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Recurrent pregnancy loss (RPL) is a major type of pathological pregnancy that

still lacks reliable early diagnosis and effective treatment. The placenta is critical

to fetal development and pregnancy success because it participates in critical

processes such as early embryo implantation, vascular remodeling, and

immunological tolerance. RPL is associated with abnormalities in the

biological behavior of placental villous trophoblasts, resulting in aberrant

placental function. MicroRNAs (miRNAs) are increasingly being recognized as

essential regulators of placental development, as well as potential biomarkers.

In this study, plasmamiRNAs and placental messenger RNAs (mRNAs) from RPL

patients and normal pregnant (NP) controls were sequenced and analyzed.

Compared to those in NP controls, 108 circulating miRNAs and 1199 placental

mRNAs were differentially expressed in RPL samples. A total of 140 overlapping

genes (overlapping between plasma miRNA target genes and actual placental

disorder genes) were identified, and functional enrichment analysis showed that

these genes were mainly related to cell proliferation, angiogenesis, and cell

migration. The regulatory network among miRNAs, overlapping genes, and

downstream biological processes was analyzed by protein–protein interactions

and Cytoscape. Moreover, enriched mRNAs, which were predictive targets of

the differentially expressed plasma miRNAs miR-766-5p, miR-1285-3p, and

miR-520a-3p, were accordingly altered in the placenta. These results suggest

that circulating miRNAs may be involved in the pathogenesis of RPL and are

potential noninvasive biomarkers for RPL.
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Introduction

Recurrent pregnancy loss (RPL) is one of the most complex

and challenging scenarios in reproductive medicine and is

defined as the failure of two or more pregnancies (Bolondi

et al., 2016). The prevalence of RPL is difficult to estimate;

however, most studies claim that 1–4% of women are affected

(Rai and Regan, 2006; Rasmark Roepke et al., 2017; Magnus et al.,

2019). RPL can be attributed to heredity, structure, infection,

endocrine issues, immunity, or unknown causes (Rai and Regan,

2006). The placenta is the first organ to form during pregnancy

and is critical for embryonic development and successful

pregnancy because it participates in critical processes such as

early embryo implantation, vascular remodeling, and

immunological tolerance. Although the specific pathogenesis

of RPL is unclear, it is commonly recognized that the placenta

plays an important role in this process. The origin and

development of the placenta are closely related to the

proliferation, differentiation, and functional state of placental

trophoblasts (Lala et al., 2021). Pathological pregnancies, such as

preeclampsia (PE) and pregnancy loss, are thought to be

mediated by placental trophoblast dysfunction (Huppertz,

2019; Lokeswara et al., 2021). Thus, it is crucial to understand

the molecular mechanisms underlying trophoblast turnover and

identify corresponding biological targets.

MiRNAs are endogenous, short noncoding single-stranded

RNAs with an average length of 22 nucleotides. MiRNAs regulate

gene expressions in a sequence-specific manner mainly through

posttranscriptional inhibition or degradation of messenger

RNAs. Approximately 600 miRNAs are expressed in the

human placenta and play key roles in placental development

and function by regulating the expressions of genes involved in

trophoblast proliferation, differentiation, invasion, migration,

apoptosis, and angiogenesis (Mouillet et al., 2015; Chen et al.,

2021). A number of differentially expressed miRNAs have been

confirmed in the placenta in pathological pregnancies, including

RPL, PE, intrauterine growth restriction, and preterm delivery

(Morales-Prieto et al., 2014; Tian et al., 2020; Tang et al., 2021).

Besides their effects on intracellular silencing, placental-derived

miRNAs are appealing because they can be released into

maternal circulation by being packaged within extracellular

vesicles (Luo et al., 2009; Morales-Prieto et al., 2020). It is

possible to provide a hormone-like way for different maternal

cells to communicate with each other and even between the

mother and the fetus (Xu et al., 2021). Therefore, the differential

expressions of miRNAs in maternal circulation can indicate

potential placental pathology and can be used as biomarkers

for the early detection of pregnancy complications (Zhao et al.,

2013; Tian et al., 2020; Munjas et al., 2021).

Although several investigations have been performed on the

expressions and functions of miRNAs in the placentas of patients

with RPL, few researchers have conducted joint studies on the

regulatory network of plasma miRNAs and placental mRNAs. In

this study, we combined plasma miRNA sequencing with

placental mRNA sequencing for the first time. The target

genes of differentially expressed plasma miRNAs and

placental mRNAs were cross-screened for further gene

function analysis and protein–protein interaction (PPI)

regulatory network construction. We focused on 10 hub genes

and 7 central miRNAs. Functional analysis and literature reviews

showed that they were related to pathological pregnancy by

participating in cell migration, apoptosis, and angiogenesis.

