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Abstract
Local biodiversity has traditionally been estimated with taxonomic diversity metrics 
such as species richness. Recently, the concept of biodiversity has been extended 
beyond species identity by ecological traits determining the functional role of a spe-
cies in a community. This interspecific functional diversity typically responds more 
strongly to local environmental variation compared with taxonomic diversity, while 
taxonomic diversity may mirror more strongly dispersal processes compared with 
functional metrics. Several trait-based indices have been developed to measure func-
tional diversity for various organisms and habitat types, but studies of their applica-
bility on aquatic microbial communities have been underrepresented. We examined 
the drivers and covariance of taxonomic and functional diversity among diatom rock 
pool communities on the Baltic Sea coast. We quantified three taxonomic (species 
richness, Shannon's diversity, and Pielou's evenness) and three functional (functional 
richness, evenness, and divergence) diversity indices and determined abiotic factors 
best explaining variation in these indices by generalized linear mixed models. The 
six diversity indices were highly collinear except functional evenness, which merely 
correlated significantly with taxonomic evenness. All diversity indices were always 
explained by water conductivity and temperature–sampling month interaction. 
Taxonomic diversity was further consistently explained by pool distance to the sea, 
and functional richness and divergence by pool location. The explained variance in 
regression models did not markedly differ between taxonomic and functional met-
rics. Our findings do not clearly support the superiority of neither set of diversity in-
dices in explaining coastal microbial diversity, but rather highlight the general overlap 
among the indices. However, as individual metrics may be driven by different factors, 
the greatest advantage in assessing biodiversity is nevertheless probably achieved 
with a simultaneous application of the taxonomic and functional diversity metrics.
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1  | INTRODUC TION

Biodiversity patterns have been at the center of ecological re-
search for decades. Traditionally, local biodiversity has been quan-
tified with taxonomic diversity metrics such as species richness S 
(the total number of species in a community), Shannon's diversity H 
(accounting both species richness and abundance in a community; 
Shannon, 1948), or Pielou's evenness J (the equality in abundance 
between species in a community constrained between 0 and 1; 
Pielou, 1966). Together with abiotic factors, these diversity compo-
nents are likely to influence ecosystem functioning in different ways 
(Cardinale et  al.,  2009; Downing & Leibold,  2002; Lewandowska 
et al., 2016). For example, temporal and spatial variation in nutrient 
supply and external salinity stress affect ecosystems both directly 
and indirectly through species richness, evenness, and diversity 
(Cardinale et al., 2009).

Despite the indisputable role of these taxonomic diversity 
indices and their dominant usage in explaining patterns of local 
biodiversity (Cadotte et al., 2011), ecosystem functions such as pro-
ductivity are extensively related to inherited traits determining the 
performance and functional role of a species in a community (Mason 
et al., 2005; McGill et al., 2006; Villéger et al., 2008). These physi-
ological, morphological, and metabolic traits shared by polyphyletic 
groups of species typically respond more strongly to local environ-
mental variation than conventional and more complex taxonomic 
diversity metrics (Mouchet et al., 2010; Reynolds et al., 2002; Rimet 
& Bouchez, 2012). Especially, variation in microbial traits may largely 
overweigh taxonomic diversity (Green et al., 2008).

Recently, several trait-based indices have been developed to 
measure the three components of functional biodiversity (Hooper 
et al., 2005; Mouchet et al., 2010; Villéger et al., 2008). Functional 
richness (FRic) measures the amount of niche space filled by species 
in a community, while functional divergence and functional even-
ness (FDiv and FEve, respectively; constrained between 0 and 1) 
describe the disparity and regularity of species abundance distribu-
tion, respectively, in a volume of filled niche space in the community 
(Villéger et al., 2008). Low functional diversity reduces productivity 
and biodiversity functioning either through unutilization of available 
resources (FRic) or occupied niche space (FEve) in a community, or 
intense competition for resources through weakly differentiated 
niches (FDiv) (Mason et al., 2005). Together, these three indices quan-
tify trait-level responses to environmental variation on a continuous 
scale, unlimited by the high level of detail required for taxonomic 
species identification (McGill et al., 2006; Violle & Jiang, 2009; Violle 
et al., 2014).

While these three independent yet complimentary functional 
diversity indices are successful in explaining diversity patterns 
and ecosystem functioning for many types of natural communities 
(Mouchet et  al.,  2010), their overall feasibility in coastal microbial 
communities has remained understudied (Alahuhta et  al.,  2018; 
Schmera et  al.,  2016; Villéger et  al.,  2008). Future climate-driven 
changes in sea level and precipitation and consequent alterations in 
nutrient and salinity conditions especially in the northern latitudes 

pose a major threat on the unique brackish biota along the marine-
freshwater transition zone of the brackish Baltic Sea (Flöder 
et al., 2010; Hernando et al., 2015). Diatoms are important players 
in biomass production in coastal rock pools, strongly influenced by 
environmental variation. Majority of rock pool diatoms are ecolog-
ical specialists, highly adapted for the harsh pool environment by 
various traits (Jocque et  al.,  2010). Isolated rock pools comprising 
diverse diatom communities offer an interesting setting for testing 
the influence of environmental stress on microbial diversity and eco-
system properties in the era of global climate change over different 
timescales (Blaustein & Schwartz, 2001; Srivastava et al., 2004).

Our study aimed first to investigate how and to what extent the 
taxonomic diversity covaries with the functional diversity among 
these communities. We hypothesize that (H1a) the taxonomic and 
functional diversity metrics are significantly correlated with each 
other, yet (H1b) the strength of correlation varies among the indices 
(Mouchet et al., 2010; Schmera et al., 2016). Secondly, we examine 
which environmental variables best explain diatom taxonomic and 
functional alpha diversity among coastal rock pool communities. We 
hypothesize that (H2a) the effects of local environmental variation 
on diatom diversity are better captured by the functional diversity 
indices compared with the taxonomic ones due to ecological adap-
tations, while (H2b) taxonomic diversity indices relate more strongly 
with spatial gradients than functional diversity indices as taxonomic 
metrics respond more to dispersal processes (Erős et  al.,  2009; 
Heino, 2008; Leibold & Chase, 2017).

