10.91 10.31 127.80 123.41 110.27 131.30 134.32 120.58 0.00043 0.00352 0.00072 0.484 0.556 0.526 0.882 0.789 0.833 0.210 0.222 0.195
5 InnerMongolia 7 5 8 24 26 20 31 31 28 10.55 5.49 12.59 144.93 185.40 182.26 155.48 190.89 194.86 0.04252 0.05272 0.00405 0.556 0.508 0.577 0.938 0.938 0.857 0.262 0.243 0.235
6 Liaoning 24 12 17 20 20 18 44 32 35 51.20 18.58 31.13 60.16 76.39 87.13 111.36 94.97 118.26 0.04974 0.01698 0.01507 0.882 0.638 0.732 0.833 0.789 0.811 0.343 0.271 0.318
7 Jilin 10 10 8 10 10 17 20 20 25 15.38 18.61 22.28 17.93 16.32 41.13 33.31 34.92 63.41 0.00225 0.00110 0.00094 0.588 0.612 0.577 0.566 0.600 0.789 0.151 0.160 0.212
8 Heilongjiang 8 6 11 18 20 18 26 26 29 15.95 8.65 30.30 39.98 61.77 101.67 55.93 70.42 131.97 0.00400 0.00502 0.00933 0.545 0.545 0.625 0.789 0.789 0.811 0.205 0.213 0.223
9 Shanghai 27 25 21 9 13 18 36 38 39 97.08 86.59 64.55 13.57 23.63 57.62 110.65 110.22 122.17 0.02031 0.00885 0.02412 0.968 0.909 0.811 0.625 0.638 0.811 0.280 0.304 0.328
10 Jiangsu 28 27 28 16 16 13 44 43 41 136.73 161.66 121.44 38.15 30.50 40.61 174.88 192.17 162.06 0.05356 0.04119 0.02200 1.000 0.968 1.000 0.732 0.682 0.714 0.334 0.327 0.313
11 Zhejiang 27 27 28 13 17 14 40 44 42 104.50 157.09 161.12 18.30 39.83 52.98 122.81 196.92 214.10 0.02832 0.04980 0.03457 0.968 0.968 1.000 0.682 0.698 0.732 0.301 0.332 0.325
12 Anhui 24 25 20 17 20 7 41 45 27 54.48 75.51 56.45 89.43 66.56 23.13 143.91 142.07 79.58 0.01913 0.04022 0.00000 0.882 0.909 0.789 0.750 0.750 0.612 0.321 0.353 0.205
13 Fujian 6 7 0 8 14 12 14 21 12 6.30 8.13 0.00 7.72 32.38 32.49 14.02 40.51 32.49 0.00050 0.00010 0.00000 0.536 0.577 0.000 0.536 0.652 0.667 0.101 0.169 0.104
14 Jiangxi 21 20 23 7 9 13 28 29 36 49.15 77.05 75.89 12.95 20.73 31.94 62.10 97.77 107.83 0.00031 0.00037 0.00445 0.789 0.789 0.857 0.500 0.566 0.698 0.199 0.216 0.274
15 Shandong 26 18 1 12 10 21 38 28 22 84.84 67.40 2.00 21.56 21.43 146.99 106.40 88.83 148.99 0.03678 0.00175 0.00029 0.938 0.750 0.462 0.652 0.600 0.882 0.298 0.222 0.196
16 Henan 18 26 27 25 25 23 43 51 50 29.52 60.13 183.69 98.48 79.11 101.84 128.00 139.23 285.53 0.06296 0.14758 0.16813 0.750 0.938 0.968 0.968 0.882 0.968 0.345 0.395 0.384
17 Hubei 22 23 7 3 3 10 25 26 17 55.43 111.61 11.30 3.88 4.43 23.27 59.31 116.04 34.57 0.00014 0.00202 0.00000 0.811 0.857 0.556 0.455 0.448 0.667 0.179 0.194 0.129
