
Journal of Vision (2021) 21(7):14, 1–11 1

The world within reach: An image database of reach-relevant
environments

Emilie L. Josephs
Department of Psychology, Harvard University,

Cambridge, MA, USA

Haoyun Zhao
Department of Psychology, Harvard University,

Cambridge, MA, USA

Talia Konkle
Department of Psychology, Harvard University,

Cambridge, MA, USA

Near-scale spaces are a key component of our visual
experience: Whether for work or for leisure, we spend
much of our days immersed in, and acting upon, the
world within reach. Here, we present the Reachspace
Database, a novel stimulus set containing over 10,000
images depicting first person, motor-relevant views at
an approximated reachable scale (hereafter
“reachspaces”), which reflect the visual input that an
agent would experience while performing a task with
her hands. These images are divided into over 350
categories, based on a taxonomy we developed, which
captures information relating to the identity of each
reachspace, including the broader setting and room it is
found in, the locus of interaction (e.g., kitchen counter,
desk), and the specific action it affords. Summary
analyses of the taxonomy labels in the database suggest
a tight connection between activities and the spaces
that support them: While a small number of rooms and
interaction loci afford many diverse actions (e.g.,
workshops, tables), most reachspaces were relatively
specialized, typically affording only one main activity
(e.g., gas station pump, airplane cockpit, kitchen cutting
board). Overall, this Reachspace Database represents a
large sampling of reachable environments and provides
a new resource to support behavioral and neural
research into the visual representation of reach-relevant
environments. The database is available for download
on the Open Science Framework (osf.io/bfyxk/).

Introduction

Reachable environments are the locus of most of
our interactions with the physical world: From the
desk where we type an email, to the kitchen counter
where we prepare our coffee, to the workbench where
we assemble the pieces of a new project, we frequently
experience near-scale views of the world. Recent

results suggest that the perceptual processing of
reachable-scale environments may diverge from that
of navigable-scale spaces and single objects (Josephs
& Konkle, 2019, 2020). However, to date, work in this
area has been limited by a lack of high-quality image
databases featuring such views. Domains like object
perception, scene perception, action understanding,
face identification, number understanding, and more
have all benefited greatly from the existence of such
databases (Bainbridge et al., 2012; Brady et al., 2008;
Deng et al., 2009; Hebart et al., 2019; Horst & Hout,
2016; Zhou et al., 2018). These databases provide a
double benefit: They identify, label, and taxonomize the
elements of visual experience, and they provide stimuli
for psychological and neuroimaging experiments. Here,
we introduce an image database of reachable-scale
views, with the goal of accelerating research in the
perceptual, cognitive, and neural processes that underlie
our understanding of the near-scale world.

We will use the term “reachspaces” to refer to these
rich, reach-relevant spaces and formally define them
as near-scale environments that support hand-based
actions (Figure 1A). Reachspace views are first-person
views of these spaces, taken from the perspective of an
agent performing a task. They typically depict extended
surfaces, oriented horizontally or vertically, populated
with objects that support a common task. This also
includes views of engineered structures that afford
hand-based actions, such as control panels with buttons
and knobs, or even large screens with touch-sensitive
components. In all cases, the primary mode of behavior
in these environments is for the agent to reach out
and use their hands on the interactable units of the
environment. To be clear, the term “reachspace” is
not meant to refer to the parts of the world that
are strictly within the arc of an agent’s reach, or the
three-dimensional spatial volume around the agent
within which reach motions are made; terms such
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Figure 1. (A) Illustration of different scales of human experience. (B) Examples of common object, reachspace, and scene views.
(C) Average of 50 object, reachspace, and scene images, respectively. This illustrates the differences in dominant orientation and
clutter distributions across image types. Whole-image contrast was enhanced using Photoshop to increase visibility, but no other
changes were applied.

“peripersonal space,” “grasping space,” and “personal
space” have been proposed for this; for reviews, see di
Pellegrino and Ládavas (2015). Previc (1998), Cutting
and Vishton (1995), and Grüsser (1983). Rather, it refers
to the visual input corresponding to the environments
that typically intersect with this volume, and where the
primary behavior involves reaching.

