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Abstract: Osteoarthritis is a degenerative arthropathy that is mainly characterized by dysregulation
of inflammatory responses. KMUP-1, a derived chemical synthetic of xanthine, has been shown
to have anti-inflammatory and antioxidant properties. Here, we aimed to investigate the in vitro
anti-inflammatory and in vivo anti-osteoarthritis effects of KMUP-1. Protein and gene expressions of
inflammation markers were determined by ELISA, Western blotting and microarray, respectively.
RAW264.7 mouse macrophages were cultured and pretreated with KMUP-1 (1, 5, 10 µM). The
productions of TNF-α, IL-6, MMP-2 and MMP- 9 were reduced by KMUP-1 pretreatment in LPS-
induced inflammation of RAW264.7 cells. The expressions of iNOS, TNF-α, COX-2, MMP-2 and
MMP-9 were also inhibited by KMUP-1 pretreatment. The gene expression levels of TNF and COX
families were also downregulated. In addition, KMUP-1 suppressed the activations of ERK, JNK and
p38 as well as phosphorylation of IκBα/NF-κB signaling pathways. Furthermore, SIRT1 inhibitor
attenuated the inhibitory effect of KMUP-1 in LPS-induced NF-κB activation. In vivo study showed
that KMUP-1 reduced mechanical hyperalgesia in monoiodoacetic acid (MIA)-induced rats OA.
Additionally, KMUP-1 pretreatment reduced the serum levels of TNF-α and IL-6 in MIA-injected rats.
Moreover, macroscopic and histological observation showed that KMUP-1 reduced articular cartilage
erosion in rats. Our results demonstrated that KMUP-1 inhibited the inflammatory responses and
restored SIRT1 in vitro, alleviated joint-related pain and cartilage destruction in vivo. Taken together,
KMUP-1 has the potential to improve MIA-induced articular cartilage degradation by inhibiting
the levels and expression of inflammatory mediators suggesting that KMUP-1 might be a potential
therapeutic agent for OA.

Keywords: xanthine-derived KMUP-1; anti-inflammation; NF-κB; SIRT1; osteoarthritis

1. Introduction

Osteoarthritis (OA) has long been defined as a degenerative disease characterized by
continuously articular cartilage damage, formation of osteophyte, and subchondral bones
alteration, resulting in devastating chronic pain in affected individuals [1]. Inflammatory

Biomedicines 2021, 9, 615. https://doi.org/10.3390/biomedicines9060615 https://www.mdpi.com/journal/biomedicines

https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com
https://orcid.org/0000-0003-0805-8154
https://orcid.org/0000-0001-5192-122X
https://orcid.org/0000-0001-6593-5120
https://orcid.org/0000-0001-7101-5865
https://www.mdpi.com/article/10.3390/biomedicines9060615?type=check_update&version=1
https://doi.org/10.3390/biomedicines9060615
https://doi.org/10.3390/biomedicines9060615
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/biomedicines9060615
https://www.mdpi.com/journal/biomedicines


Biomedicines 2021, 9, 615 2 of 17

cytokines have a primarily destructive impact on articular cartilage. It is a multilevel
im-pact that involves not only the induction of aging and apoptosis of chondrocytes, but
also a decrease in the synthesis of the key components of extracellular matrix, such as
proteo-glycans, and type II collagen [2]. Tumor necrosis factor-α (TNF-α) and interleukin-
1β (IL-1β) are predominant inflammatory cytokines that are believed to be involved in the
progression of OA [3]. Furthermore, inflammation in the articular tissue is directly related
with cartilage degradation that increases mediators and molecules including inducible
nitric oxide synthase (iNOS), IL-8, and IL-6. Initiation of the NF-κB signaling increases the
production of nitric oxide (NO), cyclooxygenase-2 (COX-2) and matrix metalloproteinases
(MMPs), which account for the articular cartilage breakdown [4–6]. There are several
factors such as aging, genetic, and mechanical-associated factors that are involved in the
pathogenesis of OA. Eventually, these factors lead to synovitis, apoptosis, and cartilage
destruction [4].

The greatest risk factor for OA is advanced age and it is undoubtful whether cell
senescence and aging contribute in the joint tissues’ alterations during the development
of OA. The silent information regulator 2 type 1 (also known as sirtuin 1 (SIRT1) is a
member of sirtuin family proteins, a popular group of antiaging genes [7]. A variety of
age-related diseases such as cancer, type 2 diabetes, cardiovascular disease, Alzheimer’s
disease, arthritis, osteoporosis, as well as OA are associated with SIRT1 [8]. Hence, there has
been a significant increase in new investigations that aim to elucidate the mechanisms of
sirtuin function and their roles in cartilage biology, skeletal development, and pathologies
such as OA, rheumatoid arthritis (RA), and intervertebral disc degeneration (IVD) [9].
In cartilage homeostasis, the expression of SIRT 1 protein is important which prevents
cell death and promotes cell survival through an enzymatically independent mechanism.
Cartilage destruction in OA is thought to be mediated by two main enzyme families: the
MMP and ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs)
enzymes are responsible for cartilage collagen breakdown [2]. It is confirmed that SIRT1
reveals anticatabolic and anti-inflammatory effects in OA. A plethora of recent studies have
confirmed that SIRT1 indeed inhibited the NF-κB signaling, and the activation of SIRT1
could alleviate a multitude of NF-κB-driven inflammatory and metabolic disorders [10,11].
This implies that SIRT1 activators could exert significant benefits in the treatment of OA [9].
For that reason, finding drugs that prevent proinflammatory cytokines would be beneficial
to suppress inflammation, which may assuredly contribute for OA therapeutic strategies.