2  | MATERIAL AND METHODS

2.1 | Field sampling

We sampled 30 brackish-watered, isolated rock pools once a month 
(17 May, 22 June, and 22 July) in 2016 on a granitic outcrop in the 
western island of Pihlajasaari (66°68′449″N, 38°40′48″E), ca. 2 km 
south of Helsinki on the coast of the northern Baltic Sea (Figure 1). 
The studied rock pools were mainly rainfall-fed, yet the pools closest 
to the sea were influenced by the brackish seawater by wind-caused 
waves and salty sprays from the sea. Nutrient enrichment was likely 
mostly of biological origin, caused by decaying organism remains, 
leaf litter, and faunal excretions such as bird droppings (Brendonck 
et al., 2016; Methratta, 2004). None of the pools were shaded by the 
sparse aquatic and terrestrial vegetation allowing light to penetrate 
deep toward the pool base, making solar radiation conditions com-
parable (Hill, 1996).

To minimize the effects of diurnal variation on water physicochem-
istry such as thermal stratification, we sampled the pools roughly at 
the same time of the day each month (Ganning, 1971). We measured 
water pH, conductivity, and temperature in the field with YSI field 
meter, and pool morphometrics (i.e., max depth, length, and width) 
with a meter stick to the nearest centimeter, and calculated pool area 
(length * width). We collected a 0.5 L water sample from each pool in 
a plastic container preserved at 4℃ until the determination of total P 
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(SFS-EN ISO, 2004) and total N (SFS-EN ISO, 1998) concentration in 
a laboratory. The determination of total N was occasionally disturbed 
by high organic matter content, which, like nitrate ions (NO3−) in ni-
trogen compounds, also absorbs radiation on the UV wavelength of 
220 nm measured by the UV/VIS spectrometer. Due to such a high 
disturbance in 21 water samples (15 in June and 6 in July) and two re-
sults with concentrations exceeding the determination limit in May, 
we omitted all total N values from the data.

Due to the small spatial scale and consequent difficulties in 
determining the exact pool coordinates by GPS or from aerial pho-
tographs, we estimated pool X and Y coordinates (based on the 
perpendicular pool distance from the shore and the horizontal pool 
distance from the map origin in the southern end parallel to the 
shoreline, respectively) and mean isolation as a mean Euclidean dis-
tance (i.e., the sum of distances to five closest pools divided by five; 
Vanschoenwinkel et al., 2007) for each pool from a drawn grid map 

F I G U R E  1   (a) Map of the study area. The study area is located on the western Pihlajasaari island c. 2 km off the coast of Helsinki (red 
circle on the index map) on a rocky outcrop on the southwestern part of the island (red oval on the larger map), surrounded by the Gulf 
of Finland, the northern part of the Baltic Sea. (b) Some of the sampled rock pools on the western Pihlajasaari Island on the Baltic Sea 
coast. Pool 5 (left) characterized by shallow (0.15 m), clear water, and visible bottom sediment, and pool 25 (right) located at an immediate 
proximity to the sea with an exceptionally large coverage of macroalgae. Photos: Sonja Aarnio; map: National Land Survey of Finland (2018)
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of the study area showing the relative location of the sampled pools 
to each other and to the seashore (Appendix 1). In our data analyses, 
we used these estimated spatial metrics instead of spatial filters (e.g., 
Moran eigenvector maps) as in our study setting, X and Y had very 
different nature (see above) and hence could not be combined ratio-
nally into spatial filters.

2.2 | Taxonomic data

We sampled benthic diatoms following EN 13946 standard 
(2003) by collecting ten epilithic subsamples (ca. 25  cm2) from 
each pool bottom with a toothbrush and combined these as a 
single composite sample in a plastic test tube in the field. From 
the two steepest-walled pools (pools 10 and 14) with unreach-
able bottom sediment, only the pool walls were sampled deep 
enough to ensure the frustules were permanently submerged. 
Between each sampling, the toothbrush was rinsed in pool water 
to remove any attached cells as this effectively reduces the pos-
sibility of contamination and taxonomic bias between the sam-
ples (Kelly et al., 1998).

The samples were stored at 4℃ for 24 hr until treatment with 
30% H2O2 to remove organic material and mounting on slides with 
Naphrax. A total of 500 valves per slide were counted and identi-
fied to the lowest taxonomic level possible (mostly species level) 
with a light microscope (1000× magnification) following Krammer 
and Lange-Bertalot (1986–1991) and Cantonati et al.  (2017). From 
the four most sparsely celled slides, less than 500 valves could be 
counted. We created two taxonomic site-species matrices based 
on species relative abundances and on binomial (0/1) presence–
absence data, respectively.

2.3 | Functional data

The identified diatom species were classified into 21 partly overlap-
ping functional groups (Figure 2). We first divided the species into 
five size classes after their biovolume (determined by cell length, 
width, thickness, and shape) and 14 life-form categories after in-
terspecific morphological adaptations to physical and chemical 
disturbance (i.e., cell motility, posture, and type of adhesion) fol-
lowing Rimet and Bouchez (2012). A single taxon may have various 

F I G U R E  2   Classification of the diatom taxa after their life form, ecology, metabolism and biovolume into functional guilds after Passy 
(2007), and Rimet and Bouchez (2012). For each guild, example taxa are also given. Note that some of the guilds are partly overlapping, 
and a single taxon may be classified into multiple guilds. Freely moving mobile species were first separated from species attached to their 
substrate; the attached species were further subdivided after the mode of attachment into adnates (attachment by valve face or girdle view) 
or pedunculates (attachment by mucilage stalk or pad). Additionally, small adnate species Achnanthidium minutissimum and Amphora pediculus 
were classified as pioneers (species first to colonize bare substrate). The colonials were classified after the form of colony into mucous tubule 
(freely moving taxa encapsuled in mucous substance), filament (centrics linked by, e.g., spines), zigzag (mucilage pennates), rosette (stalked 
pennates), ribbon (pennates attached by valves), stellate (mucilage pennates forming star-shaped colonies), and arbuscular (taxa forming 
stalked, branching colonies) guilds. Finally, a separation was made between high profile (tall-statured, large filamentous, tube-forming or 
stalked taxa), low profile (short-statured slowly moving taxa), motile (mobile fast-moving taxa), and planktic guilds (mobile floating taxa), and 
between acid tolerants and nitrogen fixers (see Material and methods for descriptions). The five cell size classes are based on biovolume 
calculated after cell length, width, thickness, and shape
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successive life forms and may thus be classified into multiple life-
form categories (Berthon et al., 2011).

