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A convex hull of finitely many points in the Euclidean space ℝ𝑑 is known as a convex polytope. 
Graphically, they are planar graphs i.e. embeddable on ℝ2. Minimum dominating sets possess 
diverse applications in computer science and engineering. Locating-dominating sets are a natural 
extension of dominating sets. Studying minimizing locating-dominating sets of convex polytopes 
reveal interesting distance-dominating related topological properties of these geometrical planar 
graphs. In this paper, exact value of the locating-dominating number is shown for one infinite 
family of convex polytopes. Moreover, tight upper bounds on 𝛾𝑙−𝑑 are shown for two more 
infinite families. Tightness in the upper bounds is shown by employing an updated integer linear 
programming (ILP) model for the locating-dominating number 𝛾𝑙−𝑑 of a fixed graph. Results are 
explained with help of some examples. The second part of the paper solves an open problem in 
Khan (2023) [28] which asks to find a domination-related parameter which delivers a correlation 
coefficient of 𝜌 > 0.9967 with the total 𝜋-electronic energy of lower benzenoid hydrocarbons. We 
show that the locating-dominating number 𝛾𝑙−𝑑 delivers such a strong prediction potential. The 
paper is concluded with putting forward some open problems in this area.

1. Introduction

Let us consider the undirected connected simple graph Γ. The set of vertices and edges in Γ = (𝑉 , 𝐸) are 𝑉 and 𝐸, respectively. 
The closed neighborhood of a vertex 𝑎 ∈ 𝑉 is 𝑁Γ[𝑎] = {𝑏 ∈ 𝑉 ∣ (𝑏, 𝑎) ∈ 𝐸} ∪ {𝑎}, while the open neighborhood of a vertex a 𝑉 is 
𝑁Γ(𝑎) = {𝑏 ∈ 𝑉 ∣ (𝑏, 𝑎) ∈ 𝐸}. A dominating set in a graph Γ = (𝑉 , 𝐸) is defined as a subset 𝐷 of 𝑉 (i.e., 𝐷 ⊆ 𝑉 ) that satisfies the 
condition that the closed neighborhoods of all vertices in 𝐷 together encompass the entire set of vertices (i.e., 𝑉 ). Mathematically, 
this can be expressed ∪𝑎∈𝐷𝑁[𝑎] = 𝑉 . For example, for every vertex 𝑎 ∈ 𝑉 ⧵ 𝐷, 𝑁(𝑎) ∩ 𝐷 ≠ ∅ implies that any such 𝑎 has minimum 
of one neighbors in 𝐷. The smallest multiplicity of such a dominating set in Γ is known as the domination number 𝛾(Γ) of Γ.

Another way to approach the concept of a dominating set is to assign a weight of 1 to each vertex in 𝐷 and a weight of 0 to 
vertices in 𝑉 ⧵ 𝐷. In this situation, if |𝑁[𝑎] ∩ 𝐷| ≥ 1 for each 𝑎 ∈ 𝑉 and the sum of weights for closed neighborhoods is not less 
than 1, then 𝐷 is a dominating set of Γ, we denote a dominating set by 𝑆 . If, for all distinct vertices 𝑎, 𝑏 ∈ 𝑉 ⧵ 𝑆 , it holds that 
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𝑁(𝑏) ∩ 𝑆 ≠ 𝑁(𝑎) ∩ 𝑆 , then the dominating set 𝑆 ⊆ 𝑉 is called a locating-dominating set (see Hernando et al. [1]). The minimum 
cardinality of a locating-dominating set is denoted by 𝛾𝑙−𝑑 (Γ), which stands for the locating-dominating number of Γ.

According to the following theorem, the locating-dominating number on regular graphs has a tight lower bound.

We give the following important result by Slater [2]:

Theorem 1.1. [2] For a 𝑘-regular graph Γ on 𝑉 vertices, we have

𝛾𝑙−𝑑 (Γ) ≥
⌈ 2 ⋅ 𝜈

𝑘+ 3

⌉
.