KMUP-1, a chemical synthetic xanthine-based derivative (Figure 1a) has been shown
to possess multifunctional properties, including anti-inflammatory, cardioprotective, and
neuroprotective roles [12–14]. Our recent study has shown that KMUP-1 suppresses
RANKL-induced osteoclastogenesis and ovariectomy-induced bone loss [15]. Additionally,
KMUP-1 stimulates osteoblast differentiation [16]. In this study, we investigated the in vitro
anti-inflammatory and in vivo anti-osteoarthritis effects of KMUP-1.

2. Materials and Methods
2.1. Materials and Reagents

KMUP-1 hydrochloride (KMUP-1) was synthesized in our laboratory [9]. KMUP-1 was
dissolved in distilled water for experiments. Thiazolyl Blue Tetrazolium Bromide (MTT)
powder from Sigma-Aldrich Inc. (St. Louis, MO, USA). Enzyme-linked immunosorbent
assay (ELISA) kits were purchased from R&D Systems (Minneapolis, MN, USA). The ELISA
kit consisted of mouse TNF-α (DY410), mouse IL-6 (DY406), mouse MMP-2 (MMP200),
mouse MMP-9 (DY6718), rat TNF-α (DY510), and rat IL-6 (DY506). SIRT1 inhibitor (Ex-527)
was purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA). The secondary
antibodies were from Merck Millipore. Other reagents were purchased from Sigma-Aldrich.
The GIBCO BRL Life Technologies (Grand Island, NY, USA) provided Dulbecco’s modified
Eagle’s medium (DMEM), fetal bovine serum (FBS), streptomycin, penicillin, and all other
tissue culture reagents.
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2.2. Cell Culture and Lipopolysaccharide-Induced Inflammation

The RAW264.7 mouse cell line was obtained from the Bioresource Collection and
Research Center in Taiwan. Cells were maintained in DMEM medium supplemented with
10% FBS, 2 mM glutamine, 100 U/mL penicillin at 37 ◦C and in a humidified 5% CO2.
After KMUP-1 pretreatment, the cells were incubated with 1 µg/mL lipopolysaccharides
(LPS) for 24 h to stimulate inflammation.

2.3. Cell Viability Assay

RAW264.7 cells were cultured in 24-well plates followed by 1 h KMUP-1 pretreatment
at various concentrations and then LPS incubation for 24 h. MTT solution (0.5 mg/mL)
was added and incubated for 4 h at 37 ◦C. After MTT solution was removed, isopropanol
was then added and the cells were shaken for 10 min. The MTT formazan crystals were
quantified by determining the absorbance at 540 and 630 nm, using an enzyme-linked
immunosorbent assay (ELISA) reader (DYNEX Technologies, Denkendorf, Germany).

2.4. Measurement of Nitrite Oxide

To determine nitrite oxide (NO) generation, we measured the accumulation of nitrite,
an NO metabolite. This indirect indicator of NO production was assayed in the cell culture
medium using Griess reagent (1% sulfanilamide and 0.1% N-(1-naphthyl) ethylenediamide
in 5% phosphoric acid). The cells culture media were collected and incubated with an equal
volume of Griess reagent for 10 min at room temperature. The absorbance was measured
at 540 nm with ELISA reader (DYNEX Technologies, Denkendorf, Germany).

2.5. Measurement of TNF-α, IL-6, MMP-2, and MMP-9

The RAW 264.7 cells were pretreated with KMUP-1 for 1 h and then were induced
inflammation with LPS. To measure TNF-α, IL-6, MMP-2, and MMP-9, the cells culture
media were collected. The cytokines production of TNF-α, IL-6, MMP-2, and MMP-9
were measured using ELISA kit according to the manufacturer’s protocol (R&D Systems,
Minneapolis, MN, USA).