Historically, vision science research has focused on
mechanisms for processing views of singleton objects
and navigable-scale spaces (i.e., “scenes”; for reviews,
see Epstein, 2014; Groen et al., 2017), at the expense
of the intermediate scale of reachable environments
(cf. Henderson & Hollingworth, 1999). However,

reachspaces are structurally and visually different from
scenes and objects, with potential consequences for how
they are perceptually represented.

Reachspaces generally feature a short receding
surface plane, starting near the waist and extending
a few feet away from the observer (Figure 1B), with
higher visual clutter in the lower visual field (Previc,
1998), corresponding to objects resting on the surface.
In contrast, scenes feature a large ground plane, starting
from the feet and extending to the horizon, or until it
intersects with large structures like walls, while singleton
objects are convex and self-enclosed. These structural
differences have consequences for the distribution
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of orientation and spatial frequency information in
images depicting each of these scales (Figure 1B, C).
Indeed, reachspace images were recently shown to
have dissociable visual features from both scenes or
objects, evident both in image-computable models and
in perceptual signatures of visual search speed (Josephs
& Konkle, 2019; Torralba & Oliva, 2002). Further,
reachspace images activate a distinct network of regions
in the visual system from both singleton objects and
navigable-scale scenes (Josephs & Konkle, 2020). Thus,
while reachspaces have not typically been studied as a
separate class of input from scenes and objects, it is
clear that they have interesting and unique structure,
and models of human perception would benefit from a
more specific understanding of their variety and visual
structure.

Here we present the Reachspace Database, an
image set containing over 10,000 images of reachable
environments, collected from more than 350 different
categories. We attempted to comprehensively sample
reach-relevant environments, collecting images
from many different settings and locations, with a
focus toward ecologically valid views (i.e., close to
those we experience when actively behaving in these
environments). The database features a large variety of
reachspace structure, layout, orientation, and function.
This effort has two broad aims. The first is practical:
Research in this area has been hindered in part by a
scarcity of image stimuli. This database will provide
a large-scale, highly varied pool of labeled images to
fill this need. The second is theoretical: With such
a large-scale sampling of reachspace environments,
we can begin to develop an understanding of the
relationships, hierarchies, and categories that organize
them; our efforts reflect an attempt to develop a
categorization scheme by which to group reachspace
views. While this database was designed with cognitive
and vision science research in mind, we believe it can
also serve broader research efforts, from computer
vision to user experience design.

Method

There were two key challenges to building this
database. First, there were no existing lists of common
reach-relevant or task-relevant environments to guide
our search for reachspace categories. Second, unlike
objects and scenes, which have clear labels, reachspaces
do not have unambiguous verbal labels. Instead, they
are typically referred to using the name of the large
object or structure that forms the base of the space
(e.g., “desk,” “countertop,” “workbench,” “kiosk”)
and generally lack a unique single-word label (e.g.,
the term “desk” does not distinguish between a desk
with a computer workstation and a desk for crafting).

We developed a procedure that allowed us to collect
reachspace categories and assign them unambiguous
names. First, we generated lists of reachspace categories
from lists of activities, scenes, and objects; second, we
collected images based on this list; third we created a
reachspace taxonomy to describe these images; and
fourth, we used this taxonomy to systematically guide
further image collection.

Identifying reachspace categories through
common activities

Because of the lack of reachspace lists and labels,
the initial generation of reachspace categories used an
activity-centered approach (Figure 2A). A list of tasks
and activities was collated from online lists of hobbies,
professions, and household chores (this step was
performed by authors ELJ and HZ, in conjunction with
EH and JP listed in the Acknowledgments). Further
activities were added in a more ad hoc manner, by
starting from list of scene categories (e.g., “coffeeshop”)
and generating the various separate tasks or activities
that would be carried out in each (e.g., brewing the
coffee, paying for the purchase, studying at a table,
eating, retrieving a drink from the pickup counter).
Additionally, some activities were generated by starting
from objects (e.g., “wrench”) and generating tasks
in which they are commonly used. Activities were
not included in this list if they were not associated
with near-space interactions (e.g., running), or if
they involved hand–object interactions but are not
associated with a stable reachable-scale environment
(e.g., tennis). Thus, the output of this stage was a list of
specific activities that people perform in reachable-scale
environments, generated by considering tasks, places,
and objects. Next, images of the spaces that support
each activity were collected using online searches, as
described below.