18 Hunan 16 23 24 16 11 11 32 34 35 21.58 40.72 71.12 30.64 23.98 19.03 52.22 64.70 90.15 0.00372 0.00309 0.00385 0.714 0.857 0.882 0.732 0.612 0.667 0.257 0.264 0.275
19 Guangdong 27 27 28 14 15 14 41 42 42 117.47 66.60 231.22 20.82 35.76 32.00 138.28 102.37 263.21 0.02069 0.03754 0.04068 0.968 0.968 1.000 0.698 0.667 0.732 0.313 0.314 0.323
20 Guangxi 8 8 9 16 15 13 24 23 22 10.22 11.42 15.78 28.21 32.08 32.99 38.43 43.51 48.77 0.00122 0.00602 0.00045 0.588 0.600 0.600 0.732 0.667 0.698 0.190 0.162 0.180
21 Hainan 1 3 1 2 3 1 3 6 2 1.18 2.75 1.54 1.59 2.72 1.40 2.78 5.47 2.94 0.00000 0.00000 0.00000 0.469 0.526 0.517 0.441 0.429 0.455 0.024 0.039 0.022
22 Chongqing 23 26 27 14 10 10 37 36 37 64.05 100.79 119.26 25.30 15.95 19.10 89.35 116.74 138.36 0.01424 0.00778 0.01053 0.857 0.938 0.968 0.698 0.577 0.652 0.291 0.268 0.290
23 Sichuan 4 7 7 15 13 12 19 20 19 4.20 10.31 11.50 23.18 17.86 24.92 27.38 28.17 36.42 0.00000 0.00010 0.00060 0.492 0.556 0.566 0.714 0.638 0.698 0.154 0.161 0.168
24 Guizhou 1 3 15 18 16 16 19 19 31 0.80 3.09 21.22 50.16 37.59 40.78 50.96 40.68 62.00 0.00014 0.00031 0.01399 0.462 0.517 0.682 0.769 0.682 0.789 0.156 0.152 0.265
25 Yunnan 9 13 18 16 13 10 25 26 28 8.35 17.85 30.10 42.18 26.46 21.12 50.53 44.31 51.22 0.00053 0.00135 0.00126 0.556 0.667 0.750 0.732 0.638 0.667 0.193 0.215 0.241
26 Tibet 0 0 1 0 0 0 0 0 1 0.00 0.00 1.03 0.00 0.00 0.00 0.00 0.00 1.03 0.00000 0.00000 0.00000 0.000 0.000 0.492 0.000 0.000 0.000 0.000 0.000 0.014
27 Shaanxi 21 21 26 22 24 18 43 45 44 46.15 47.05 87.62 58.70 67.52 88.42 104.85 114.58 176.05 0.04319 0.08824 0.03748 0.811 0.811 0.938 0.882 0.882 0.811 0.332 0.353 0.355
28 Gansu 3 4 0 15 14 13 18 18 13 2.50 3.55 0.00 32.26 29.66 30.27 34.76 33.21 30.27 0.00000 0.00000 0.00000 0.484 0.526 0.000 0.714 0.652 0.652 0.146 0.130 0.100
29 Qinghai 0 1 1 2 3 2 2 4 3 0.00 0.87 1.53 1.62 4.55 2.11 1.62 5.42 3.64 0.00000 0.00000 0.00000 0.000 0.353 0.000 0.435 0.462 0.448 0.016 0.026 0.016
30 Ningxia 1 2 1 14 14 12 15 16 13 0.98 2.42 1.98 23.27 25.46 32.42 24.26 27.89 34.40 0.00000 0.00000 0.00000 0.370 0.375 0.357 0.714 0.667 0.714 0.113 0.110 0.106
31 Xinjiang 4 3 3 17 22 21 21 25 24 6.16 3.36 3.70 35.39 114.24 94.52 41.54 117.61 98.21 0.00053 0.01530 0.03381 0.508 0.517 0.526 0.750 0.811 0.909 0.177 0.202 0.214