We aimed to elucidate the miRNA–mRNA regulatory network

in RPL and provide a promising target for the diagnosis and

treatment of RPL.

Materials and methods

Study population

Patients with RPL were recruited for this study at Shanghai

Jiao Tong University School of Medicine International Peace

Maternity and Child Health Hospital from December 2018 to

December 2019. All participants were thoroughly examined to

rule out any known causes of RPL. Patients with the following

characteristics were excluded from the study: 1) genital

malformation on pelvic examination and ultrasound, 2)

abnormal immune function, 3) endocrine or metabolic disease

symptoms, 4) infectious disease, 5) history of family genetic

diseases, 6) pathogenic copy number variant (CNV) sequencing

in chorionic villous tissue, and 6) other identified causes of

miscarriage.

The normal pregnant (NP) group included normal early

pregnant healthy women who underwent surgical abortion

according to their wishes. We also excluded patients who

could not sustain pregnancy due to their physical condition or

patients whose fetuses had been identified with malformations or

congenital illnesses.

The study was authorized by the Medical Ethics Committee

of the International Peace Maternity and Child Health Hospital,

China Welfare Institute, and all participants provided informed

consent in accordance with ethical norms.

Biological samples

Placental chorionic villous tissue approximately 5 mm in size

was collected during dilation and curettage. Under the dissecting

microscope, chorionic villous samples were isolated from

maternal decidua after being repeatedly washed with sterile

saline. The clean tissue was immersed in RNAlater

(ThermoFisher, AM7024) and immediately stored at −80°C.

Approximately 5 ml of venous blood was collected in an

EDTA peripheral blood anticoagulant tube before the surgery.

The blood was gently inverted and mixed 6–8 times after
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collection and centrifuged at 1600 × g for 10 min. The separated

plasma was centrifuged at 12000 × g for 10 min. After two rounds

of centrifugation, the plasma (approximately 2 ml) was stored

at −80°C.

RNA isolation from villous samples

An mRNA isolation kit was used to isolate total RNA from

placental tissues according to the manufacturer’s instructions

(Ambion, Invitrogen, AM1561). The NanoDrop

2000 spectrophotometer was used to assess the purity and

quantity of RNA (Thermo Scientific, United States). The

Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara,

CA, United States) was used to evaluate RNA integrity.

RNA isolation from maternal plasma
samples

Total mRNA was extracted from 200 μl of plasma using the

QIAGENmiRNeasy Serum/Plasma Advanced Kit (Qiagen, cat. #

217204) according to the manufacturer’s instructions. The

NanoDrop 2000 was used for total RNA quantification

(Thermo Fisher Scientific Inc., United States). The RNA

integrity was determined using an Agilent 2100 Bioanalyzer

(Agilent Technology, United States).

Library preparation and sequencing
procedures

In the screening process, we investigated a pooled RNA

sample extracted from villous and plasma samples of three

RPL patients and three NP controls, matched for age and

other clinical characteristics listed in Table 1.

The mRNA libraries of villous tissues were constructed using

the TruSeq Stranded mRNA LT Sample Prep Kit (Illumina, San

Diego, CA, United States) according to the manufacturer’s

instructions. The Illumina HiSeq X Ten platform was used to

sequence the libraries, and 150-bp paired-end reads were

produced. Each sample produced approximately 49.52 M raw

readings. Trimmomatic was used to initially process the raw data

(raw readings) in the fastq format, through the removal of low-

quality reads to produce clean reads (Bolger et al., 2014). Then,

for each sample, 48.57 M clean readings were kept for later

TABLE 1 Clinical characteristics of patients recruited.

RPL NP p-value

N 20 21 -

Age (years) 31 (26,41) 30 (22,40) NS

Gestational age (weeks) 8 (7,9) 7 (7,8) NS

Maternal prepregnancy BMI (kg/m2) 20.3 (16.0,27.1) 19.4 (15.2,22.5) NS

Smoking 3 (0.15%) 2 (0.10%) NS

Cycle length (days) 30 (28,35) 30 (27,34) NS

Previous pregnancy losses 2 (2,3) 0 (0,0) -

Data are shown as median [range] or n (%). NS, not significant; RPL, recurrent pregnancy loss; NP, normal pregnancy; BMI, body mass index.