Bača introduced graphs of convex polytopes [3]. In the articles [4], [5], [6], and [7], various convex polytopes, including 𝑄𝑛, 
𝑅𝑛, 𝐷𝑛, 𝑆𝑛, 𝑇𝑛, and 𝑈𝑛, have been studied for a variety of properties. Specifically, [5] and [6] revealed that the metric dimension of 
𝑈𝑛, 𝑆𝑛, 𝑅𝑛, 𝑇𝑛, and 𝑄𝑛 are equal to 3, while [7] explored minimizing doubly-resolving sets and strong resolvability of 𝐷𝑛 and 𝑇𝑛. 
In addition, Salman et al. [8] analyzed three optimization problems including the strong metric, fault-tolerant as well as the local 
metric dimension problems and applied them to 𝑈𝑛 and 𝑆𝑛 families of convex polytopes. Next, due to Simić et al. [9], we present an 
updated integer linear programming model for the locating-dominating number of graphs.

2. Integer linear programming (ILP) model for 𝜸𝒍−𝒅

In [10], the minimum identifying code problem using integer linear programming (ILP) formulation was provided. Decision 
variables 𝑧𝓁 are defined as follows for 𝑆 to be an identifying set:

𝑧𝓁 =

{
1, 𝓁 ∈ 𝑆

0, 𝓁 ∉ 𝑆
(2.1)

The minimum identifying code problem from [10] is therefore stated with its ILP formulation as follows:

min
∑
𝓁∈𝑉

𝑧𝓁 (2.2)

subject to∑
𝑝∈𝑁[𝓁]

𝑥𝑝 ≥ 1, 𝓁 ∈ 𝑉 (2.3)

∑
𝑝∈𝑁[𝓁]∇𝑁[𝑞]

𝑥𝑝 ≥ 1 𝓁, 𝑞 ∈ 𝑉 , 𝓁 ≠ 𝑞 (2.4)

𝑧𝓁 ∈ {0,1}, 𝓁 ∈ 𝑉 (2.5)

In order to ensure that the identifying code set has a minimum cardinality, the aim function in Equation (2.2) and constraints in 
Equation (2.3) define 𝑆 as a dominating set. Constraints in Equation (2.4) indicate an identifying characteristic, whereas constraints 
from Equation (2.5) describe the binary nature of the decision variables 𝑧𝓁 .

The locating-dominating problem cannot be solved directly using this formulation. As a result, it has to be modified by switching 
constraints from Equation (2.4) to Equation (2.6).

𝑧𝓁 + 𝑥𝑞 +
∑

𝑝∈𝑁[𝓁]∇𝑁[𝑞]
𝑥𝑝 ≥ 1 𝓁, 𝑞 ∈ 𝑉 ,𝓁 ≠ 𝑞 (2.6)

Here ∇ is the symmetric difference operator between two sets. When vertices 𝓁 and 𝑞 are not neighbors, constraints in Equation 
(2.4) and Equation (2.6) are the same, for example, 𝑁[𝓁]∇𝑁[𝑞] = {𝓁, 𝑝} ∪ (𝑁(𝓁)∇𝑁(𝑞)). The change between Equation (2.4) and 
Equation (2.6) takes effect if vertices 𝓁 and 𝑞 are adjacent to one another, which implies that 𝓁 ∈ 𝑁(𝑞). As a result, 𝑆 must contain 
some 𝑝 ∈ 𝑁(𝓁)∇𝑁(𝑞) or not less than 1 of the vertices 𝓁, 𝑞, according to constraint in Equation (2.6). Constraints in Equation (2.6)

and Equation (2.4) are similar since 𝑁[𝑞]∇𝑁[𝓁] = {𝓁, 𝑝} ∪ (𝑁(𝑞)∇𝑁(𝓁)) when 𝑞, 𝓁, 𝓁 ≁ 𝑞 are not neighbors.