2.6. Western Blot Analysis

The cells were treated with indicated concentrations of KMUP-1 and LPS-stimulated
inflammation. The reactions were terminated by washing with PBS and then cells were
harvested. Total cell extracts were prepared in lysis buffer 20 mM Tris–HCl (pH 7.5), 1 mM
dithiothreitol (DTT), 5 mM EGTA, 2 mM EDTA, 0.5 mM PMSF, 20 µM leupeptin, and 20 µM
aprotinin. The cell lysate was centrifuged at 12,000× g for 20 min, and the supernatant frac-
tion was collected for Western blot. Cell extracts (30 µg/mL of protein homogenate) were
diluted in 5× Sample buffer (Biomate, Tapei, Taiwan). An equivalent amount of protein was
resolved by SDS-polyacrylamide gel electrophoresis (PAGE) (10–12%) and transferred to
polyvinylidene difluoride (PVDF) membranes. The membranes were blocked with a block-
ing buffer (5% non-fat dry milk in Tris-buffered saline) for 1 h. Subsequently, all of it was
covered up with related primary antibodies overnight, respectively. The primary antibodies
we used in the study were rabbit polyclonal anti-iNOS (ab15323, abcam; 1;1000), rabbit
polyclonal anti-TNF alpha (ab6671, abcam; 1;1000), rabbit polyclonal anti-COX2 (ab15191,
abcam; 1;1000), mouse monoclonal anti-MMP-2 (MA5-13590, Thermo; 1;1000), mouse
monoclonal anti-MMP-9 (MA5-14228, Thermo; 1;1000), mouse monoclonal anti-beta Actin
(GT629630, GeneTex; 1;1000), rabbit polyclonal anti-phospho ERK1/2 (Thr202/Tyr204,
#9101, Cell signaling; 1;1000), rabbit polyclonal anti-ERK1/2 (#9102, Cell signaling; 1;1000),
rabbit monoclonal anti-phospho JNK (Thr183/Tyr185, #4671, Cell signaling; 1;1000), rabbit
polyclonal anti-JNK (#9252, Cell signaling; 1;1000), rabbit polyclonal anti-phospho p38
(Thr180/Tyr182, #4511, Cell signaling; 1;1000), rabbit polyclonal anti-p38 (#9212, Cell sig-
naling; 1;1000), mouse monoclonal anti-phospho-IκBα (Ser32/36, #9246, Cell signaling;
1;1000), rabbit monoclonal anti-IκBα (44D4, #4812, Cell signaling; 1;1000), rabbit polyclonal
anti-NF-κB p65 (GT107678, GeneTex; 1;1000), rabbit monoclonal anti-phospho-NF-κB p65



Biomedicines 2021, 9, 615 4 of 17

(Ser536, #3033, Cell signaling; 1;1000), mouse monoclonal anti-SIRT1 (ab110304, abcam;
1;1000). Afterward, it was overlaid in appropriate horseradish peroxidase-linked secondary
antibody (1;1000) for 1 h, and the expression level of proteins were detected with enhanced
chemiluminescence reagents (Merck Millipore, Burlington, MA, USA).

2.7. Microarray

Genome-wide expression analysis was conducted using RNA isolated from RAW
264.7 mouse cells (Mouse OneArray Plus, Phalanxbiotech, Taiwan). The two groups were
LPS alone (1 µg/mL), KMUP-1 (10 µM) and LPS (1 µg/mL). The gene levels that were
significantly modulated by LPS and KMUP-1 were identified.

2.8. Intracellular Reactive Oxygen Species (ROS) Measurement

Identification of intracellular ROS was detected by fluorescent stain, a 2′,7′-dichlorodihy-
drofluorescein diacetate/DCFH-DA (Molecular Probes, Eugene, OR, USA). The cells were
seeded in the 96-well plate followed by various concentrations of KMUP-1 pretreatement
for 1 h and incubation with LPS for 4 h. Afterward, each well was stained with DCFH-DA
(1 µM) for 1 h at 37 ◦C and immediately washed with PBS. Fluorescence images were
captured with a fluorescence microscope (Nikon, TE2000-S, Tokyo, Japan) with 485 nm
excitation and 525 nm emission wavelengths.

2.9. Animals

Eighteen 6-week-old male Wistar rats, weighing 180–200 g, were purchased from Bio-
LASCO Taiwan Co., Ltd., Taiwan. Rats were randomly divided into three groups, each one
containing 6 rats. The rats were housed at 22 ± 2 ◦C with a relative humidity of 55 ± 10%
in a 12-h light–dark cycle with food and sterile tap water available ad libitum. The Animal
Care and Use Committee at Kaohsiung Medical University animal center authorized all
procedures and protocols (Kaohsiung, Taiwan, IACUC Approval No. 108027).

2.10. OA Induction in Rats

Prior to experiment, the rats underwent 1 week acclimatization. To stimulate OA,
monosodium iodoacetate (MIA) solution was injected into the intra-articular space of
left knee under inhalation of 2% isoflurane anesthesia. The three groups of rats were
control group receiving intra-articular saline injection, MIA group receiving intra-articular
injection of 4 mg MIA in 25 µL saline, and KMUP-1 + MIA group with oral treatment of
5 mg/kg BW KMUP-1 and MIA injection. KMUP-1 was administered once a day for 7 days
in rats after MIA injection. The concentration of KMUP-1 was obtained from our previous
study [15]. After the treatment with KMUP-1, no evidence of systemic adverse effects was
observed in any study group.

2.11. Hindpaw Mechanical Hyperalgesia in Rats

Rats were placed in a wire mesh cage and habituated for 10 min to the environment.
An automated dynamic plantar aesthesiometer (Ugo Basile, Varese, Italy) was used to
measure the paw withdrawal latency, which was recorded as the time (s) causing a rapid
withdrawal of the rat’s left hind leg. Each measurement was repeated three times at
intervals of 5 min, and the force evoking reliable withdrawals was 5 g. The medial portion
of the left hind paw was placed in the probe of the analgesiometer, and linearly increasing
forces were applied to the paw. In the study, hindpaw mechanical hyperalgesia was tested
at day 7th, the similar day when the last MIA injection was stimulated into the rats.