TABLE 2 Sequences of the primers used in qRT-PCR experiments.

mRNAs Primers miRNAs Primers (Universal reverse
primer provided by
kit)

FYN F:TACTCAAAAGTGGGGCGTTC hsa-miR-145-5p F:AACCTCCGTCCAGTTTTCCCA

R:ACGGGAGGTTCACAATCAAG

KDR F:CAGCATCACCAGTAGCCAGA hsa-miR-493-5p F:AATCGGCGTTGTACATGGTAGG

R:ATTTCCCACAGCAAAACACC

PECAM1 F:TATTTTCCAAGCCCGAACTG hsa-miR-1285-3p F:ACGACAATCTGGGCAACAAAGT

R:TCACCTTCACCCTCAGAACC

PDGFRB F:CACTGCCTGTCCCCTATGAT hsa-miR-766-5p F:AACACGTGAGGAGGAATTGGTG

R:TCAGAATCCACCTCCCTGTC U6 Primer provided by kit
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analyses. HISAT2 was used to map the clean reads to the human

genome (GRCh38) (Kim et al., 2015). The FPKM of each gene

was computed using Cufflinks, and the HTSeq-count was used to

determine the read counts of each gene (Trapnell et al., 2010;

Roberts et al., 2011; Anders et al., 2015). All procedures were

performed by OE Biotech Co., Ltd. (Shanghai, China).

Following the manufacturer’s guidelines, 1 ug of total RNA

from each plasma sample was utilized for the small RNA library

building using TruSeq Small RNA Sample Prep Kits (Cat. No.

RS-200–0012, Illumina, United States). In a nutshell, the

whole RNA was ligated to adapters at both ends. The

adapter-ligated RNA was then reverse-transcribed to cDNA

and PCR amplification was conducted. Small RNA libraries

were created from PCR products ranging in size from 140 to

160 bp. The quality of the library was evaluated using DNA

High Sensitivity Chips on the Agilent Bioanalyzer

FIGURE 1
Expression profiles of circulating miRNAs and placental mRNAs in the NP and RPL groups (n = 3 per group). (A) heatmap of circulating miRNAs.
(B) volcano plot of circulating miRNAs. (C) heatmap of placental mRNAs. (D) volcano plot of placental mRNAs.
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2100 instrument. Base-calling was used to transform the raw

reads from the basic reads into sequence data. The readings

containing 5′ primer contamination and poly(A) were

eliminated after low-quality reads were filtered. To acquire

clean reads, raw data were filtered to remove reads with the 3′
adapter and insert tag as well as reads that were either 15 nt or

41 nt in length. For the primary analysis, the length

distribution of the clean sequences in the reference genome

was determined. Small nuclear RNAs, rRNAs, tRNAs, and

other terms were used to annotate noncoding RNAs.

Following the alignment of these RNAs, a Bowtie search

was conducted against Rfam v.10.1 (http://www.sanger.ac.

uk/software/Rfam) (Langmead et al., 2009). By matching

the known miRNAs to the miRBase v22 database, the

known miRNAs were located, and the known miRNA

expression patterns in various samples were examined

(Griffiths-Jones et al., 2008). Next, miRDeep2 was used to

predict new miRNAs from unannotated readings (Friedländer

et al., 2012). OE Biotech Co., Ltd., performed the small RNA

sequencing and analysis (Shanghai, China).

Bioinformatic analysis

Differentially expressed mRNAs and miRNAs were used to

identify the DESeq (2012) functions with estimateSizeFactors

and nbinomTest. The threshold for significantly differential

expression was established as a P or q < 0.05 and |log2-fold

change| > 1.

Enrichment analysis

Target genes of miRNAs were predicted using the datasets

collected from miRTarBase, miRWalk, and Diana Tools

(Maragkakis et al., 2011; Chou et al., 2018; Sticht et al.,

2018). The genes involved in overlapping between miRNA

target genes and actual differentially expressed placental

genes were referred to as overlapping genes. To identify the

potential relevant functional annotation and pathway

enrichment analysis of overlapping genes, Gene Ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) were used. Analyses were conducted using the

Database for Annotation, Visualization, and Integrated

Discovery [DAVID3], with a significance level of p < 0.05

(Dennis et al., 2003).