We further classified the species after their preferences for nu-
trient concentration and physical disturbance into three ecological 
guilds (high profile, low profile, and motile) after Passy (2007), and 
a fourth guild (planktonic) proposed by Rimet and Bouchez (2012). 
High-profile guild forms the upper benthic layer in nutrient-rich, 
weakly disturbed habitats, whereas low profile guild dominates 
highly disturbed and oligotrophic habitats in the base of the benthos. 
Motile guild consists of nutrient-tolerant taxa with low tolerance of 
physical disturbance—yet as physically capable of selecting a suit-
able habitat, the species are only marginally affected by disturbance 
and resource limitation—while planktic guild includes species mor-
phologically adapted to lentic, less turbulent environments prone to 
sedimentation.

Finally, we separated between acid-tolerant (acidobiontic or ac-
idophilus species with pH optimum <7 in Van Dam et al. (1994) and 
nitrogen-fixing species (members of the genera Denticula, Epithemia, 
and Rhopalodia with cyanobacterial endosymbionts capable of fixing 
atmospheric nitrogen) (Soininen et al., 2016). We created two data 
matrices: one for species-trait data and another for binomial site-
trait data. In the species-trait matrix, each species belonging to a 
given guild (other than continuous biovolume guild on a scale 1–5) 
was given a value of 1; otherwise, the value was set to 0. Each spe-
cies could be characterized by multiple traits and could thus belong 
to more than only one guild.

2.4 | Statistical analyses

Prior to statistical analyses, the distribution of the continuous ex-
planatory variables was examined for outliers with a Cleveland dot 
plot (Cleveland, 1993), and the variables with clearly deviating val-
ues were ln-transformed to reduce their skewness. We calculated 
Spearman's rank correlation coefficients and variation inflation 
factors (VIF; Marquardt, 1970) with a threshold value of 5.0 (Zuur 
et al., 2010) to detect any statistical dependence between the vari-
ables. Hence, Y coordinates and all pool morphometrics other than 
water depth were excluded from the regression models. We ex-
amined temporal and spatial patterns in the data with coplots and 
potential three-way interactions between each response and con-
tinuous covariate by fitting 3  monthly bivariate linear regression 
models in a multipanel coplot.

We quantified species richness (hereafter S), Pielou's evenness 
(J), and Shannon's diversity (H) for the taxonomic relative abun-
dances. We further quantified functional richness (FRic) applying 
the convex hull volume index, functional evenness (FEve) using 
the minimum spanning tree (MST), and functional divergence 
(FDiv) with the center of gravity of the convex hull vertices. All 
indices were calculated using the first two ordination axes of prin-
cipal coordinate analysis (PCoA; Gower, 1966) for the square root 
corrected species–species distance matrix; FEve and FDiv were 

further weighted with the species relative abundances (Villéger 
et al., 2008).

We used generalized linear mixed models, or GLMMs (Zuur 
et al., 2013), to examine the most influential factors explaining vari-
ation in the six diversity indices. Along with the continuous explan-
atory variables, we created two categorical covariates: one for the 
sampling site (ranging from 1 to 30) and one three-level covariate for 
the sampling month (Wood, 2006). Since each site was sampled three 
times, that is, once a month (Appendix 2), we treated sampling month 
as a fixed term and sampling site as a random intercept (Pinheiro & 
Bates, 2000; Zuur et al., 2010). For the explanatory variables with a 
clearly unimodal relationship with the response variables, quadratic 
terms were used; otherwise, we used only first level terms. We also 
included two-way interactions between sampling month and each 
physicochemical covariate to account for temporal variation in the 
X–Y relationship over the 3 months. Prior to the GLMMs, all the con-
tinuous covariates were standardized. We decided to remove all data 
for pool 3 in July from the functional GLMMs due to exceptionally 
low functional diversity, as representing such a clear outlier strongly 
influenced the resulting models for the three functional indices.

We run the full models either with Poisson (for S) or Gaussian 
error distribution (for the rest of the diversity indices). Due to a slight 
overdispersion in the residuals of the reduced Poisson GLMM, we re-
fitted the model with a negative binomial error distribution. The co-
variates were removed from the full GLMMs by a backward stepwise 
method, and the model with the lowest AIC value (Akaike informa-
tion criterion; Akaike, 1973) was considered the best. The statistical 
significance and explanatory power of the covariates in the reduced 
GLMM models were assessed by the likelihood ratio test (LRT) and 
Nakagawa's R2 (Nakagawa & Schielzeth, 2012), respectively.

All models were validated following the protocol proposed by 
Zuur et al. (2013), and Zuur and Ieno (2016). Since the goodness of 
the stepwise selected ‘best’ approximating model is always relative 
to the variables chosen to be included in that model from all possi-
ble, potentially competing subsets of the full model (Whittingham 
et al., 2006), we assessed model independence by plotting the re-
siduals against the fitted values, and the covariates both included 
in, and excluded from each of our models. We checked the signif-
icance of any nonlinear pattern between the model residuals and 
a covariate with a generalized additive model (GAM; Hastie & 
Tibshirani, 1990). We assessed spatial independence of the residuals 
by Moran's I (Moran, 1950) using Bonferroni-corrected p values for 
the correlation coefficients (Legendre & Legendre, 2012).