Creating a taxonomic structure for cataloging
the images

In order for the database to be convenient and
searchable, reachspace images were divided into
categories with unique and descriptive names. We
developed a four-part naming convention (Figure 2B),
in which the label for a given category is based on
the setting it is in (the broader location type, e.g.,
hotel, home, office building, the outdoors), the room
or site it occupies (e.g., dining room, conference
room, campsite), the primary structure supporting
the interaction with the environment (“interaction
locus,” e.g., surfaces such as tables and shelves, or
large interactable objects like control panels and digital
kiosks), and the action it affords. For example, the
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Figure 2. (A) Illustration of the procedure for generating reachspace categories: from lists of hobbies, chores, and professions, as well
as common scenes and objects, we generated a list of hand-based activities, then identified the spaces that support those activities.
(B) The naming convention adopted in this database employed a four-part taxonomy that labeled the setting, room, interaction locus,
and activity relating to each reachspace. (C) For each level of the taxonomy, we provide examples of different labels and illustrate with
images the kinds of differences that accompany category differences at the respective level.

picture in Figure 1B of a kitchen counter would be
labeled home_kitchen_counter_chopping.

This naming convention was developed because
it provides a systematic and granular description of
a given reachspace type, in a manner that informs
expectations about the appearance, layout, components,
and purpose of the space (Figure 2C). The setting label
allows differentiation between reachspaces that are of
a similar type but belong in different locales, which
might have slightly different prototypical appearance
because of their relationship to the broader setting (e.g.,
bathroom sink in a home vs. office vs. hotel). The room
label is included because a given reachspace structure
(e.g., a sink) will have a very different form and use-case
depending on the room it belongs to (e.g., kitchen vs.
bathroom vs. pottery studio). The interaction locus
label recognizes that reachspaces will have different
spatial constraints, visual appearances, and object
layouts, depending on the surface they occupy (e.g.,
organizing your tools on a pegboard vs. in a toolbox).
Finally, the action label allows differentiation between
reachspaces that share a setting, room, and locus

but support different actions by virtue of containing
different objects (e.g., cake decorating vs. vegetable
chopping on a kitchen counter). It also recognizes
that reachspaces that differ in their setting, room,
and interaction locus will nonetheless have common
features if they afford the same activity (e.g., eating at
a dining room table at home broadly involves similar
actions and objects as eating on a picnic blanket
at the beach). Overall, this naming convention was
designed to highlight the components of a reachspace’s
identity that are most informative of its function and
appearance (Figure 3).

There are some outliers or notable applications
of this naming convention. First, some reachspaces
are common to many different settings, with little
visual or functional variation among them, such
as elevator button panels and electrical breaker
panels. Others are portable and thus are not strongly
associated with any given setting, such as musical
instrument cases or portable soldering benches. Such
reachspaces were labeled “variableSetting” at the
setting level. Second, some reachspace images did
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Figure 3. A selection of seven categories from the database, with four images per category, to illustrate the breadth and depth of the
database and provide concrete examples of the naming convention.

not have enough visual information or semantic
constraints to be given a room label (e.g., children’s
toy sets can occupy any room of a house). Such
reachspaces were labeled “variableRoom” at the room
level. Finally, it was found that some reachspace
categories had more granular divisions than could be
captured with a four-level taxonomy. For example,

the category restaurant_diningArea_table_eating does
not distinguish between different kinds of restaurant
place settings, which have different affordances
and visual appearances (e.g., Western plates vs.
South Asian thali). In such cases, a fifth label was
appended, providing labels for the subcategories (e.g.,
restaurant_diningArea_table_eating_thali).
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Labels at all levels were chosen to be general
rather than specific. For example, while the individual
actions afforded by a place setting at a restaurant are
numerous (cutting steak, spooning soup, pouring wine,
adding salt, etc.), we used the most general action
label “eating” to encompass these. In some cases, the
English word for the setting and room level of the
taxonomy was the same (i.e., “office” can refer to
an entire building housing a company, as well as a
room within that building where an individual might
work). In these cases, this word was repeated for each
applicable level of the hierarchy. Category labels for
this release of the database were generated primarily
by author ELJ and vetted by author HZ and a second
colleague not otherwise invested in the project (DJ, see
Acknowledgments).