It was said in [11] that if 𝑑(𝑏, 𝑎) ≥ 3, then 𝑏, 𝑎 do not have any neighbors in common, hence it is not necessary to examine whether 
𝑁(𝑏) ∩𝑆 ≠ 𝑁(𝑎) ∩𝑆 are equivalent. As a result, we may reduce the number of constraints the locating requirement generates which 
is computationally significant for larger graphs.

This concept would help further to improve constraints in Equation (2.6):

𝑧𝓁 + 𝑥𝑞 +
∑

𝑝∈𝑁[𝓁]∇𝑁[𝑞]
𝑥𝑝 ≥ 1 𝓁, 𝑞 ∈ 𝑉 ,𝓁 ≠ 𝑞, 𝑑(𝓁, 𝑞) ≤ 2 (2.7)

For problems of small dimensions, the exact optimal value can determine with the use of the suggested formulation with lesser 
constraints. Furthermore, as demonstrated by [12], effective metaheuristic methods can be used to produce unsatisfactory solutions 
2

for large dimensions.
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Fig. 1. Graphical structure of the 𝑛-dimensional of 𝑇𝑛 convex polytope.

3. Exact values for 𝜸𝒍−𝒅

3.1. Convex polytope 𝑇𝑛

In [13], Fig. 1 displays the graph of the convex polytope 𝑇𝑛. The set of vertices of 𝑇𝑛 are 𝑉 (𝑇𝑛) = {𝑖𝓁 , 𝑗𝓁 , 𝑘𝓁 , 𝑙𝓁 , 𝑚𝓁 , 𝑛𝓁 , 𝑜𝑖, 𝑝𝓁 , 𝑞𝓁 ,

𝑟𝓁 , 𝑠𝓁 , 𝑡𝓁 , 𝑢𝓁 , 𝑣𝓁 , 𝑤𝓁 , 𝑧𝓁 , 𝑦𝓁 , 𝑧𝓁 ∣ 𝓁 = 0, … , 𝑛 −1} and the set of edges are 𝐸(𝑇𝑛) = {(𝑖𝓁 , 𝑖𝓁+1), (𝑖𝓁 , 𝑗𝓁), (𝑗𝓁 , 𝑘𝓁), (𝑗𝓁+1, 𝑘1), (𝑘𝓁 , 𝑙𝓁), (𝑙𝓁 , 𝑚𝓁),
(𝑚𝓁 , 𝑛𝓁), (𝑙𝓁+1, 𝑚𝓁), (𝑛𝓁+1, 𝑜𝓁), (𝑛𝓁 , 𝑜𝓁), (𝑝𝓁 , 𝑞𝓁), (𝑜𝓁 , 𝑝𝓁), (𝑝𝓁+1, 𝑞𝓁), (𝑟𝓁 , 𝑠𝓁), (𝑞𝓁 , 𝑟𝓁), (𝑟𝓁+1, 𝑠𝓁), (𝑡𝓁 , 𝑢𝓁), (𝑠𝓁 , 𝑡𝓁), (𝑡𝓁+1, 𝑢𝓁), (𝑣𝓁 , 𝑤𝓁),
(𝑢𝓁 , 𝑣𝓁), (𝑣𝓁+1, 𝑤𝓁), (𝑤𝓁 , 𝑧𝓁), (𝑧𝓁 , 𝑦𝓁), (𝑥𝓁+1, 𝑦𝓁), (𝑦𝓁 , 𝑧𝓁)(𝑧𝓁 , 𝑧𝓁+1)}.

Let 𝐹𝑛(Γ) be the number of 𝑛-gonal faces in the graph Γ. Then, in 𝑇𝑛, we have 𝐹𝑛(𝑇𝑛) = 2, 𝐹5(𝑇𝑛) = 2𝑛 and 𝐹6(𝑇𝑛) = 7𝑛. Note that 
the family of 𝑇𝑛 is related to the family of carbon nanocones [14,15].