2.12. Macroscopic and Histopathologic Observations of Cartilage

After the rats were sacrificed at day 14th, the tibia, femur and patella bones were
separated and dissected free of muscle. The surface of the femoral groove and femoral
condyles were photographed by camera for gross examination. The extracted knee from
each group was fixed in 10% formalin. Then the samples were dehydrated in 10% EDTA



Biomedicines 2021, 9, 615 5 of 17

for 14 days and embedded in paraffin. The 4 µm paraffin sections were stained with
Hematoxylin and Eosin stain (H&E) and toluidine blue. The morphological features of
the synovium were assessed in H&E-stained slices according to the criteria as previously
described [17]. Three sections from each sample were randomly chosen and scored by three
blinded observers. To evaluate the cartilage status microscopically, the modified OARSI
system scores were applied based on prior studies [18,19]. The possible maximum score of
the OARSI system is 18, and the structure was scored on a scale of 0–10. Cellularity was
scored on a scale of 0–4. Chondrocyte cloning was scored on a scale of 0–4. In addition,
the modified Mankin scores were used to determine groups of different stages of carti-
lage destruction. Mankin scores 0–2 indicate normal cartilage, 3–5 superficial fibrillation,
6–7 moderate cartilage destruction, 8–10 severe damage of cartilage and over 10 complete
loss of cartilage [18]. The slides were evaluated under microscopic observation (Nikon
Eclipse TE 2000-S, Tokyo, Japan).

2.13. Serum Levels of TNF-α and IL-6

The blood samples were centrifuged at 3000 rpm for 10 min at 4 ◦C. Supernatants were
collected and divided into tubes and stored at −80 ◦C. The levels of TNF-α and IL-6 in the
serum were measured using ELISA assay kits according to the manufacturer’s instructions.

2.14. Statistical Analyses

The results were expressed as mean ± standard error of the mean (SEM) from at least
three independent experiments. To determine the significance of differences between two
groups, Student’s t-test was used. For multiple comparisons, we analyzed with one-way
ANOVA. Data was considered statistically significant if p-value less than 0.05.

3. Results
3.1. KMUP-1 Effects on LPS-Induced Cytotoxicity and NO Production

To determine whether KMUP-1 results in cytotoxic effects, we generated the MTT
as-say. As shown in Figure 1b, KMUP-1 exhibits no cytotoxic effect in RAW264.7 cells after
24 h KMUP-1 exposure at different concentration levels (1, 5, 10 µM). Effect of 1 h KMUP-1
pretreatment at various concentrations (1, 5, 10 µM) and subsequent 24 h LPS (1 µg/mL)
stimulation were defined. The cell viability was significantly increased by pretreatment
of KMUP-1 in a dose-dependent manner. Furthermore, NO production was evaluated
from cells culture media. As presented in Figure 1c, KMUP-1 significantly repressed the
production of NO in LPS-induced cells in the comparison with the LPS group (p < 0.01 and
p < 0.001).

Figure 1. Effects of KMUP-1 on cell viability and NO production in LPS-induced RAW 264.7 cells. (a) The chemical structure
of KMUP-1. (b) The cell viability was determined by MTT assay. (c) Griess assay was used to identify nitrite content in the culture
media. KMUP-1 treatment was 1 h administered prior to 24 h LPS-induced inflammation exposure. Values are presented as
mean ± SEM, n = 6. *** p < 0.001 compared to control group (CTL). ## p < 0.01 and ### p < 0.001 compared to LPS group.
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3.2. KMUP-1 Inhibits LPS-Induced Inflammatory Cytokines Production

The RAW264.7 cells were pretreated with various concentrations of KMUP-1 (1, 5, and
10 µM) for 1 h and further stimulated with 1 µg/mL LPS for 24 h to induce inflammatory
cytokines generation. The expressions of TNF-α, IL-6, MMP-2, and MMP-9 were all signifi-
cantly downregulated by KMUP-1 pretreatment in a dose-dependent manner, respectively
(p < 0.01 and p < 0.001, Figure 2).

Figure 2. Effects of KMUP-1 on inflammatory cytokines in LPS-induced RAW 264.7 cells. (a) Tumor
necrosis factor alpha (TNF-α), (b) interleukin 6 (IL-6), (c) matrix metalloproteinase-2 (MMP-2), and
(d) matrix metalloproteinase-9 (MMP-9) in the culture media were evaluated by ELISA assay. Values
are presented as mean ± SEM, n = 3. *** p < 0.001 compared to control group. ## p < 0.01 and
### p < 0.001 compared to LPS group.

3.3. KMUP-1 Prevents LPS-Induced Inflammatory Protein Expressions

To study whether KMUP-1 blocks either the inflammatory protein expressions of
iNOS, TNF-α, COX-2, MMP-2, and MMP-9, we established Western blotting assay. As sim-
ilar with the result of inflammatory cytokines production, KMUP-1 pretreatment led to the
significant decrease of iNOS, TNF-α, COX-2, MMP-2, and MMP-9 expressions, respectively.
As shown in Figure 3, the various concentrations of KMUP-1 (1, 5, and 10 µM) reduce
LPS-induced inflammatory protein expressions in a dose-dependent manner (p < 0.001).
Furthermore, as presented in Figure 3a–d, KMUP-1 pretreatment decreases the expression
of protein levels of iNOS, TNF-α, COX-2, MMP-2, and MMP-9 as well in LPS-induced
inflammation (p < 0.001). The KMUP-1 significantly inhibits inflammatory protein expres-
sions in vitro in a dose-dependent manner.
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Figure 3. Effect of KMUP-1 on LPS-induced inflammatory reaction proteins expression in RAW
264.7 cells. (a) Inducible nitric oxide synthase (iNOS), (b) TNF-α, (c) cyclooxygenase-2 (COX-2),
(d) MMP-2, and MMP-9 were detected by Western blot analysis. Values are presented as mean± SEM,
n = 3. *** p < 0.001 compared to control group. # p < 0.05, ## p < 0.01 and ### p < 0.001 compared to
LPS group.