All statistical analyses were conducted with R (version 3.6.2; R 
Core Team,  2020) by utilizing an R source code provided by Zuur 
et al. (2009) with packages listed in Appendix 3.

3  | RESULTS

The studied pools were generally small (area range 0.1–36.7, mean 
3.8 m2), shallow (depth range 0.05–0.4, mean 0.2 cm), eutrophic (total 
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P range 17.3–1,448.3, mean 214 μg/L), and alkaline (pH range 6.7–
10.0, median 8.6), with high conductivities (range 38–16,741; mean 
4,101 μS cm−1) (Appendix 4; see Aarnio et al., 2019 for more detailed 
description). The pools followed a clear negative gradient in water 
conductivity (rs = −0.5) and pool depth (rs = −0.3) along increasing 
distance to the sea. Water conductivity covaried positively with pH 
(rs = 0.2) and negatively with temperature (rs = −0.3), the latter scal-
ing positively with total P concentration (rs = 0.5). Total P (rs = −0.3), 
pH (rs = −0.6), temperature (rs = −0.4), and pool depth (rs = 0.2) were 
further significantly related to sampling month (Appendix 5).

A total of 179 species (site range 5–52, mean 31) belonging to 
62 genera were recorded. Most of the species were rare and only 
sporadically present in low abundances. The majority of the spe-
cies were mobile (81% of all 179 species) and solitary (80%), while a 
fair half (53%) belonged to the motile guild. Few species (3%) were 
classified as nitrogen fixers, while roughly 11% were acid-tolerant 
(Appendix 6). The most abundant guilds—that is, solitary (90%), mo-
bile (84%), and motile (55%)—were also spatially widespread, while 
the least diverse stellate and rosette colonials (< 1%) were rare and 
highly sporadic by presence. On the contrary, species-poor zigzag 
colonials were consistently present in at least 80% of the pools de-
spite low abundance (monthly mean ≤8%). The size distribution was 
nearly equal, with 66% of the species belonging to size classes 2–4 
(22% in each) and the remaining 34% in classes 5 (18%) and 1 (15%).

The abundances were occasionally relatively evenly distributed 
in both taxonomic (Jrange 0.2–0.8, Jmean 0.6) and functional space 
(FEverange 0.4–0.7, FEvemean 0.6) (Table 1). On average, FDiv was con-
siderably high (range 0.4–1.0, mean 0.9) in our study system. Spatial 
variance in both taxonomic and functional diversity peaked in July; 
the monthly diversity range was always widest for FDiv ja shortest 
for FRic (rangeMay-July 0.03–0.16, mean 0.13). Temporal variation in 
all six diversity indices was distinctly high in pool 3, and in pool 17 
for J and H (rangeMay-July 0.3–3.2, mean 2.1) (Appendix 7). Significant 
positive pairwise correlation was found between all diversity indices 
(rs > 0.4) except for FDiv, which was negatively related to the other 
indices (rs > −0.4), and for FEve, which correlated significantly only 
with J (rs = −0.2) (Figure 3).

According to the best approximating GLMMs, variation in the tax-
onomic diversity indices was always significantly explained by a neg-
ative linear relationship with water conductivity (p < .05), a U-shaped 
relationship with pool distance to the sea (p < .05), sampling month 

(p < .001), and the interaction between water temperature and sam-
pling month (p < .05) (Tables 2 and 3, Figure 4, Appendix 8). Variation 
in the functional diversity indices was always significantly explained 
by the interaction between sampling month and water temperature 
(p < .05), and by water conductivity, the latter either directly (FRic and 
FDiv; p < .01) or by an interaction with sampling month (FEve; p < .05) 
(Figure 5). Both FRic and FDiv were related to pool isolation (p < .05); 
FRic was further explained by pool depth (p < .05) and FDiv by total P 
(p < .05) and pool distance to the sea (p < .001) (Appendix 9).

We did not find significant difference in the explained variance 
for any of our GLMM models when compared to models without 
the random variable for pool site except for FEve (R2

c
 0.47, R2

m
 0.26, 

p  <  .05). For FRic, marginal and conditional R2 were equal; other-
wise inclusion of the random structure slightly increased marginal R2 
(Table 1). Overall, the explained variance was highest for H (R2

c
 0.57, 

R2
m

 0.53) and lowest for FRic (R2
c
 and R2

m
 0.33).

4  | DISCUSSION

We applied three taxonomic (S, H, and J) and three functional (FRic, 
FEve, and FDiv) diversity indices to examine environmental variation 
and consequent differences in diatom diversity among 30 coastal 
rock pools. Contrary to our primary hypothesis, we could not fully 
separate between the taxonomic and functional diversity indices 
in their ability to explain local biodiversity among the microalgal 
communities. All six diversity indices were always explained by 
water conductivity and temperature–sampling month interaction. 
Variation in both taxonomic and functional diversity was further al-
ways associated with pool spatial location except for FEve, largely 
disagreeing with our secondary hypothesis as well. While our mod-
els succeeded in finding the most significant environmental factors 
explaining both taxonomic and functional diversity in our study sys-
tem, the explained variance did not markedly differ between these 
two sets of regression models. Despite a slight emphasis toward the 
importance of the physicochemical variables for the functional di-
versity, our results did not clearly support our hypothesis of an over-
all superiority of the functional diversity metrics over the taxonomic 
ones in explaining local environmental conditions.

A clear majority of the studied pool taxa were motile, freely mov-
ing noncolonials, followed by pedunculate and high-profile guilds. 

Index Min Max Mean Median SD AIC R
2

c
R
2

m

S 5 52 31 32 8.72 632.95 0.45 0.41

H 0.28 3.23 2.06 2.19 0.63 130.05 0.57 0.53

J 0.17 0.84 0.59 0.62 0.15 −119.69 0.51 0.50

FRic 0.03 0.16 0.13 0.14 0.02 −526.45 0.33 0.33

FEve 0.40 0.72 0.60 0.61 0.06 −257.18 0.47 0.26

FDiv 0.40 1.00 0.90 0.94 0.11 −176.30 0.52 0.47

Note: The model selection was based on the Akaike information criterion; the explanatory power 
of the entire model and the fixed effects was assessed by conditional and marginal Nakagawa's R2 
values, respectively.