Identifying additional reachspace categories
using this taxonomic structure

In addition to organizing the images in the
database, this taxonomy proved to be highly generative
for discovering additional reachspace categories.
Starting from a named category, different labels
could be substituted at any level of the taxonomy
to generate a new reachspace label. For example,
from home_kitchen_counter_chopping, we could
generate restaurant_kitchen_counter_chopping,
home_kitchen_table_chopping, or home_kitchen_
counter_baking. If the generated label corresponded
to a real-world reachspace, images were collected for
this category and included in the database following the
procedure described below.

Reachspace image collection

Images were collected for each of the identified
categories using manual keyword searches in standard
image search engines, from IP addresses in the United
States and Hong Kong. Images were collected in the
time period between September 2017 and October
2020. Since reachspace categories do not generally
have specific names, the most effective search strategy
for locating a given reachspace type was to append an
activity name to the name of the furniture item that
supports it (e.g., “crafting desk,” “illustrator’s desk,”
“work desk”). To find images depicting the whole
reachable environment, with correct camera angle
and framing, the following strategies were adopted:
appending the first-person “my” to the search term
(e.g., “my crafting desk”), adding adjectives such
as “cluttered” or “organized” to the beginning, and
appending “setup,” “layout,” or “display” to the
end. To increase cultural diversity in the image set,
we conducted searches on Baidu and Yahoo Japan

in addition to Google and Bing, and used English,
Chinese, and French search terms. Additionally, some
reachspace images were original photographs taken by
the experimenters. Finally, images were also found using
the “Similar Image” features provided by many search
engines.

All images in the database are real-world photographs
(not CGI), saved in a jpeg format, and are in full color.
Images were included if they met the following quality
control criteria: (a) The image resolution is equal to or
larger than 125 × 125 pixels (mean: 1,137 × 846); (b)
the image depicts a view similar to what an observer
would experience if they are standing or sitting in
the space, actively engaging with it (depicted space is
between approximately 2 and 4 feet in depth, camera
position approximates an ecological viewing angle);
and (c) the center of the space, where the bulk of the
hand–object interactions takes place, is approximately
centered in the image frame. Images were excluded if
they contained clear views of people, hands, or faces;
if they contained a large watermark (small watermarks
on the edges of images were allowed); if they had clear
filter effects; or if they depicted contrived layouts, such
as those in staged advertising images. Images were
occasionally cropped to better fit these criteria.

Database location, availability, and format

All images are available for download in an OSF
repository (https://osf.io/bfyxk/). The database consists
of the images, divided into folders according to
their categories. Image metadata is included in the
form of a csv file, which lists the following metrics
for each image: image name, setting-level label,
room-level label, interaction locus label, action label,
fifth-level label (if applicable), image resolution, and
the number of other images in the same category.
The database can also be previewed and explored at
https://www.reachspacedatabase.com/.

Results

The database contains a total of 11,276 images,
drawn from 351 different categories (as of October
31, 2020, reflecting release 1.0). These categories are
broadly sampled, reflecting the places where we eat,
work, play, worship, create, play music, store items, and
more (Figure 3). On average, there are 32 images per
category (SD = 13), and the database only includes
categories with a minimum of 10 images. Altogether,
these categories represent 38 unique settings, 131 unique
rooms, 161 unique interaction loci, and 143 unique
actions (Figure 4A). Figure 4C depicts the unique labels
at each level as word clouds, where the size of the text

https://osf.io/bfyxk/
https://www.reachspacedatabase.com/
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Figure 4. Metrics of the database. (A) Number of labels at each level of the taxonomy. (B) Frequency of labels across the levels of the
hierarchy. The vast majority of labels appeared 1 to 3 times, although some labels appeared many times (> 15). (C) Overview of the
labels appearing at each level of the hierarchy. Size of the word corresponds to the number of times it appears in category names at
this level of the hierarchy. Note that “variableSetting” and “variableRoom” were used for reachspaces that do not have a canonical or
clear association with a specific setting or room (see text).

corresponds to the frequency of that label. Overall, the
Reachspace Database (osf.io/bfyxk/) provides a broad
and comprehensive sampling of the reach-relevant
world.