Theorem 3.1. For 𝑇𝑛 such that 𝑛 ≥ 4, we have

𝛾𝑙−𝑑 (𝑇𝑛) = 6𝑛.

Proof. Note that 𝑇𝑛 is 3-regular with |𝑉 (𝑇𝑛)| = 18𝑛. It is demonstrated that

𝛾𝑙−𝑑 (𝑇𝑛) ≥
⌈2 ⋅ 18𝑛
3 + 3

⌉
= 6𝑛

by Theorem 1.1. Now show that the locating-dominating set of 𝑇𝑛, the set 𝑆 , defined as 𝑆 = {𝑗𝓁 , 𝑚𝓁 , 𝑝𝓁 , 𝑠𝓁 , 𝑣𝓁 , 𝑦𝓁 | 𝓁 = 0, … , 𝑛 − 1}. 
The intersections of set 𝑆 with the neighborhoods 𝑁[𝑎], or 𝑆 ∩ 𝑁[𝑎], are all distinct and non-empty, as illustrated in Table 1. As, 
𝑆 represents a locating dominating set of 𝑇𝑛 with |𝑆| = 6𝑛, we can conclude that 𝛾𝑙−𝑑(𝑇𝑛) ≤ 6𝑛. Moreover, it has been previously 
established that 𝛾𝑙−𝑑 (𝑇𝑛) ≥ 6𝑛. Therefore, it follows that 𝛾𝑙−𝑑 (𝑇𝑛) = 6𝑛. □

Next, Theorem 3.1 is elaborated by an example. For this example, we consider 6-dimensional 𝑇𝑛, i.e., 𝑇6. See Fig. 2 for a depiction 
of 𝑇6.

Example 1. Note that 𝑇6 is 3-regular and thus by Theorem 1.1, we have 𝛾𝑙−𝑑(𝑇6) ≥ 30. In order to show 𝛾𝑙−𝑑 (𝑇6) ≤ 30, we consider 
the set 𝑆 = {𝑗𝓁 , 𝑚𝓁 , 𝑝𝓁 , 𝑠𝓁 , 𝑣𝓁 , 𝑦𝓁 | 𝓁 = 0, … , 5}. Note that |𝑆| = 30. We show that 𝑆 forms a locating-dominating set. For 0 ≤ 𝓁 ≤ 5, 
3

the intersections are
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Table 1

Locating-dominating vertices in 𝑇𝑛 .

𝑎 ∈ 𝑉 ⧵ 𝑆 𝑆 ∩𝑁[𝑎] 𝑎 ∈ 𝑉 ⧵𝑆 𝑆 ∩𝑁[𝑎]

𝑖𝓁 {𝑗𝓁} 𝑘𝓁 {𝑗𝓁 , 𝑗𝓁+1}
𝑙𝓁 {𝑚𝓁 ,𝑚𝓁+1} 𝑛𝓁 {𝑚𝓁}
𝑜𝓁 {𝑝𝓁} 𝑞𝓁 {𝑝𝓁 , 𝑝𝓁+1}
𝑟𝓁 {𝑠𝓁 , 𝑠𝓁+1} 𝑡𝓁 {𝑠𝓁}
𝑢𝓁 {𝑣𝓁} 𝑤𝓁 {𝑣𝓁 , 𝑣𝓁+1}
𝑥𝓁 {𝑦𝓁 , 𝑦𝓁+1} 𝑧𝓁 {𝑦𝓁}

Fig. 2. Graphical structure of 𝑇6 .