Int. J. Environ. Res. Public Health 2022, 19, 6794 25 of 26

References
1. IPCC. Climate Change 2022: Mitigation of Climate Change; Cambridge University Press: Cambridge, UK, 2022.
2. Paris Agreement. In Report of the Conference of the Parties to the United Nations Framework Convention on Climate Change (21st Session,

2015: Paris); HeinOnline: Paris, France, 2015.
3. Tollefson, J. China’s carbon emissions could peak sooner than forecast. Nature 2016, 531, 425–426. [CrossRef] [PubMed]
4. Chen, W.; Lei, Y.; Feng, K.; Wu, S.; Li, L. Provincial emission accounting for CO2 mitigation in China: Insights from production,

consumption and income perspectives. Appl. Energy 2019, 255, 113754. [CrossRef]
5. Enhanced Actions on Climate Change: China’s Intended Nationally Determined Contributions. 2015. Available online: http:

//www.china.org.cn/environment/2015-06/30/content_35950951.htm (accessed on 14 May 2022).
6. Li, Y.L.; Chen, B.; Chen, G.Q. Carbon network embodied in international trade: Global structural evolution and its policy

implications. Energy Policy 2020, 139, 111316. [CrossRef]
7. Ullah, I.; Ali, S.; Shah, M.H.; Yasim, F.; Rehman, A.; Al-Ghazali, B.M. Linkages between Trade, CO2 Emissions and Healthcare

Spending in China. Int. J. Environ. Res. Public Health 2019, 16, 4298. [CrossRef]
8. Jakob, M.; Marschinski, R. Interpreting trade-related CO2 emission transfers. Nat. Clim. Chang. 2013, 3, 19–23. [CrossRef]
9. Su, B.; Ang, B.W. Input–output analysis of CO2 emissions embodied in trade: The effects of spatial aggregation. Ecol. Econ. 2010,

70, 10–18. [CrossRef]
10. Li, Y.L.; Han, M.Y.; Liu, S.Y.; Chen, G.Q. Energy consumption and greenhouse gas emissions by buildings: A multi-scale

perspective. Build. Environ. 2019, 151, 240–250. [CrossRef]
11. Shi, M.J.; Wang, Y.; Zhang, Z.Y.; Zhou, X. Regional carbon footprint and interregional transfer of carbon emissions in China. Acta

Geogr. Sin. 2012, 67, 1327–1338.
12. Bullard, C.W.; Herendeen, R.A. The energy cost of goods and services. Energy Policy 1975, 3, 268–278. [CrossRef]
13. Costanza, R. Embodied Energy and Economic Valuation. Science 1980, 210, 1219–1224. [CrossRef]
14. Yang, W.; Gao, H.; Yang, Y.; Liao, J. Embodied Carbon in China’s Export Trade: A Multi Region Input–Output Analysis. Int. J.

Environ. Res. Public Health 2022, 19, 3894. [CrossRef] [PubMed]
15. Li, J.; Liu, Y.; Li, H.; Chandio, A.A. Heterogeneous Driving Factors of Carbon Emissions Embedded in China’s Export: An

Application of the LASSO Model. Int. J. Environ. Res. Public Health 2021, 18, 10423. [CrossRef] [PubMed]
16. Qayyum, M.; Yu, Y.; Li, S. The impact of economic complexity on embodied carbon emission in trade: New empirical evidence

from cross-country panel data. Environ. Sci. Pollut. Res. 2021, 28, 54015–54029. [CrossRef] [PubMed]
17. Huo, J.; Meng, J.; Zhang, Z.; Gao, Y.; Zheng, H.; Coffman, D.M.; Xue, J.; Li, Y.; Guan, D. Drivers of fluctuating embodied carbon

emissions in international services trade. One Earth 2021, 4, 1322–1332. [CrossRef]
18. Leontief, W.W. Quantitative input and output relations in the economic systems of the United States. Rev. Econ. Stat. 1936, 18,

105–125. [CrossRef]
19. Leontief, W. Environmental repercussions and the economic structure: An input–output approach. Rev. Econ. Stat. 1970, 52,

262–271. [CrossRef]
20. Leontief, W.W.; Daniel, F. Air pollution and the economic structure: Empirical results of input–output computations. In

Proceedings of the Fifth International Conference On Input–Output Techniques, Geneva, Switzerland, 11–15 January 1972; pp.
9–30.