3.4. KMUP-1 Downregulates TNF and COX Family Gene Expressions in LPS-Induced Cells

To investigate the influence of KMUP-1 on inflammation induction in LPS-stimulated
RAW 264.7 mouse cells, a microarray-based transcriptome analysis was performed. The
changes in gene expression by KMUP-1 and LPS is shown on Figure 4. Volcano plots
indicate the differentially expressed transcripts in RAW 264.7 cells pretreatment with 10 µM
KMUP-1 for 1 h and/or 1 µg/mL LPS for additional 24 h (see Figure 4a). As it should be
appropriate for the amount of data and its intrinsic variation achieved from microarray
experiments, we used statistical methods to analytically extract relevant information and
removed the related uncertainty [20]. To identify the different expressed transcripts, we
used volcano plots to simultaneously show the two correlated pieces of information: fold-
change and t-statistic. Therefore, scatterplots of the negative log10-transformed p-values
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from the gene-specific t-test on the y-axis against the log2-fold change on the x-axis were
prepared. A p-value ≤ 0.01 and a fold-change ≥ 3 were used to define significantly
modulated gene expression. The profiles of characteristic gene expression are presented in
Figure 4a. Among these genes, the heat map showed that Tnf and Cox family genes were
upregulated in LPS-stimulated. In contrast, KMUP-1 treatment significantly decreased
their expressions (Figure 4b).

Figure 4. The microarray analysis to determine different expressed transcripts. Volcano plots
indicate the differentially expressed transcripts in RAW 264.7 cells pretreatment with 10 µM KMUP-1
for 1 h and/or 1 µg/mL LPS for additional 24 h. The negative log10 transformed p-values (y-
axis) were plotted against the average log2-fold change (x-axis) in gene expression. Transcripts
with a p-value ≤ 0.05 and two-fold up- or downregulated were classified as statistically significant.
(a) Volcano plot shows LPS-stimulated RAW 264.7 cells compared to LPS + KMUP-1 treatment.
Significantly differentially expressed transcripts are showed in blue dotted line, which indicates the
-log10 of p ≤ 0.05. (b) Clustering analysis was performed to visualize the correlations among the
replicates and varying sample conditions.

3.5. KMUP-1 Inhibits MAPK and NF-κB Signaling Pathways in LPS-Induced Cells

To clarify whether KMUP-1 results in the signaling of mitogen-activated protein kinase
(MAPK) and NF-κB pathways, we examined the protein levels through Western blotting.
As presented in Figure 5a–c, the LPS stimulation increases phosphorylation levels of ERK,
JNK, and p38. Conversely, KMUP-1 pretreatment decreased these protein expressions in
a dose-dependent manner. Furthermore, LPS induced the phosphorylation of IκBα and
NF-κB. On the contrary, the levels of phosphorylated IκBα and NF-κB expression were
reduced by KMUP-1 pretreatment in a dose-dependent manner (Figure 5d). Taken together,
these data indicate that KMUP-1 decreases in vitro LPS-induced inflammation through
MAPK and NF-κB signaling pathways.

3.6. KMUP-1 Suppresses LPS-Induced ROS Production and Restores SIRT1 Level

ROS play an important role in the activation of inflammation, thus we examined
LPS-induced RAW264.7 cells ROS generation by DCFH-DA fluorescence assay. As shown
Figure 6a, the fluorescence intensity showed that KMUP-1 dose-dependently reduces
LPS-induced ROS production. Furthermore, the protein level of SIRT1 decreased in LPS
stimulation compared to the KMUP-1 pretreatment. In contrast, SIRT1 expression levels
were higher in KMUP-1 pretreatment in a dose-dependent manner (Figure 6b). Further, the
cells were 1 h treated with 2 µM Ex-527 (the SIRT1 inhibitor) prior to KMUP-1 administra-
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tion and then stimulated with LPS. As presented in Figure 6c, the protein level of SIRT1 was
downregulated by Ex-527 administration in KMUP-1/LPS-treated cells. KMUP-1 inhibits
LPS-induced expression level of NF-κB phosphorylation. By contrast, Ex-527 abolished
KMUP-1-induced attenuation of NF-κB phosphorylation in KMUP-1/LPS-treated cells.
This data indicates that KMUP-1 inhibits in vitro LPS-induced oxidative stress. Particularly,
KMUP-1 could result in modulation of NF-κB via SIRT1 restoration in vitro.