Protein–protein interaction network

The PPI data were obtained from the STRING database

(https://string-db.org/) (Szklarczyk et al., 2017). We built the

interaction network with the STRING database and selected

PPI pairs based on a combination score > 0.4 to assess the

PPIs of overlapping genes. Then, the PPI network was

analyzed by Cytoscape visualization (Shannon et al., 2003).

The Cytoscape program CytoHubba was used to choose the

hub genes.

Building a miRNA–mRNA regulatory
network

A regulatory network of miRNA–mRNA interactions was

constructed by Cytoscape to show the interaction between

differentially expressed circulating miRNAs and overlapping

genes.

Cumulative distribution plots

The fold change between target and nontarget genes of

differentially expressed plasma miRNAs was compared using

the cumulative distribution function. The Mann–Whitney U test

was used to evaluate whether the log2fold change in target genes

in the placentas of RPL patients was significantly changed

compared with that of nontarget genes.

RT-qPCR validation analysis

To confirm the reliability of the sequencing results, crucial

dysregulated villous mRNAs and plasma miRNAs were

subsequently validated in all samples (20 RPL patients and

21 healthy controls). According to the manufacturer’s

instructions, mRNA and miRNA were reverse-transcribed

using PrimeScript RT reagent and Mir-X miRNA First-Strand

Synthesis Kit (Takara, Japan). The TB Green qPCR Master Mix

(Takara, Japan) was used to perform quantitative real-time PCR

(qPCR) analyses according to the manufacturer’s instructions.

The quantities of mRNA and miRNA transcripts were

standardized to the housekeeping genes GAPDH and U6,

respectively. Relative mRNA and miRNA expressions were

plotted as 2−ΔΔct values. The primer sequences used for

qPCR are shown in Table 2.

Statistical analysis

For statistical analysis, GraphPad Prism version 8 software

(GraphPad Software, San Diego, United States) was used.

Differences between groups of continuous variables were

tested using a parametric two-tailed t test or Mann–Whitney

U test when the normality assumption was not met. The chi-

squared test was used for comparison of categorical variables.

Statistical significance was accepted at p < 0.05.
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Results

Clinical characteristics of the patients

In the current study, 20 RPL patients and 21 NP controls who

fulfilled the inclusion criteria were included. The demographic

information of the participants is shown in Table 1. There were

no significant differences in maternal age, gestational age,

maternal prepregnancy body mass index, smoking status, or

cycle length between the two groups.

Differentially expressed circulating
miRNAs and placental mRNAs

Considering a |log2-fold change| >1 and a q < 0.05, a total of

108 circulating miRNAs showed differences. A total of

77 miRNAs were upregulated and 31 were downregulated in

the RPL group compared with the NP group (Figures 1A and B).

Placental villous mRNA expression profiles with the same

population were investigated. Considering a |log2-fold

change| > 1 and p < 0.05, a total of 1199 differentially

expressed transcripts were identified in placental tissue.

Among them, 568 mRNAs were upregulated and 631 were

downregulated (Figures 1C and D). The detailed miRNAs and

mRNAs sequencing results are in Supplementary Table S1 and

Supplementary Table S2.

Identification of the candidate target
genes of differentially expressed miRNAs

A total of 5607 target genes were identified, including

1890 targets of upregulated miRNAs and 2798 targets of

downregulated miRNAs. There were overlaps between anticipated

target genes and the measured mRNAs, adding to the evidence for

the involved genes. We performed a joint analysis of the putative

target genes of differentially expressed miRNAs and differentially

expressed mRNAs. Eighty-one genes overlapped between the

upregulated mRNAs and the target genes of the downregulated

miRNAs were called upregulated overlapping genes. Fifty-nine genes

overlapped between the downregulated mRNAs and the target genes

of the upregulated miRNAs were called downregulated overlapping

genes (Figure 2). A total of 140 overlapping genes were identified

(Supplementary Table S3).

Functional annotation and pathway
enrichment analysis

GO and KEGG pathway analyses were performed on the up/

downregulated overlapping genes. GO consists of three categories:

molecular cellular components, biological processes (BPs), and

molecular functions (MFs). As shown in Figure 3A, BP-related

results showed that downregulated overlapping genes were mainly

involved in cell proliferation, angiogenesis, vasculogenesis, and cell

migration, which are BPs that are closely related to abortion. In

addition, the results of the KEGG pathway analysis showed that the

downregulated overlapping genes were mainly enriched in the Wnt

signaling pathway, focal adhesion, and axon guidance (Figure 3B).