21. Chen, B.; Li, J.S.; Wu, X.F.; Han, M.Y.; Zeng, L.; Li, Z.; Chen, G.Q. Global energy flows embodied in international trade: A
combination of environmentally extended input–output analysis and complex network analysis. Appl. Energy 2018, 210, 98–107.
[CrossRef]

22. Duan, C.; Chen, B.; Feng, K.; Liu, Z.; Hayat, T.; Alsaedi, A.; Ahmad, B. Interregional carbon flows of China. Appl. Energy 2018,
227, 342–352. [CrossRef]

23. Li, J.; Chandio, A.A.; Liu, Y. Trade Impacts on Embodied Carbon Emissions—Evidence from the Bilateral Trade between China
and Germany. Int. J. Environ. Res. Public Health 2020, 17, 5076. [CrossRef]

24. Long, R.; Li, J.; Chen, H.; Zhang, L.; Li, Q. Embodied carbon dioxide flow in international trade: A comparative analysis based on
China and Japan. J. Environ. Manag. 2018, 209, 371–381. [CrossRef]

25. Zhang, K.; Wang, X. Pollution Haven Hypothesis of Global CO2, SO2, NOx—Evidence from 43 Economies and 56 Sectors. Int. J.
Environ. Res. Public Health 2021, 18, 6552. [CrossRef] [PubMed]

26. Zhang, Z.; Xi, L.; Bin, S.; Yuhuan, Z.; Song, W.; Ya, L.; Hao, L.; Yongfeng, Z.; Ashfaq, A.; Guang, S. Energy, CO2 emissions, and
value added flows embodied in the international trade of the BRICS group: A comprehensive assessment. Renew. Sustain. Energy
Rev. 2019, 116, 109432. [CrossRef]

27. Zhou, D.; Zhou, X.; Xu, Q.; Wu, F.; Wang, Q.; Zha, D. Regional embodied carbon emissions and their transfer characteristics in
China. Struct. Chang. Econ. Dyn. 2018, 46, 180–193. [CrossRef]

28. Yuan, X.; Sheng, X.; Chen, L.; Tang, Y.; Li, Y.; Jia, Y.; Qu, D.; Wang, Q.; Ma, Q.; Zuo, J. Carbon footprint and embodied carbon
transfer at the provincial level of the Yellow River Basin. Sci. Total Environ. 2022, 803, 149993. [CrossRef] [PubMed]

29. Lv, K.; Feng, X.; Kelly, S.; Zhu, L.; Deng, M. A study on embodied carbon transfer at the provincial level of China from a social
network perspective. J. Clean. Prod. 2019, 225, 1089–1104. [CrossRef]

30. Liu, Z. China’s Carbon Emissions Report 2016; Report for Harvard Belfer Center for Science and International Affairs. 2016.
Available online: http://nrs.harvard.edu/urn-3:HUL.InstRepos:29916843 (accessed on 14 May 2022).