Figure 5. Effects of KMUP-1 on MAPK and NF-κB expressions of LPS-induced RAW 264.7 cells.
A representative Western blots demonstrating (a) ERK phosphorylation levels, (b) JNK protein
levels, (c) p38 protein levels, and (d) IκBα and NF-κB expression levels. Values are presented as
mean ± SEM, n = 3. *** p < 0.001 compared to control group. # p < 0.05, ## p < 0.01, ### p < 0.001
compared to LPS group.
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Figure 6. Effects of KMUP-1 on LPS-induced oxidative stress and NF-κB activation regulated by
SIRT1 in RAW 264.7 cells. (a) The cellular oxidative stress was determined by DCFH-DA staining
(100× magnification). A representative Western blots demonstrating (b) SIRT1 protein levels (c)
SIRT1 and NF-κB phosphorylation levels. Values are presented as mean ± SEM, n = 3. *** p < 0.001
compared to control group. # p < 0.05, ## p < 0.01, ### p < 0.001 compared to LPS group. $$ p < 0.01
compared to LPS + KMUP-1 group.

3.7. KMUP-1 Alleviated Mechanical Hyperalgesia and Serum Inflammatory Cytokines Levels in
MIA-Induced OA Rats

To mimic the pain in human OA, we established MIA-induced rat model of OA
with the alterations in both biochemistry and structure leading to the disease [21]. We
further determined the nociceptive response experiment to identify whether KMUP-1 oral
pre-treatment has an effect on inflammation-induced pain, a predominant symptom of
OA. The mechanical hyperalgesia of paw withdrawal is shown in Figure 7a. In the von
Frey hair assessment test, MIA injection significantly reduced the paw withdrawal latency
(PWL) in rats as compared to control group on day 14 (p < 0.01). The administration of oral
5 mg/kg BW KMUP-1 significantly resulted in the alleviation of mechanical hyperalgesia
as compared with the MIA group (p < 0.05).
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Figure 7. Effects of KMUP-1 on mechanical hyperalgesia and serum levels of inflammatory cytokines in MIA-induced
OA rats. (a) The paw withdrawal latency (PWL) was measured as described in Section 2. (b) The levels of TNF-α and (c)
IL-6 were evaluated by ELISA assay. Values are presented as mean ± SEM, n = 6. ** p < 0.01 compared to control group.
# p < 0.05, ## p < 0.01 compared to MIA group.

To evaluate whether KMUP-1 has effects on systemic inflammatory parameters, we
determined the serum levels of TNF-α and IL-6. As presented in Figure 7b,c, there were
significant increases of in TNF-α and IL-6 serum concentrations in MIA-induced OA rats
(p < 0.01). By contrast, KMUP-1 treatment significantly suppressed these serum levels.
It means that KMUP-1 inhibits serum inflammation markers in MIA-induced OA rats
(p < 0.01).

3.8. Protective Effects of KMUP-1 on Articular Cartilage Erosion in MIA-Induced OA Rats

Further, we evaluated the chondroprotective effect of KMUP-1 through macroscopic
observation of the knee joints. We generated three groups for the in vivo study: control,
MIA, and MIA + KMUP-1 groups. Figure 8a denotes the macroscopic evaluation of articu-
lar cartilage surfaces. On day 7 after intra-articular injection of MIA, oral administration
of KMUP-1 resulted to prevent articular cartilage destruction. The area of eroded carti-
lage surface was significantly reduced in the joints of KMUP-1-treated rats. As shown in
Figure 8a, it was found that the injection of MIA resulted in cartilage erosion with large
areas of femoral groove and femoral condyles. The staining observation showed smooth
articular cartilage and normal cellularity in the control group. In contrast, the joints from
MIA-induced OA rats showed narrowing in the joint space along with a marked depletion
of proteoglycan. The KMUP-1-treated OA rats significantly reduced these histomorphologi-
cal cartilage alterations through microscopic analysis (Figure 8b). It was shown in Figure 8c
that MIA-induced OA rats were characterized by the involvement of subchondral bone. On
7 days after MIA, injection causes an increase in multinucleated osteoclasts and irregular
surface, which was significantly decreased following KMUP-1 treatment. As presented in
Figure 8d, the cartilage histological results in MIA group revealed the progression of OA up
to the deep zones of the cartilage layers with high OARSI score (p < 0.01). On the contrary,
it was demonstrated the slower progression of cartilage destruction in KMUP-1-treated
group (p < 0.05). Similarly, Mankin scores showed significantly lower in KMUP-1-treated
group, as compared to the MIA group (p < 0.05). In summary, both OARSI and Mankin
scores increased with MIA injection. KMUP-1 treatment group showed significantly lower
OARSI and Mankin scores, as compared to the MIA group.
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Figure 8. Effect of KMUP-1 on cartilage erosion and chondrocyte disorganization of knee joint in
MIA-induced OA rats. (a) The gross finding of femoral condyles and femoral groove after MIA
injection. (b) Hematoxylin and Eosin stain (H&E), and (c) toluidine blue (magnification, 100×).
(d) The joint lesions were microscopically graded according to the modified OARSI and Mankin
scores as described in materials and methods. Values are presented as mean ± SEM, n = 6. ** p < 0.01
compared to control group. # p < 0.05 compared to the MIA group.