TA B L E  1   Statistics and performance 
of the generalized linear mixed models for 
the taxonomic and functional diversity 
indices
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F I G U R E  3   Pairwise correlations between the six diversity indices represented by a fitted Lowess smoother and Spearman rank 
correlation coefficients. The statistical significance of correlations is based on the p value: *p < .05, **p < .01, ***p < .001
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TA B L E  2   Results of the generalized linear mixed models for the taxonomic and functional diversity indices

Index Coefficient Estimate SD df LRT Pr(>Chi) Significance

S (Intercept) 3.48738 0.06249

Conductivity −0.08668 0.03332 1 6.2297 0.012562 *

Distance to sea −0.03984 0.03213 1 1.5148 0.218404

Distance to sea2 0.08457 0.02457 1 9.9181 0.001637 **

Temperature:Month 2 6.5813 0.037230 *

Temperature2:Month 2 9.7619 0.007590 **

Month 2 26.504 0.000002 ***

H (Intercept) 2.31718 0.12575

Conductivity −0.20537 0.06443 1 9.5450 0.002005 **

Distance to sea −0.16600 0.06489 1 6.3403 0.011802 *

Distance to sea2 0.20111 0.05060 1 12.9696 0.000317 ***

Temperature:Month 2 5.8021 0.054966

Temperature2:Month 2 11.2059 0.003687 **

Month 2 38.6000 4.15E−09 ***

J (Intercept) 0.66363 0.03124

Conductivity −0.04561 0.01572 1 8.1809 0.004233 **

Distance to sea −0.04123 0.01570 1 6.8154 0.009038 **

Distance to sea2 0.04286 0.01205 1 10.7379 0.001050 **

Temperature:Month 2 3.8752 0.144051

Temperature2:Month 2 8.4818 0.014395 *

Month 2 34.7170 2.89E−08 ***

FRic (Intercept) 0.13862 0.00277

Conductivity −0.00549 0.00142 1 12.1613 0.000488 ***

Depth 0.00269 0.00133 1 4.0081 0.045283 *

Isolation 0.00338 0.00130 1 6.5420 0.010536 *

Temperature:Month 2 6.5949 0.036978 *

Month 2 9.4052 0.009072 **

FEve (Intercept) 0.60695 0.01261

Isolation −0.01385 0.00702 1 3.6320 0.056680

Conductivity:Month 2 8.2812 0.015910 *

Temperature:Month 2 0.1593 0.923460

Temperature2:Month 2 6.0408 0.048780 *

Month 2 7.7345 0.020920 *

FDiv (Intercept) 0.96155 0.02413

Total P 0.02779 0.01258 1 4.8147 0.028218 *

Conductivity −0.04622 0.01311 1 11.9792 0.000538 ***

Conductivity2 −0.03511 0.01256 1 7.4806 0.006237 **

Distance to sea −0.05220 0.01297 1 15.2788 0.000093 ***

Distance to sea2 −0.01891 0.01001 1 3.3759 0.066156

Isolation −0.03961 0.01067 1 12.5414 0.000398 ***

Temperature:Month 2 6.6338 0.036265 *

Month 2 1.5475 0.461275

Note: That estimates and their standard errors are only shown for continuous covariates without interactions. The statistical significance of the 
covariates is based on the likelihood ratio test and indicated by the p value: *p < .05, **p < .01, ***p < .001.
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This is not unusual given the known dominance of especially motile 
and high-profile guilds in disturbed, eutrophic, well-lit epilithic hab-
itats (Passy, 2007; Reynolds et al., 2002). Promoted by short-term 
alterations in local microclimate, frequent physicochemical distur-
bance characteristic of small coastal waterbodies exposes the biota 
to highly variable environmental conditions, increasing local diversity 

by setting demands for highly specialized biota (Ganning,  1971; 
Metaxas & Scheibling, 1993; Virtanen & Soininen, 2012).

4.1 | Taxonomic diversity

Diatom diversity is heavily influenced by spatiotemporal variation in 
local environment, reflected also in the studied communities (Aarnio 
et al., 2019; Stomp et al., 2011; Verleyen et al., 2009). Variation in 
taxonomic diversity was consistently significantly explained by water 
conductivity, sampling month, pool distance to the sea, and an inter-
action between sampling month and water temperature, regardless 
of the taxonomic index. The declining diversity along the conduc-
tivity gradient, and the U-shaped relationship with pool distance to 
the sea is most likely explained by the interplay between these two 
variables. Water conductivity is an important factor regulating pool 
biota especially in coastal areas under significant seawater influ-
ence, and even minor changes along the conductivity gradient may 
have major impact on local biodiversity (Vanormelingen et al., 2008). 
The pools closest to the sea were largely directly contacted with 
seawater throughout the summer and characterized by relatively 
cool, alkaline, less nutritious, and highly conductive water typi-
cally associated with lower species diversity. Through mass effect, 
continuous introduction of effectively dispersing species into less 

TA B L E  3   Summary of statistical significance of the explanatory 
variables for each of the six diversity indices

S J H FRic FEve FDiv

Total P – – – – – *

pH – – – – – –

Conductivity * ** ** *** *a  ***

Temperaturea  ** * ** * * *

Depth – – – * – –

Distance to sea ** ** *** – – ***

Isolation – – – * ns ***

Month *** *** *** ** * ns

Note: For each explanatory variable, the highest significance level is 
shown irrespective of the term order. The statistical significance is 
based on the likelihood ratio test of the generalized linear mixed models 
and indicated by the p value: ns nonsignificant, *p < .05, **p < .01, 
***p < .001, – variable not included in the reduced model.
aInteraction with sampling month.