http://doi.org/10.1038/531425a
http://www.ncbi.nlm.nih.gov/pubmed/27008947
http://dx.doi.org/10.1016/j.apenergy.2019.113754
http://www.china.org.cn/environment/2015-06/30/content_35950951.htm
http://www.china.org.cn/environment/2015-06/30/content_35950951.htm
http://dx.doi.org/10.1016/j.enpol.2020.111316
http://dx.doi.org/10.3390/ijerph16214298
http://dx.doi.org/10.1038/nclimate1630
http://dx.doi.org/10.1016/j.ecolecon.2010.08.016
http://dx.doi.org/10.1016/j.buildenv.2018.11.003
http://dx.doi.org/10.1016/0301-4215(75)90035-X
http://dx.doi.org/10.1126/science.210.4475.1219
http://dx.doi.org/10.3390/ijerph19073894
http://www.ncbi.nlm.nih.gov/pubmed/35409577
http://dx.doi.org/10.3390/ijerph181910423
http://www.ncbi.nlm.nih.gov/pubmed/34639725
http://dx.doi.org/10.1007/s11356-021-14414-3
http://www.ncbi.nlm.nih.gov/pubmed/34046835
http://dx.doi.org/10.1016/j.oneear.2021.08.011
http://dx.doi.org/10.2307/1927837
http://dx.doi.org/10.2307/1926294
http://dx.doi.org/10.1016/j.apenergy.2017.10.113
http://dx.doi.org/10.1016/j.apenergy.2018.01.028
http://dx.doi.org/10.3390/ijerph17145076
http://dx.doi.org/10.1016/j.jenvman.2017.12.067
http://dx.doi.org/10.3390/ijerph18126552
http://www.ncbi.nlm.nih.gov/pubmed/34207027
http://dx.doi.org/10.1016/j.rser.2019.109432
http://dx.doi.org/10.1016/j.strueco.2018.05.008
http://dx.doi.org/10.1016/j.scitotenv.2021.149993
http://www.ncbi.nlm.nih.gov/pubmed/34482145
http://dx.doi.org/10.1016/j.jclepro.2019.03.233
http://nrs.harvard.edu/urn-3:HUL.InstRepos:29916843


Int. J. Environ. Res. Public Health 2022, 19, 6794 26 of 26

31. An, Q.; An, H.; Wang, L.; Gao, X.; Lv, N. Analysis of embodied exergy flow between Chinese industries based on network theory.
Ecol. Model. 2015, 318, 26–35. [CrossRef]

32. Gao, X.; An, H.; Fang, W.; Li, H.; Sun, X. The transmission of fluctuant patterns of the forex burden based on international crude
oil prices. Energy 2014, 73, 380–386. [CrossRef]

33. Li, J.; Fang, H.; Fang, S.; Zhang, Z.; Zhang, P. Embodied Energy Use in China’s Transportation Sector: A Multi-Regional
Input–Output Analysis. Int. J. Environ. Res. Public Health 2021, 18, 7873. [CrossRef]

34. Zeng, L.; Wang, B.; Tian, J.; Wang, Z. Threat impact analysis to air traffic control systems through flight delay modeling. Comput.
Ind. Eng. 2021, 162, 107731. [CrossRef]

35. Zeng, L.; Wang, B.; Tian, J.; Wang, Z. Research on delay propagation mechanism of air traffic control system based on causal
inference. Transp. Res. Part C Emerg. Technol. 2022, 138, 103622. [CrossRef]

36. Wang, X.; Yu, J.; Song, J.; Di, X.; Wang, R. Structural evolution of China’s intersectoral embodied carbon emission flow network.
Environ. Sci. Pollut. Res. 2021, 28, 21145–21158. [CrossRef] [PubMed]

37. Gao, C.; Su, B.; Sun, M.; Zhang, X.; Zhang, Z. Interprovincial transfer of embodied primary energy in China: A complex network
approach. Appl. Energy 2018, 215, 792–807. [CrossRef]

38. Cook, A.; Blom, H.A.; Lillo, F.; Mantegna, R.N.; Micciche, S.; Rivas, D.; Vázquez, R.; Zanin, M. Applying complexity science to air
traffic management. J. Air Transp. Manag. 2015, 42, 149–158. [CrossRef]

39. Shi, J.; Li, H.; Guan, J.; Sun, X.; Guan, Q.; Liu, X. Evolutionary features of global embodied energy flow between sectors: A
complex network approach. Energy 2017, 140, 395–405. [CrossRef]