4. Discussion

The present study demonstrated whether KMUP-1 has potential to inhibit inflamma-
tion both through in vitro and in vivo experiments. Various concentrations of KMUP-1
increased cells viability in LPS-induced cytotoxicity in RAW264.7 cells. Furthermore, the
inflammatory markers, such as NO, iNOS, TNF-α, COX-2, MMP-2, and MMP-9 were
reduced by various concentrations of KMUP-1 pretreatment. Accordingly, KMUP-1 pre-
treatment led to the downregulation of TNF and COX family genes. Regarding MAPK and
NF-κB signaling pathways, pretreatment with KMUP-1 alleviated inflammation through
decreased phosphorylation levels of ERK, JNK, and p38. By contrast, KMUP-1 pretreatment
inhibited the expression levels of phosphorylated IκBα and NF-κB. Moreover, KMUP-1
resulted in the inhibition of oxidative stress in vitro. Further, SIRT1 protein expression
level was downregulated by LPS stimulation, whereas KMUP-1 pretreatment restored its
expression in a dose-dependent manner. Moreover, our in vivo study showed comparable
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findings with in vitro experiments. KMUP-1 led to beneficial effect in MIA-induced OA
rats such as macroscopic, microscopic, and functional observations. It is emphasized that
KMUP-1 comprehensively protects the dynamic alterations in inflammatory factors and
cartilage biomarkers in vivo.

One of the major findings of the research was that KMUP-1 is harmless towards
the cultured RAW264.7 cells as our previously study [15], and also in the various cell
cultures including cardiomyocytes [22], SH-SY5Y cells [14], GH3 pituitary tumor cells [23],
and murine 3T3-L1 pre-adipocytes [24]. Further, these recent studies confirmed that
KMUP-1 was essentially free of the toxic compound, and thus it can be suggested that it is
probably safe for treatment. According to Liou et al (2013), KMUP-1 exhibited significant
inhibition on the osteoclast formation and activation [15]. Similarly, osteoclast formation
and activation process during bone metabolism also can be promoted by inflammatory
signals. Therefore, this study offered some insight to define the protective effects of KMUP-1
in LPS-induced RAW264.7 cells. Moreover, we observed that KMUP-1 administration could
suppress LPS-induced cytotoxicity and nitrite production. It means that the administration
of KMUP-1 results in decreased cell cytotoxicity as well as lessened nitrite released in
LPS-induced RAW264.7 cells.

In the pathogenesis of OA, inflammatory mediators, mechanical stimulation, oxida-
tive stress, and cellular damage collude in the function and viability of chondrocytes,
reprogramming them to undergo hypertrophic differentiation and initial aging, leading
them to be responsive to the effects of proinflammatory and procatabolic mediators [4].
The fundamental pathophysiological pathways encompassed in OA involve some the
typical assumes, so called proinflammatory TNF-α and interleukins (IL-1β, IL-6, and IL-8),
and procatabolic mediators through their signaling pathways and the well-defined effects
of MAPK and NF-κB signaling responses in addition to reprogramming are ‘switching’
pathways in transcriptional networks [25].

The most common forms of arthritis and the major cause of disability is OA, but
there is no approved drug to stop or slow the disease progression [26]. More recent
evidence reveals that inflammation plays a pivotal role in the pathology of OA, which
recommends that a suitable therapeutic strategy for OA is targeting inflammation [27,28]. In
previous studies, xanthine-based derivative KMUP-1 exhibits its bioactive effects including
anti-inflammatory [12], cardio-protection [13], antioxidative stress, neuroprotective and
presenting bone metabolism function [15,16]. Dai et al. (2014) demonstrated that KMUP-1
attenuated inflammation in the sciatic nerve tissues through lessening proinflammatory
cytokines (TNF-α and IL-1β), decreased the expression levels of COX-2, iNOS, nNOS,
MAPKs, p-IκB, and p-NF-κB. Further, their findings confirmed the pathway of KMUP-1
was through the inhibition of NF-κB upregulation and the MAPKs [29]. In this study, we
determined whether KMUP-1 could suppress LPS-induced production of inflammatory
mediators, NF-κB activation, and ROS production in RAW264.7 cells. Additionally, KMUP-
1 decreased the progression of inflammation-induced cartilage destruction in MIA-induced
rat OA. An implication of this is the possibility that inflammatory cytokines have pivotal
roles in the progression of OA [2]. LPS, a main component of the outer membrane of
Gram-negative bacterial factor that has the ability to induce the expression of a variety
of proinflammatory cytokines, is commonly used to mimic inflammation in RAW264.7
cells in in vitro culturing systems [30]. Furthermore, a class of proteinases, MMPs, MMP-1,
MMP-3 and MMP-13 regulate various functions including extracellular matrix (ECM)
degradation in OA and these MMPs have been reported to play an important role in
the progression of OA [31]. In recent years, there has been an increasing amount of
literature on the characterization of increased production of MMP-1 and MMP-13 through
in vitro [32,33] and in vivo [34] studies. However, recent studies showed that MMP-2 and
MMP-9 were activated in patients with OA [35,36]. Lipari and Garbino (2013) showed the
high expression levels of MMP-2 and MMP-9 in OA patients compared with controls [35].
Zeng et al. (2015) indicated that the protein levels of MMP-1 and MMP-2 were higher
in Asian patients with OA than in controls [36]. Therefore, our study was conducted to
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determine whether KMUP-1 has the potential to block the expressions of MMP-2 and MMP-
9 in the in vitro experiments on RAW264.7 cells. The evidence from this study suggests that
KMUP-1 may exert anti-inflammatory effects by suppressing the important inflammatory
mediators induced by LPS in vitro.