BP-related results showed that upregulated overlapping genes were

particularly enriched in responses to estradiol, angiogenesis, and the

cell surface receptor signaling pathway (Figure 3C). The KEGG

pathway analysis results showed that the upregulated overlapping

genes were mainly enriched in axon guidance (Figure 3D).

Protein–protein interaction network

To explore the interaction network between target proteins

and the core regulatory genes, the STRING method was used to

predict the interactions of 140 overlapping genes at the protein

FIGURE 2
Identification of overlapping genes. (A) the intersection of upregulated mRNAs (red) and target genes of downregulated miRNAs (blue). (B) the
intersection of downregulated mRNAs (red) and target genes of upregulated miRNAs (blue).
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level. In the PPI network of the overlapping genes, a total of

134 nodes and 99 edges were mapped (Figure 4A). We further

identified the top 10 hub genes assessed by CytoHubba

(Figure 4B). The top 10 hub genes were FYN, KDR, PECAM1,

PDGFRB, S1PR1, KIT, COL1A1, EPHB2, EPHA7, and SULF1

(Table 3). The differential expressions of hub genes between the

two groups are shown in Figure 5.

miRNA–overlapping gene regulatory
network establishment

Cytoscape was used to visualize the miRNA target gene

regulatory network between overlapping genes and miRNAs

(Figure 6A). Among the upregulated miRNAs, mir-200b-3p

regulates 10 downregulated target genes and was the

upregulated miRNA with the highest number of target genes.

Both miR-145-5p and miR-493-5p regulate 9 downregulated

overlapping genes. MiR-766-5p, miR-1285-3p, miR-4685-3p,

and miR-520a-3p regulate 11, 11, 9, and 7 overlapping genes

respectively and were the top four downregulated miRNAs with

the largest number of target genes. We identified 7 central

differentially expressed miRNAs (upregulated mir-200b-3p,

miR-145-5p, and miR-493-5p; downregulated miR-766-5p,

miR-1285-3p, miR-4685-3p, and miR-520a-3p) (Table 4). The

differential expressions of central miRNAs in the plasma between

the two groups are shown in Figure 5.

Next, we established an interaction network among the

differentially expressed miRNAs, hub genes, and the BPs of

GO analysis (Figure 6B). Hub genes were extensively

regulated by circulating miRNAs and are involved in BPs

such as the ephrin receptor signaling pathway, angiogenesis,

cell migration, and cell proliferation of placental villi.

Downregulation of circulating miRNAs
leads to global upregulation of placental
targets

We examined the cumulative distribution function of the

mRNA targets of central differentially expressed miRNAs. As

shown in Figure 7, the predicted targets of downregulated

miRNAs (miR-766-5p, miR-1285-3p, and miR-520a-3p) were

upregulated in the placenta (a righthand shift in the target mRNA

compared with the nontarget mRNA indicates increased mRNA

expression).

Validation of differentially expressed
miRNAs and mRNAs

We selected 4 hub genes and 4 central differentially expressed

miRNAs and increased the sample size to 20 RPL patients and

21 healthy controls to validate our RNA-seq data using qRT-PCR

(Figure 8). The experimental results showed that the levels of FYN

and PDGFRB mRNA were elevated in the placenta, which was

consistent with the RNA-seq data. In addition, the levels of KDR and

PECAM1mRNA showed the same trends as the RNA-seq results but

were not significant. MiR-145-5p and miR-493-5p were significantly

upregulated in the plasma of RPL patients. In addition, miR-1285-3p

and miR-766-5p were downregulated in RPL patients.

Discussion

In this study, we characterized the circulating miRNA profile

in the plasma and the mRNA profile in the placenta of patients

with RPL. This study used a comprehensive approach to

elucidate potential upstream regulators of key molecular

pathways related to RPL by combining circulating miRNA

and placental mRNA profiles. To our knowledge, this is the

first study to integrate these two profiles from the same set of

patients with RPL. In conclusion, our results show that the

miRNA profile reflects the state of patients and is a potential

noninvasive biomarker of RPL. Furthermore, alterations in

plasma miRNA and placental mRNA expressions suggest the

role of miRNAs in placental function in RPL.

In recent years, miRNAs have attracted extensive attention

because of their high stability in circulating body fluids

(including whole blood, plasma, serum, and saliva). Many

ubiquitous and placenta-specific miRNAs are expressed and

regulate trophoblast differentiation, proliferation, apoptosis,

invasion/migration, and angiogenesis, suggesting that miRNAs

play a significant role in placental development (Fu et al., 2013).