40. Barrat, A.; Barthelemy, M.; Pastor-Satorras, R.; Vespignani, A. The architecture of complex weighted networks. Proc. Natl. Acad.
Sci. USA 2004, 101, 3747–3752. [CrossRef] [PubMed]

41. Wasserman, S.; Faust, K. Social Network Analysis: Methods and Applications. Riv. Ital. Sci. Politica 1994, 25, 582–584.
42. Jiang, M.; Gao, X.; Guan, Q.; Hao, X.; An, F. The structural roles of sectors and their contributions to global carbon emissions: A

complex network perspective. J. Clean. Prod. 2019, 208, 426–435. [CrossRef]
43. Newman, M.E.J. Assortative mixing in networks. Phys. Rev. Lett. 2002, 89, 208701. [CrossRef]
44. White, H.C.; Boorman, S.A.; Breiger, R.L. Social structure from multiple networks. I. Blockmodels of roles and positions. Am. J.

Sociol. 1976, 81, 730–780. [CrossRef]
45. Doreian, P.; Batagelj, V.; Ferligoj, A. Generalized blockmodeling of two-mode network data. Soc. Netw. 2004, 26, 29–53. [CrossRef]
46. Cela, E.; Deineko, V.G.; Woeginger, G.J. Well-solvable cases of the QAP with block-structured matrices. Discret. Appl. Math. 2015,

186, 56–65. [CrossRef]
47. Xu, H.; Cheng, L. The QAP weighted network analysis method and its application in international services trade. Phys. A Stat.

Mech. Its Appl. 2016, 448, 91–101. [CrossRef]
48. Barnes, J.A. Class and committees in a Norwegian island parish. Hum. Relat. 1954, 7, 39–58. [CrossRef]
49. Scott, J. Social network analysis. Sociology 1988, 22, 109–127. [CrossRef]
50. He, Y.-Y.; Wei, Z.-X.; Liu, G.-Q.; Zhou, P. Spatial network analysis of carbon emissions from the electricity sector in China. J. Clean.

Prod. 2020, 262, 121193. [CrossRef]
51. Zheng, H.; Bai, Y.; Wei, W.; Meng, J.; Zhang, Z.; Song, M.; Guan, D. Chinese provincial multi-regional input–output database for

2012, 2015, and 2017. Sci. Data 2021, 8, 1–13. [CrossRef]
52. Zheng, H.; Zhang, Z.; Wei, W.; Song, M.; Dietzenbacher, E.; Wang, X.; Meng, J.; Shan, Y.; Ou, J.; Guan, D. Regional determinants of

China’s consumption-based emissions in the economic transition. Environ. Res. Lett. 2020, 15, 074001. [CrossRef]
53. Guan, Y.; Shan, Y.; Huang, Q.; Chen, H.; Wang, D.; Hubacek, K. Assessment to China’s recent emission pattern shifts. Earth Future

2021, 9, e2021EF002241. [CrossRef]
54. Shan, Y.; Liu, J.; Liu, Z.; Xu, X.; Shao, S.; Wang, P.; Guan, D. New provincial CO2 emission inventories in China based on apparent

energy consumption data and updated emission factors. Appl. Energy 2016, 184, 742–750. [CrossRef]
55. Shan, Y.; Guan, D.; Zheng, H.; Ou, J.; Li, Y.; Meng, J.; Mi, Z.; Liu, Z.; Zhang, Q. China CO2 emission accounts 1997–2015. Sci. Data

2018, 5, 54. [CrossRef]
56. Shan, Y.; Huang, Q.; Guan, D.; Hubacek, K. China CO2 emission accounts 2016–2017. Sci. Data 2020, 7, 1–9. [CrossRef] [PubMed]
57. Shen-Orr, S.S.; Milo, R.; Mangan, S.; Alon, U. Network motifs in the transcriptional regulation network of Escherichia coli. Nat.