In the next sections, we report the results of some
summary analyses performed on the database, which
provides a lens into the statistics of reachspaces in the

world within the context of our sampling. We first
asked how reachspace categories are distributed in
the broader environment by counting how often each
unique label appeared at the setting or room level of
the taxonomy (Figure 4B), thus giving a rough census
of the number of reachspaces associated with each
context. Most settings were associated with only a small

https://osf.io/bfyxk/
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Figure 5. Some divisions observed among reachspaces during construction of the database.

number of reachspaces (50.0% of setting labels only
appeared one to three times), suggesting that a given
setting generally supports a relatively limited set of
activities. This is even more evident at the room level:
88.5% of rooms were associated with only one to three
reachspaces, indicating high specificity in the activities
conducted in a given room. However, these distributions
have very long tails: 18.4% of settings and 3.4% of
rooms were associated with greater than 15 reachspaces.
Indeed, at the extreme, settings such as “home” and
“workshop” and rooms such as “kitchen” were linked
to more than 30 unique activities. Overall, this suggests
that the statistics of reachspaces in the world are not
uniformly distributed: While most locations support
few (one to three) actions, other can be considered
“hubs” supporting many actions.

Next, we examined how tightly the setting, room,
and interaction locus together constrains the actions
associated with a space. That is, given a space defined
by a particular setting–room–locus chain, how many
actions can be performed there? In the current database,
90.8% of setting–room–loci chains were associated with
only 1 action, 5.3% with two actions, and only 3.9%
with three or more actions. Thus, the setting, room,
and interaction locus together strongly dictates what
function a given reachspace is associated with. This
is intuitive: Sitting at a table in the dining area of a
restaurant is enough to strongly suggest that you are
eating. As above, however, the shape of this distribution
has a long tail, with a few setting–room–locus chains
having associations with seven or more different
actions (including home_kitchen_counter and
home_hobbySpace_table). Thus, there may be an
interesting division between reachspaces that support
a single purpose and those that have high flexibility to
remain general purpose.

Finally, in constructing the database, we observed
that reachspaces could differ from each other on a
number of dimensions that are not clearly linked to

the taxonomy used to create the database (Figure 5).
For example, we observed that (a) the primary spatial
arrangement of objects in space might be horizontal
or vertical; (b) the afforded reach motion might vary
in its angle, from upward motion to horizontal motion
to downward motion; (c) the reachspace might be
static and tied to a specific location or be designed for
portability; (d) might consist of a single large object
or many small objects arrayed on a surface; (e) might
afford direct action with the hands or require the
intermediary of tools; and (f) might require constant
hand-based interaction or be primarily engaged with
using vision. This nonexhaustive list of properties
is based on our observations while collecting the
images; concurrent work is under way to measure the
similarity structure among reachspace images in human
behavioral judgments and to discover the dimensions
underlying this structure using data-driven methods
recently employed for objects (Hebart et al., 2020).

Discussion

Here, we introduce the Reachspace Database, a
database of images depicting the rich, near-scale views
we experience when performing hand-based tasks and
activities in the world (available at osf.io/bfyxk/). While
many image databases exist for human and computer
vision, this is the first, to our knowledge, that explicitly
captures ecological views centered on a reachable scale.

The act of collecting and cataloging reachspace
images led to the development of a naming convention
and taxonomy, which groups reachspaces based on
the spaces they appear in and the action they afford.
This system was selected because we found it was
the most helpful for looking up reachspace images
and informing expectations of their appearance, but
we make no claims about whether it reflects how

https://osf.io/bfyxk/
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Figure 6. Illustration of the relationships among taxonomy level labels for 192 example categories, selected from seven example
settings. Specifically, this figure demonstrates how the current taxonomy is not strictly hierarchical: The same room can exist in
different settings, and the same interaction locus (e.g., table) can exist in many different rooms. Blue bars represent labels at each
level of the taxonomy, and the size of the bars represents the number of times that label appears. Gray lines connect labels that
together form a category name.
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knowledge about reachspaces is organized in the mind.
One interesting feature of this taxonomy is that it is not
strictly hierarchical. While reachspaces are embedded
in rooms, which are themselves embedded in broader
environments, the relationship among these is not
exclusive. For example, a kitchen can be found in a
house, an office building, a hotel, or a restaurant. Thus,
subordinate labels in this taxonomy are not exclusively
nested under superordinate ones. This is illustrated in
Figure 6, using a subset of categories. This complex
structure suggests that a reachspace’s specific identity
is not adequately captured by any single level of the
taxonomy and that its precise attributes will be related
to its context as well as its function.