These miRNAs can be produced by trophoblasts of the placenta

and secreted into the maternal circulation. These miRNAs are

potential diagnostic and prognostic biomarkers for pregnancy-

related complications, as well as illness occurrence. We found

108 differentially expressed miRNAs in the plasma of RPL

patients in our study, and there were 77 upregulated and

31 downregulated miRNAs. The tissues and cells from which

circulating miRNAs are derived are often unknown. Therefore,

we believe that the expressions of candidate diagnostic miRNAs

in the circulation and placenta, as well as the evidence of

important regulatory pathways involved in the

pathophysiology of pregnancy loss, provide valuable indirect

support for evaluating the diagnostic potential of these factors.

Through combined placental RNA-seq analysis, we identified

7 central differentially expressed miRNAs that may play a broad

regulatory role in the placenta. Then, potential biomarker

miRNAs of RPL were further screened in larger samples

(20 RPL patients and 21 NP controls) by real-time PCR. The

results showed that in RPL patients, 2 miRNAs (miR-145-5p and

miR-493-5p) were upregulated, and 2 miRNAs (miR-1285-3p

and miR-766-5p) were downregulated. Our review of the

literature revealed that these miRNAs, which had been
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replicated in more than one study, were expressed in the placenta

(Lv et al., 2019; Inno et al., 2021; Smith et al., 2021). The four

potential biomarker miRNAs identified in our study have never

been linked to RPL before. The expression of miR-145-5p was

increased in the placentas of patients with PE (Zhou et al., 2021).

Mir-145-5p overexpression inhibited HTR-8/SVneo cell motility

and invasion by negatively regulating Cyr61 expression through

interactions with its 3′-untranslated region (UTR) (Wen et al.,

2018). MiR-493-5p inhibits glioma progression by decreasing

E2F3-mediated P53 and PI3K/AKT pathway dysfunction (Liu H.

et al., 2022). Some studies have shown that mir-493-5p

overexpression plays a negative regulatory role in esophageal

cancer, osteosarcoma, cervical cancer, nonsmall cell lung cancer,

and other malignancies by inhibiting cell proliferation/

migration/invasion (Feng et al., 2021; Wang et al., 2021; Liu

Q. et al., 2022; Huang et al., 2022). Downregulation of miR-1285-

3p reversed the effects of weak expression of circRNA_400029 on

the progression and apoptosis of cervical cancer cells (Ma et al.,

2022). MiR-1285-3p overexpression promotes the development,

metastasis, and invasion of a range of malignant tumors,

including cervical cancer, lung adenocarcinoma, and colorectal

cancer (Villanova et al., 2020; Zhang et al., 2021; Ma et al., 2022).

Studies have shown that miR-766-5p can participate in the

mitochondrial apoptotic pathway by targeting the 3′UTRs of

BAX, BAK, and BOK, and the overexpression of miR-766-5p in

SW480 cells has been shown to reduce cell death and improve

viability (Dokanehiifard et al., 2020). Rapid proliferation,

invasion, and migration of placental trophoblasts are required

for effective embryo implantation and placental development

(Brosens et al., 2022). These findings suggest that circulating

FIGURE 3
Functional analysis of overlapping genes: (A) gene ontology (GO) analysis of downregulated overlapping genes. (B) Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analysis of downregulated overlapping genes. (C) GO analysis of upregulated overlapping genes. (D) KEGG
pathway analysis of upregulated overlapping genes.
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miRNAs may be involved in RPL pathogenesis by targeting

migration-, apoptosis-, and angiogenesis-related gene functions.