There has been a significant increase in new research that aims to decipher the mech-
anisms of sirtuin function and their roles in pathology of OA [9,37]. The majority of the
work carried out to date has focused on SIRT1 which is essential for maintaining carti-
lage homeostasis. In this study, we demonstrated that KMUP-1 has beneficial effects on
articular cartilage anabolism by encouraging cell survival, especially under LPS-induced
stress conditions, which may provide a mechanism supporting the therapeutic potential
intervention in OA.

Additionally, stimulation of RAW264.7 cells by LPS induces phosphorylation and the
activation of ERK, JNK, and p38. Similarly, in our previous study we proved that KMUP-1
inhibited RANKL-induced phosphorylation of MAPK in RAW264.7 cells. Osteoclastogene-
sis is the process during bone metabolism which can also be activated by inflammatory
pathways [38]. It has been demonstrated that MAPK, including ERK, p38, and JNK, play a
crucial role in the IL-1 regulation of MMPs expression and subsequent cartilage destruction.
MAPK also played an important role in the regulation of inflammatory mediators produc-
tion [39,40], and could be specifically activated downstream to overproduce COX-2, iNOS,
TNF-α, IL-6, MMP-2, and MMP-9 [36]. Thus, the anti-inflammatory agents that could
prevent phosphorylation of MAPK may be a beneficial treatment for OA in the model of
osteoarthritis chondrocytes [39,40].

More recent evidence suggests the important role of signaling pathways through NF-
κB and MAPK in the regulation of inflammatory mediators involved in the pathogenesis
of OA [31,41]. As normal, NF-κB forms as an inactive transcription factor in cytoplasm
which is associated with IκB, an inhibitory protein. Upon stimulation by LPS activates
the IκB kinase (IKK) complex and then leads to the phosphorylation and degradation of
IκB, leading to the nuclear translocation of NF-κB to regulate the expression of inflam-
matory mediators [42,43]. Additionally, the NF-κB constitutes a family of transcription
factors that are stimulated by proinflammatory cytokines, chemokines, stress-related fac-
tors ECM degradation products, and by LPS. The activated NF-κB molecules trigger the
expression of an array of genes leading to promote major proinflammatory expression
and destructive mediators of OA, increase matrix-degrading enzyme production, thereby
contributing to OA onset and development [3,44–46]. Therefore, we investigated whether
the anti-inflammatory effects of KMUP-1 were through NF-κB signaling pathways. Our
data indicated that the anti-inflammatory and antioxidant activity properties of KMUP-1
resulted from the inhibited phosphorylation of IκB and NF-κB induced by LPS.

There has been a significant increase in new research that aims to decipher the mech-
anisms of sirtuin function and their roles in pathology of OA [9,37]. The majority of the
work carried out to date has focused on SIRT1 which is essential for maintaining carti-
lage homeostasis. In this study, we demonstrated that KMUP-1 has potential beneficial
effects on articular cartilage anabolism by alleviating inflammation in vivo, which may
provide a mechanism supporting the therapeutic potential intervention in OA. Further-
more, cells treated with SIRT1 inhibitor significantly attenuated the repressive effect of
KMUP-1 on LPS-induced NF-κB activation. SIRT1 inhibits NF-κB signaling directly by
deacetylated the p65 subunit of NF-κB complex, the inhibition of SIRT1 disrupts oxidative
energy metabolism and stimulates the NF-κB-induced inflammatory responses present in
many chronic metabolic and age-related diseases [10,11]. Therefore, our data showed that
KMUP-1 effects in the inhibition of IκB/NF-κB signaling pathways was due, in part, to
mediation by SIRT1 in vitro.

The cartilage degradation is a major mechanism involved in the progression of OA.
Pharmacological treatments for OA are to alleviate pain and to improve function. The
treatment should be, therefore, personalized since not every patient will benefit from
a specific treatment. The OA paradigm has shifted from degenerative joint disease to
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inflammatory joint disease and increasing understanding about the metabolic role in
OA has led to new opportunities for OA treatment. Our study is first to show the anti-
inflammatory effect of KMUP-1 pretreatment in LPS-induced inflammation in RAW264.7
mouse macrophages. Furthermore, our findings demonstrated that KMUP-1 decreased
LPS-induced activation of MAPK and NF-κB signaling pathways. Particularly, the SIRT1
expression level was restored in the LPS-induced RAW264.7 cells. Additionally, our study
showed that KMUP-1 has a potential to inhibit mechanical-stimulated pain, inflammation
and cartilage destruction in the OA rat model. Taken together, we hypothesized that these
findings indicate that KMUP-1 may serve as a potential anti-inflammatory agent in the
treatment of OA.

5. Conclusions

In this study, we provided evidence that KMUP-1 inhibits cytotoxicity, inflammatory
cytokines production, oxidative stress, MAPK and IκB/NF-κB activation in LPS-induced
RAW264.7 cells. Moreover, KMUP-1 led to the restoration of the expression level of
SIRT1, in part due to the suppression of IκB/NF-κB phosphorylation in vitro. KMUP-
1 also alleviated the hyperalgesia and cartilage destruction in the OA rat model. Our
results demonstrated that KMUP-1 particularly prevents MIA-induced OA symptoms via
mechanisms involving its anti-inflammatory effect. Further studies would be beneficial to
explore many molecular cascades involved in inflammatory response syndrome extended
clinical studies. KMUP-1 may be a promising therapeutic agent for OA and management
of its associated symptoms.
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