F I G U R E  4   Fit of the generalized 
linear mixed models for species richness. 
Shown is the model fit for statistically 
significant covariates explaining variation 
in the response variable, including a 
fitted Lowess smoothing curve with 95-% 
confidence intervals (the gray area). The 
hollow circles represent the observed 
relationship between the response 
variable and the covariates. Note that the 
conductivity values are ln-transformed. 
For the rest of the taxonomic indices, see 
Appendix 8
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F I G U R E  5   Fit of the generalized linear mixed models for the functional diversity indices. Shown is the model fit for (a) month–
temperature interaction and (b) water conductivity explaining variation in the response variable, including a fitted Lowess smoothing curve 
with 95% confidence intervals (the gray area). The hollow circles represent the observed relationship between the response variable and the 
covariates. Note that the conductivity values are ln-transformed. For the rest of the functional indices, see Appendix 9
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environmentally suitable pools may nevertheless enable temporary 
species occurrence outside their preferred distribution range (Logue 
et al., 2011), allowing the maintenance of diverse communities under 
elevated salinities. In turn, eutrophic, warm-watered, less conduc-
tive, and more acidic pools often maintain greater diversity, adding 
to species diversity of the more inland pools (Aarnio et  al.,  2019; 
Soininen et al., 2016; Stenger-Kovács et al., 2019).

Pool distance to the coastline affected each component of tax-
onomic diversity, supporting our view of the suitability of the tax-
onomic indices in capturing spatial control over the communities. 
The steady decline in taxonomic diversity toward the end of the 
summer, and the observed monthly variation in the temperature–
diversity relationship likely resulted from higher resource similarity 
due to decreasing variation and strengthening of environmental con-
trol, previously observed in a concurrent study within the same pool 
metacommunity (Aarnio et al., 2019).

4.2 | Functional diversity

Functional diversity was linked to varying physicochemical variables 
in our pool communities. Nutrient enrichment increased FDiv, while 
FRic declined in shallower pools. FRic, FEve, and FDiv were further 
reduced in elevated conductivities, yet in July, FEve increased along 
the conductivity gradient. The previously discovered strengthened 
environmental control during the summer (Aarnio et al., 2019) prob-
ably explains the significant negative temporal trend in FRic, as in-
tensified resource differentiation further diminishes the occupied 
trait space. Rather similarly, significant temporal variation in water 
temperature might well explain the decrease in FRic and increase in 
FDiv in warmer pools in May–June and the opposite trend for these 
indices in July, as well as the temporary change from negative to 
positive unimodal relationship with FEve in June.

While allowing maintenance of several ecological niches through 
resource differentiation, stressful environmental conditions re-
strict survival of the most salt-intolerant and oligotrophic species 
especially in shallow coastal pools such as studied here (Aarnio 
et al., 2019; Lewandowska et al., 2016; Mazzei et al., 2018). Less lim-
ited by resource competition, the specialized, functionally dissimilar 
biota are typically clustered in uneven densities toward the edges 
of more sparsely occupied functional space unfavorable to most of 
the species (Teittinen et  al.,  2018). The reduced redundancy and 
strengthened complementarity would then enhance resource-use 
efficiency, eventually promoting ecosystem functioning (Cadotte 
et al., 2011; Schmera et al., 2016).

Occasionally, FEve has been reported to relate rather poorly with 
local environment (Liess et al., 2009; Stenger-Kovács et al., 2019). 
Assuming that functionally similar species were indeed clustered 
in space and utilizing the resources without niche overlap as the 
high observed FDiv would imply, the unbalanced resource use 
should have been reflected in greater irregularity of species abun-
dance distribution in sparsely occupied functional space (Schleuter 
et  al.,  2010). However, the environmentally heterogeneous pools 

may have buffered against complete under- or overutilization of re-
sources in the occupied niche space, which would be expected under 
distinctly lowered levels of FRic and FEve (Mason et al., 2005).

Variation in FRic and FDiv was associated with pool spatial loca-
tion, partly contrasting with our second hypothesis. The degree of 
pool isolation increased FRic and reduced FDiv. Isolated rock pools 
are typically less prone to wind-mediated invasions by passively dis-
persing species than pools with permanent watercourse connections 
(Vanschoenwinkel, Gielen, Seaman, et al., 2008, Vanschoenwinkel, 
Gielen, Vandewaerde, et al., 2008). Scarcer supply of environmen-
tally highly specialized species might decrease local functional di-
versity through stronger resource competition between functionally 
similar species unable to utilize all potentially available resources in 
the pool environment. As very low degree of isolation enables more 
frequent dispersal and thus enhanced interchange of species and 
functional traits, the intensifying competition may result in unbal-
anced over- or underpopulation of the available functional space, ir-
respective of partial redundancy between species. We also note that 
the spatial variation in functional diversity may reflect the influence 
of some unmeasured environmental factors or species interactions 
such as grazing or competition not quantified here.

Functional divergence further peaked in pools closest to the 
sea. The majority of the studied pool biota consisted of freshwa-
ter species with adaptations to low conductivities, with a growing 
share of more salinity-tolerant brackish and marine species along the 
conductivity gradient (Aarnio et al., 2019). At the opposite ends of 
the conductivity gradient perpendicular to the seashore, the relative 
extremity in salinity conditions likely suits fewer functional groups 
in uneven abundances, leaving parts of the functional space unuti-
lized. Conversely, farther away from the coastline wider selection 
of niches support relatively more species with various salinity tol-
erances, balancing the density distribution of functionally different 
species.