Genet. 2002, 31, 64–68. [CrossRef] [PubMed]
58. Bu, Y.; Wang, E.; Bai, J.; Shi, Q. Spatial pattern and driving factors for interprovincial natural gas consumption in China: Based on

SNA and LMDI. J. Clean. Prod. 2020, 263, 121392. [CrossRef]
59. Su, Y.; Yu, Y. Spatial association effect of regional pollution control. J. Clean. Prod. 2019, 213, 540–552. [CrossRef]
60. Wiedmann, T. A review of recent multi-region input–output models used for consumption-based emission and resource

accounting. Ecol. Econ. 2009, 69, 540–552. [CrossRef]

http://dx.doi.org/10.1016/j.ecolmodel.2015.01.020
http://dx.doi.org/10.1016/j.energy.2014.06.028
http://dx.doi.org/10.3390/ijerph18157873
http://dx.doi.org/10.1016/j.cie.2021.107731
http://dx.doi.org/10.1016/j.trc.2022.103622
http://dx.doi.org/10.1007/s11356-020-11882-x
http://www.ncbi.nlm.nih.gov/pubmed/33405153
http://dx.doi.org/10.1016/j.apenergy.2018.02.075
http://dx.doi.org/10.1016/j.jairtraman.2014.09.011
http://dx.doi.org/10.1016/j.energy.2017.08.124
http://dx.doi.org/10.1073/pnas.0400087101
http://www.ncbi.nlm.nih.gov/pubmed/15007165
http://dx.doi.org/10.1016/j.jclepro.2018.10.127
http://dx.doi.org/10.1103/PhysRevLett.89.208701
http://dx.doi.org/10.1086/226141
http://dx.doi.org/10.1016/j.socnet.2004.01.002
http://dx.doi.org/10.1016/j.dam.2015.01.005
http://dx.doi.org/10.1016/j.physa.2015.12.094
http://dx.doi.org/10.1177/001872675400700102
http://dx.doi.org/10.1177/0038038588022001007
http://dx.doi.org/10.1016/j.jclepro.2020.121193
http://dx.doi.org/10.1038/s41597-021-01023-5
http://dx.doi.org/10.1088/1748-9326/ab794f
http://dx.doi.org/10.1029/2021EF002241
http://dx.doi.org/10.1016/j.apenergy.2016.03.073
http://dx.doi.org/10.1038/sdata.2017.201
http://dx.doi.org/10.1038/s41597-020-0393-y
http://www.ncbi.nlm.nih.gov/pubmed/32054849
http://dx.doi.org/10.1038/ng881
http://www.ncbi.nlm.nih.gov/pubmed/11967538
http://dx.doi.org/10.1016/j.jclepro.2020.121392
http://dx.doi.org/10.1016/j.jclepro.2018.12.121
http://dx.doi.org/10.1016/j.ecolecon.2009.08.026

	Introduction
	Research Methods and Data
	MRIO Analysis
	Calculation of Carbon Emissions Embodied in Inter-Provincial Trade
	Construction of the ECETN
	Indicators for Analyzing the ECETN
	Centrality Analysis
	Topology Analysis
	Clustering Analysis

	QAP Analysis
	The Data

	Empirical Results
	Evolution of Carbon Emissions Embodied in Inter-Provincial Trade in China
	Evolution of Embodied Carbon Emissions under the Provincial Perspective
	Evolution of Embodied Carbon Emissions under the Sectoral Perspective

	Evolution of Structural Characteristics of ECETN
	Provincial Roles
	Provinces with Large-Scale Influence
	Provinces with Strong Influence
	Provinces with Strong Intermediary Ability
	Provinces with Strong Central Ability
	Provinces with High Eigenvector Centrality

	Clustering and Spatial Spillover Structure Characteristics
	Analysis of Influencing Factors of ECETN

	Conclusions and Policy Implications
	AppendixA
	References