A total of 140 overlapping genes (overlapping between plasma

miRNA target genes and actual placental disorder genes) were

identified. This resulted in a total of 192 miRNA–mRNA

interactions between 98 miRNAs and 140 target genes. In

addition, using PPI analysis, we further identified the top

10 hub genes. In a consistent manner, the functional

enrichment analysis of hub genes in placental villi showed that

the regulated genes were mainly related to the regulation of cell

proliferation, angiogenesis, cell migration, and focal adhesion,

which are important processes involved in placental and fetal

development. Studies have demonstrated that FYN expression,

which is elevated at the fetomaternal interface of abortion-prone

mice and RPL patients, plays a role in the regulation of

fetomaternal immune tolerance by encouraging the expansion

of Th17 cells and the expression of proinflammatory factors

(Khan et al., 2014; Liu et al., 2016). A FYN inhibitor overcomes

the aberrant inflammatory state and embryo resorption caused by

LPS (Liu et al., 2016). KDR, also known as vascular endothelial

growth factor receptor 2 (VEGFR2), was demonstrated to be

elevated in the placenta of pathological pregnancy diseases

(early pregnancy loss, PE) in many studies (Kumazaki et al.,

2002; Plaisier et al., 2009; Fang et al., 2013; Sundrani et al.,

2013). As a significant mediator of VEGF biological effects,

KDR is important in uterine decidual and embryonic

angiogenesis during early pregnancy (Douglas et al., 2009; Fang

et al., 2013). In addition, a previous study has demonstrated that

KDR participates in trophoblast migration, invasion, and

proliferation by binding to decorin (Khan et al., 2011).

FIGURE 4
Protein–protein interaction (PPI) network. (A) PPI network of overlapping genes. The blue circle represents downregulated overlapping genes,
and the orange circle represents upregulated overlapping genes. (B) PPI network of top 10 overlapping genes (hub genes). The darker the circle, the
greater the connectivity score.

TABLE 3 Top 10 overlapping genes (hub genes) with highest connectivities.

Rank Name Score Description

1 FYN 48 src family tyrosine kinase

2 KDR 41 kinase insert domain receptor

3 PECAM1 34 platelet and endothelial cell adhesion molecule 1

4 PDGFRB 32 platelet-derived growth factor receptor beta

5 S1PR1 24 sphingosine-1-phosphate receptor 1

6 KIT 12 receptor tyrosine kinase

7 COL1A1 10 collagen type I alpha 1 chain

8 EPHB2 9 EPH receptor B2

9 EPHA7 7 EPH receptor A7

10 SULF1 6 sulfatase 1
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PECAM-1 (platelet endothelial cell adhesion molecule-1),

commonly known as CD31, is the most prevalent membrane

glycoprotein that is expressed constitutively on the vascular

endothelium (Chantraine et al., 2012; Caligiuri, 2020). In an

interesting way, we found a trend toward higher levels of

PECAM-1 expression in the placental villi of RPL patients.

Consistent with our findings, another scientific study has

shown an increased number of arterial, venous, and lymphatic

vessels in placentas of RPL patients, and RPL is related to the

decrease in venous and lymphatic invasion by extravillous

trophoblasts rather than the total number of vessels

(Windsperger et al., 2017). In an important way, our

comprehensive approach showed that the downregulation of

plasma miRNAs resulted in the upregulation of targeted

mRNAs in placental tissue. Recent studies have identified

correlations between circulating miRNAs and tissue gene

expression, which lends support to our approach and findings.

MiRNAs released from cells, such as in biological fluids like blood

and breast milk, are thought to be present in vesicle-encapsulated,

protein-bound forms, such as microvesicles, exosomes, and

apoptotic bodies (Ouyang et al., 2014; Chang et al., 2017;

Morales-Prieto et al., 2020). An emerging concept is that these

miRNAs can silence neighboring or distant cells, allowing for

hormonal-like intercellular communication associated with a

variety of BP (Ouyang et al., 2014). Placental or other tissue-

derived exosomal miRNAs are transferred to the maternal

circulation and regulate neighboring or distant cells. Circulating

exosomes released by placental syncytiotrophoblasts contain

syncytin-1 and syncytin-2 on their surfaces, which can bind to

MFSD2A and ASCT2 receptors on the surface of placental

trophoblasts and contribute to exosome uptake (Vargas et al.,

2014). In vivo and in vitro findings suggest that placental exosomal

miR-15a-5p isolated frommaternal plasma suppresses trophoblast

proliferation, invasion, and apoptosis by downregulating

CDK1 expression and impairing PI3K/AKT signaling, which is

linked to the progression of PE (Wang et al., 2020a). Combined

with our findings, key processes in the placenta may be affected by

circulating dysregulated miRNAs in RPL.

In particular, our investigation discovered a number of

previously unreported plasma biomarker miRNAs of RPL.

This discovery may be due to the thorough control of the

included population of pregnant women with normal fetal

CNV, which is missing in other studies (Yang et al., 2018;

Jairajpuri et al., 2021). From the genetic perspective,

embryonic numerical and structural chromosomal

abnormalities are known genetic causes of RPL, accounting

for more than 50% of miscarriages (Wang et al., 2020b; Gu

et al., 2022). Excluding the abortion caused by such genetic

factors may more clearly identify the unknown pathogenesis of

RPL. In addition, the presence of cellular contaminants such as

platelets or erythrocytes and hemolysis both affect plasma

miRNA detection results, and these factors may also be

responsible for biases between conclusions (McDonald

et al., 2011; Grasedieck et al., 2013). Therefore, we call for

an effort to standardize the conclusions of different studies

and accelerate their use in clinical practice by establishing a

standardized process (monitoring and standardizing of

sample collection, handling and storage, detection, and

analysis).