4.3 | Taxonomic versus functional diversity

Multiple studies have recently demonstrated the greater capacity of 
functional diversity indices in capturing local environmental variabil-
ity compared with taxonomic diversity metrics (Aarnio et al., 2019; 
Colin et al., 2018; Leruste et al., 2018; Stenger-Kovács et al., 2019). 
Apart from FEve, the taxonomic and functional metrics applied here 
were highly collinear, yet different factors were responsible for their 
variation. In highly disturbed habitats, environmental filtering usu-
ally limits trait diversity due to functional redundancy, weakening 
the performance of functional diversity metrics (Mazzei et al., 2018). 
In our study system, however, this seems unlikely—rather, the mod-
erately low FEve refers to functionally divergent communities with 
ecologically specialized biota dominated by few functional guilds 
(Cadotte et al., 2011). Possibly, the frequent yet temporary exposure 
to seawater intrusions may have limited permanent establishment 
of marine species and hence functional evenness and redundancy in 
these communities (Mazzei et al., 2018; Mouchet et al., 2010).
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Despite the high taxonomic diversity previously discovered for 
the studied pool communities (Aarnio et al., 2019), our models may 
also have suffered from insufficiently low trait diversity. The strong 
dependency of FRic on species richness and abundance also makes 
it highly sensitive to outliers, limiting its applicability on communi-
ties with more than 30 species (Laliberté & Legendre, 2010; Mason 
et  al.,  2005; Mouchet et  al.,  2010). Likewise, due to the multitude 
of traits occasionally exceeding local pool species richness, varia-
tion in distribution of ecologically different taxa characterized by 
various functional strategies may have been lower than required 
for sufficiently filling the functional space. For example, many life 
forms are similar in their adaptations to high nutrient levels (Berthon 
et al., 2011). Alternatively, partly correlated functional guilds (such as 
colonials and high profile) may have led to underestimated functional 
diversity in our study system (Mason et al., 2005; Villéger et al., 2008).

Functional richness and evenness were overall moderate and 
negatively linked to functional divergence. FRic is naturally positively 
correlated with local species richness, yet the causality in this re-
lationship is primarily unidirectional due to functional trait variabil-
ity (Heino, 2008; Mouchet et al., 2010). Within two taxonomically 
equally diverse communities, functional diversity may be highly un-
balanced, adding to the vulnerability of the functionally less diverse 
community (Schleuter et  al.,  2010; Violle et  al.,  2014). Thus, even 
rapid or sudden fluctuations in taxonomic diversity rarely affect 
functional diversity in redundant communities, whereas instability 
in functional diversity will inevitably be reflected in taxonomic diver-
sity (Cadotte et al., 2011; Schmera et al., 2016).

5  | CONCLUSIONS

The exact definition and tools for quantification of functional diversity 
have been open to discussion ever since the functional approaches 
begin to gain foothold in ecology (Mouchet et  al.,  2010). Several 
promising results of the usefulness of the functional diversity metrics 
have increased the interest toward trait-based methods in quantifying 
local biodiversity (Green et al., 2008). While a consensus of the best 
performing diversity index combination is yet to be reached, those ac-
counting for interspecific variation in ecological adaptations are highly 
recommended (Schleuter et al., 2010; Villéger et al., 2008).

All diversity metrics except FEve were highly collinear; FEve was 
merely significantly linked to J. Each of our regression models—
whether taxonomic or functional—performed successfully yet rather 
similarly when explained by the covariates. All six diversity indices 
were always explained by water conductivity and temperature–
sampling month interaction. Taxonomic diversity was further always 
explained by pool distance from the sea regardless of the index, 
supporting our hypothesis of their stronger relatedness with spa-
tial processes. Contrary to our expectations, functional diversity 
indices were related not only to water physicochemistry but spa-
tial factors such as pool isolation as well. In light of our findings, we 
cannot completely support the generally acknowledged superiority 
of functional indices over the taxonomic ones in explaining coastal 
microalgal diversity in a changing environment.

Taken together, the combination of taxonomic and functional 
indices applied here seems to meet best the criteria for adequately 
quantifying local diversity. As functional indices inevitably ignore 
the influence of some interspecific environmental adaptations bet-
ter captured at the level of individual species, their robustness and 
ability to reveal complex environmental interactions in communities 
of unbalanced abundance distribution (Berthon et al., 2011; Cadotte 
et al., 2011) were successful. However, FEve showed partly unique 
responses to spatiotemporal differences in environmental variation 
compared with the other diversity indices, and there was a partial in-
ability of the functional indices to reflect declines in taxonomic rich-
ness due to redundancy (Mouchet et al., 2010; Schmera et al., 2016).

Despite their small size, biologically complex and diverse rock 
pools are commonly considered as representatively reflecting 
community dynamics encountered in larger aquatic systems (De 
Meester et al., 2005; Srivastava et al., 2004), yet the extent of this 
reminiscence remains understudied. We therefore conclude that as 
individual metrics may be driven by different factors, the greatest 
advantage in assessing local diversity in small-scale aquatic commu-
nities is probably achieved with a simultaneous application of both 
taxonomic and functional diversity indices.
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APPENDIX 1

Schematic map showing all sampled rock pools numbered 1–30, and their relative location to each other and to the coastline. The dashed 
border extending upwards from pool 22 represents an increase in pool area from June onwards. The seashore is located vertically to the left 
of the pools, marked as a blue solid line.
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APPENDIX 2

Sampling design. Each of the 30 pools was sampled thrice, that is, once a month, resulting in 3 × 30 samples in total. In the generalized linear 
mixed models, sampling month was treated as a fixed term and sampling site as a random intercept.

APPENDIX 3
Packages utilized in the statistical analyses conducted with R software. For full references, see References in the main text.

Package Reference

dplyr Wickham et al. (2021)

FD Laliberté et al. (2014)

ggplot2 Wickham (2016)

GLMMadaptive Rizopoulos (2021)

glmmTMB Brooks et al. (2017)

Hmisc Harrell (2020)

lattice Sarkar (2008)

MASS Venables and Ripley (2002)

mgcv Wood (2011)

performance Lüdecke et al. (2020)

pgirmess Giraudoux et al. (2018)

plyr Wickham (2011)

vegan Oksanen et al. (2019)

APPENDIX 4
Statistics for the explanatory variables. Pool area is calculated by multiplying pool length by pool width; Y coordinates and pool distance from 
the sea (or X coordinates) are estimated measures from a grid map drawn of the study area. Pool isolation is the average distance from a pool 
to five geographically closest pools. Note that pool area and Y coordinates were excluded from the statistical analyses.