One possible alternative system would be to classify
reachspaces based on their function or purpose, at
different levels of abstraction. Function has been shown
to be a salient property, which plays a large role in
high-level judgments of similarity for objects, scenes,
and actions (Greene et al., 2016; Rosch et al., 1976;
Tversky, 1989). Under this scheme, a superordinate
label might refer to the broad activity a reachspace
affords (playing, working, doing art), with more
specific activities appearing under each (playing chess
vs. playing with Legos; typing vs. reading; painting
vs. sculpting). However, reachspaces are related to
locations in lawful ways, and this alternative would
not account for the important differences we have
highlighted that arise from location differences.

It is interesting to note that, in contrast to the highly
specific four-part names we have given to reachspace
categories, natural-language labels for reachspaces are
relatively vague: We speak of returning to our “desk”
after lunch or searching our “bench” for a particular
tool. This raises the question: Why do reachspace
categories lack distinct labels in natural language? One
possibility is that terms of reference such as “desk” or
“workbench” are actually relatively unambiguous in
the context of a natural utterance, when they can be
integrated with knowledge about where the speaker is
located and what they are doing (Carroll, 1980; Olson,
1970). Future work is required to understand the rules
by which active and descriptive language references
these interaction spaces and how linguistic conventions
and terms of reference vary across languages.

There are limitations with the database in its
current iteration. First, while we have taken pains to
present a comprehensive sample of reachspaces, this
database is by no means a complete or representative
survey. This image set is biased toward spaces that are
more commonly photographed from a first-person
perspective or posted online. Thus, reachspaces
associated with many professions — such as industrial
kitchens, firetruck steering wheels, or judges’ benches
— are not represented. Additionally, given the
backgrounds of the researchers and the kinds of
images that tend to be featured in Internet searches,

our sample reflects a cultural context that is highly
industrialized and largely Western (see Henrich et
al., 2010). Our activity-based approach in generating
reachspace categories encouraged broad sampling
of professions, but we have likely under sampled
the variety of reachspaces from domains we are less
familiar with (e.g., manufacturing and machining
shops). Thus, the number of reachspace categories
here should not be interpreted as an estimate of the
number of reachspace categories in the world. Second,
the names we have given to the categories represent our
attempts to make different categories distinguishable
from each other at multiple levels (setting, action, etc.)
but should not be taken to provide canonical names for
reachspace categories. While we internally validated
that each level of the label fit the images in the category,
this was done on a small scale (i.e., agreement among
three people; see Method section), and we have not
broadly validated that these are the labels that are most
commonly or naturally used in speech. Additionally, in
choosing category names, we were limited to selecting
only one label for each taxonomic level, so labels do
not reflect the full richness of the language used to talk
about these spaces (e.g., the kitchen reachspace that
supports chopping could also be said to afford slicing,
dicing, etc.). Future versions of the database would
benefit from collecting a fuller sample of related terms.
Altogether, these limitations indicate areas to focus
on in future releases but do not stand in the way of
the broader goal of fueling research into near-scale
reach-relevant environments.

Overall, the goal of this database is to turn a
spotlight onto the rich visual input that we experience
during close-scale interactions with the world. Scene
perception research has largely focused on large-scale
views of the environment, and thus many of the insights
from this area have centered on place recognition,
the perception of navigational affordances, and how
extended spatial layouts guide search, memory, and
attention. It is not clear how these insights translate
to reach-relevant spaces. We hope that this database
will encourage research into reachspaces alongside
navigable-scale scenes and will lead to more complete
models of human perception at all scales.

Keywords: reachspaces, image database, embodied
perception
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