Moreover, the limitations of this study must be noted. First,

all RPL patients and healthy controls were Chinese. Our findings

may not be applicable to patients of different ethnicities. Second,

this study included a small number of samples from which

miRNA characteristics were obtained. The most crucial

evaluation requirements for circulating miRNA biomarkers

are high sensitivity and specificity, but a single miRNA is less

accurate because the levels in RPL patients and healthy controls

may overlap, increasing the risk of false negative or positive

diagnoses (Wang et al., 2018). Therefore, further research with

more participants is needed to obtain a baseline of candidates and

thus verify a panel of miRNAs as biomarkers. Third, placental

villi tissue contains a variety of cells, mainly trophoblast cells but

also immune cells such as monocytes, macrophages, T cells, and

NK cells (Suryawanshi et al., 2018; Pique-Regi et al., 2019). This is

our limitation because we chose mixed sample transcriptome

sequencing, which did not allow us to deeply investigate gene

expression analysis at the cellular level. In addition,

understanding pathways linking miRNA binding, mRNA

transcription, protein translation, and placental function may

prove to be an ambitious task due to the complexity of the

FIGURE 5
Expression changes of circulating central miRNAs and
placental hub genes in RPL relative to the NP group.
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FIGURE 6
miRNA andmRNAnetwork. (A)Construction ofmiRNA-overlapping genes regulatory network. The diamond represents differentially expressed
circulating miRNAs, the blue circle represents downregulated overlapping genes, and the orange circle represents upregulated overlapping genes.
(B) Predicted biological processes (BPs) of GO involving top 10 hub genes regulated by differentially expressed plasma miRNAs in RPL patients.

TABLE 4 Seven central differentially expressed miRNAs and target overlapping genes.

MiRNAs Overlapping genes

hsa-miR-200b-3p CSRNP3, ETS1, FAT3, FUT9, GPC6, NOVA2, NR5A2, RTKN2, TRPC3, VAT1L

hsa-miR-145-5p CAMK2D, EFNB3, ERG, ETS1, JPH1, LSAMP, MMP16, PODXL, ZNF521

hsa-miR-493-5p CXXC4, GFRA2, GJC1, GREM1, JPH1, LRP6, LSAMP, TMOD1, UNC5C

hsa-miR-766-5p ADGRG5, BAALC, FPR3, MAMLD1, MY O 1A, NR5A2, PSG4, RASGRP1, TMEM108, TNNI1, USP46

hsa-miR-1285-3p AFF3, ARNT2, CREB5, DMTN, EPB41L4A, HEYL, PDGFRB, SH3TC2, SLC25A23, TOX2, TRIM59

hsa-miR-4685-3p CD59, CREB5, KCNA6, MEX3A, PTPRJ, RASL10B, S1PR1, TNFRSF12A, TOX2

hsa-miR-520a-3p ARL4C, CDC25A, CREB5, KLF12, OR51E1, RAPGEF5, RGMA
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networks involved, which needs to be prioritized in future

research to better understand the potential epigenetic

mechanisms of RPL.

In conclusion, our study provides comprehensive data on

circulating miRNAs and placental tissue mRNAs in RPL and

shows that circulating miRNAs may become reliable biomarkers

of RPL and may be involved in the pathogenesis of RPL. These

results suggest a direction for the further study of RPL-related

miRNAs and mRNAs and provide potential therapeutic targets

for RPL.

FIGURE 7
Cumulative frequency ofmRNAs log2 fold change based onmiRNA target status. mRNA targets of downregulated plasmamiRNAs [miR-766-5p
(A), miR-1285-3p (B), and miR-520a-3p (C)] are upregulated in the placental tissue.

FIGURE 8
Validation of placental mRNAs and circulating miRNAs in the NP and RPL groups. mRNAs (A) and miRNAs (B) were confirmed by qPCR. The
expression trends of candidate mRNAs andmiRNAs were consistent with the sequencing results. Data are presented as 2−ΔΔct values (mean ± SEM).
*p < 0.05, ***p < 0.001, and ****p < 0.0001; ns, not significant.
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