Variable Min Max Mean Median SD

Total P (μg/L) 17.30 1,448.30 214.00 125.30 255.70

pH 6.7 10.0 – 8.6 0.8

Conductivity (μS/cm) 38 16,741 4,101 1,644 4,384

Temperature (°C) 14.8 26.2 19.7 19.7 1.9

Depth (m) 0.05 0.40 0.20 0.20 0.08

Area (m2)a  0.09 36.72 3.81 0.94 7.90

Distance to sea (m)b  1.6 11.4 6.6 6.9 2.70

Isolation (m) 2.7 18.9 7.7 7.1 4.2

Y coordinate (m)a  1.4 106.2 50.5 49.6 28.0
aVariable not included in the statistical analyses. b That is, X coordinates.
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APPENDIX 6
Spatial and temporal variation of relative occupancy, abundance, and taxa diversity in diatom life form, ecology, and metabolism. For the 
relative abundance and diversity, monthly means and their range per site (i.e., 30 pools) are shown; the overall occupancy, abundance, and 
diversity refer to the whole study period (i.e., 90 pools in May–July). Note that the solitary guild was not included in the statistical analyses 
due to collinearity with the colonial guild.

Guild

Occupancy (%) Abundance (%) Taxa diversity (%)

Overall May June July Overall

Per site 
(range) 
May

Per site 
(range) 
June

Per site 
(range) 
July Overall

Per site 
(range) 
May

Per site 
(range) 
June

Per site 
(range) 
July

Mobile 100 100 100 100 84 87 
(50–98)

83 
(17–99)

81 
(0–99)

83 80 
(71–89)

79 
(68–88)

76 
(20–88)

Pedunculate 100 100 100 100 33 32 
(3–93)

34 
(2–88)

34 (0.6–
98)

26 26 
(16–43)

26 
(14–42)

31 
(13–53)

Stalk-attached 100 100 100 100 25 23 
(1–91)

23 (0.2–
83)

28 (0.2–
95)

17 17 
(8–30)

17 
(6–29)

19 
(5–40)

Colonial 100 100 100 100 10 12 
(1–58)

11 (0.9–
42)

6 (0.2–
36)

20 15 
(8–28)

15 
(8–27)

16 
(4–30)

Solitary 100 100 100 100 90 88 
(42–99)

89 
(58–99)

94 (64–
100)

80 85 
(72–92)

85 
(73–92)

84 
(70–96)

Adnate 100 100 100 100 4 6 (0.2–
25)

3 (0.2–
17)

4 (0.2–
16)

9 14 
(5–23)

14 
(7–22)

16 
(6–38)

Low 100 100 100 100 22 23 
(2–78)

21 (0.6–
69)

24 (0.8–
83)

16 21 
(14–32)

20 
(12–31)

24 
(13–44)

Motile 99 100 100 97 55 56 
(7–94)

57 
(9–95)

51 
(0–97)

53 52 (38–
60)

50 
(29–63)

46 
(0–66)

High 99 100 100 97 18 20 
(2–78)

19 (0.8–
86)

14 
(0–91)

26 20 
(12–36)

22 
(13–46)

23 
(0–53)

Pad-attached 99 100 100 97 9 9 (1–26) 12 (0.6–
46)

6 (0–40) 10 10 
(4–17)

11 
(5–17)

13 
(0–23)

Arbuscular 93 97 87 97 2 2 (0–6) 1 (0–4) 2 (0–19) 2 5 (0–9) 5 (0–15) 6 (0–20)

Nitrogen-fixer 93 97 87 97 2 1 (0–5) 1 (0–3) 2 (0–17) 3 3 (0–5) 3 (0–7) 5 (0–20)

Planktonic 89 97 93 77 5 1 (0–13) 4 (0–78) 11 
(0–99)

6 6 (0–11) 8 (0–21) 7 (0–60)

Pioneer 88 97 90 77 10 12 
(0–66)

9 (0–43) 9 (0–55) 2 4 (0–9) 3 (0–6) 3 (0–9)

Acid-tolerant 76 80 77 70 2 3 (0–21) 2 (0–10) 1 (0–9) 11 6 (0–12) 6 (0–17) 5 (0–15)

Mucuous tubule 72 87 87 43 1 3 (0–14) 1 (0–16) < 1 3 3 (0–7) 3 (0–8) 2 (0–7)

Zigzag 93 100 100 80 6 6 (0.3–
41)

8 (0.4–
41)

3 (0–22) 1 3 (0–5) 3 (0–6) 2 (0–7)

Ribbon 58 57 57 60 <1 <1 <1 1 (0–5) 10 2 (0–10) 3 (0–14) 4 (0–17)

Stellate 20 13 23 23 <1 <1 <1 <1 1 <1 1 (0–3) 1 (0–4)

Filament 10 13 10 7 <1 <1 <1 <1 2 <1 <1 <1

Rosette 6 13 0 3 <1 <1 0 <1 1 <1 0 <1
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APPENDIX 7

Temporal (a) and spatial (b) variation in taxonomic (left panel) and functional (right panel) diversity between the 3 months and 30 study sites, 
respectively. Shown are monthly median (the horizontal black line), lower and upper quartiles (the box vertical limits) and lower and upper 
95-percentiles (the whiskers). The black dots represent the observed values; outliers are falling 1.5-fold outside the quartiles.
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APPENDIX 8

Fit of the generalized linear mixed model for Shannon's diversity and Pielou's evenness. Shown is the observed (hollow circles) and predicted 
relationship (fitted Lowess smoothing curves with 95% confidence intervals) for each statistically significant (a) covariate and (b) month–
covariate interaction explaining variation in the response variable. Note that the conductivity values are ln-transformed.
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APPENDIX 9

Fit of the generalized linear mixed models for (a) functional richness and (b) functional divergence. Shown is the observed (hollow circles) 
and predicted relationship (fitted Lowess smoothing curves with 95% confidence intervals) for statistically significant covariates explaining 
variation in the response variable. Note that some of the covariate values are ln-transformed.