𝑆 ∩𝑁[𝑖𝓁] = {𝑗𝓁}, 𝑆 ∩𝑁[𝑘𝓁] = {𝑗𝓁 , 𝑗𝓁+1}, 𝑆 ∩𝑁[𝑙𝓁] = {𝑚𝓁 ,𝑚𝓁+1}, 𝑆 ∩𝑁[𝑛𝓁] = {𝑚𝓁},

𝑆 ∩𝑁[𝑜𝓁] = {𝑝𝓁}, 𝑆 ∩𝑁[𝑞𝓁] = {𝑝𝓁 , 𝑝𝓁+1}, 𝑆 ∩𝑁[𝑟𝓁] = {𝑠𝓁 , 𝑠𝓁+1}, 𝑆 ∩𝑁[𝑡𝓁] = {𝑠𝓁},

𝑆 ∩𝑁[𝑧𝓁] = {𝑦𝓁}, 𝑆 ∩𝑁[𝑢𝓁] = {𝑣𝓁}, 𝑆 ∩𝑁[𝑤𝓁] = {𝑣𝓁 , 𝑣𝓁+1}, 𝑆 ∩𝑁[𝑥𝓁] = {𝑦𝓁 , 𝑦𝓁+1}.

The non-empty distinctive nature of all these intersections implies that 𝑆 forms a locating-dominating set. Thus, 𝛾𝑙−𝑑 (𝑇6) ≤ 30
4

implying 𝛾𝑙−𝑑 (𝑇6) = 30. This conclusion is in agreement with Theorem 3.1.
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Fig. 3. Graphical structure of the 𝑛-dimensional of 𝑁𝑛 convex polytope.

Next, we present some upper bounds on the locating-dominating number 𝛾𝑙−𝑑 of two other important families of convex polytopes.

4. Tight upper bounds for 𝜸𝒍−𝒅

Let us first consider the family 𝑁𝑛.

4.1. Convex polytope 𝑁𝑛

In [9], Fig. 3 presents the graphical structure of 𝑁𝑛. The set of vertices of 𝑁𝑛 are 𝑉 (𝑁𝑛) = {𝑠𝓁 , 𝑡𝓁 , 𝑢𝓁 , 𝑣𝓁|𝓁 = 0, 1, … , 𝑛 − 1} and 
the set of edges are 𝐸(𝑁𝑛) = {(𝑠𝓁 , 𝑠𝓁+1), (𝑠𝓁 , 𝑡𝓁), (𝑡𝓁 , 𝑡𝓁+1), (𝑡𝓁 , 𝑢𝑖), (𝑡𝓁+1, 𝑢𝓁), (𝑢𝓁 , 𝑣𝓁), (𝑣𝓁 , 𝑣𝓁+1)}.

Note that 𝑁𝑛 has 𝐹4(𝑁𝑛) = 2𝑛 and 𝐹3(𝑁𝑛) = 2𝑛.

Theorem 4.1.

𝛾𝑙−𝑑 (𝑁𝑛) ≤
⌈4 ⋅ 𝑛

3

⌉
.

Proof. The polytope 𝑁𝑛 has 4𝑛 vertices and has two distinct degrees i.e., 3 & 5. Let

𝑆 =
⎧⎪⎨⎪⎩
{𝑡3𝓁 , 𝑣3𝓁+2, 𝑢3𝓁+1, 𝑠3𝓁+1|𝓁 = 0,… , 𝑝− 1}, 𝑛 ≡ 0( mod 3), 𝑛 = 3𝑝
{𝑡3𝓁 , 𝑣3𝓁 , 𝑢3𝓁+1, 𝑠3𝓁+2|𝓁 = 0,… , 𝑝− 1}} ∪ {𝑣3𝑝, 𝑡3𝑝}, 𝑛 ≡ 1( mod 3), 𝑛 = 3𝑝+ 1
{𝑠3𝓁 , 𝑡3𝓁+1, 𝑢3𝓁+2, 𝑣3𝓁|𝓁 = 0,… , 𝑝− 1} ∪ {𝑣3𝑝, 𝑠3𝑝, 𝑡3𝑝+1}, 𝑛 ≡ 2( mod 3), 𝑛 = 3𝑝+ 2

Let us now show that vertices in 𝑆 are locating-dominating for 𝑁𝑛. Consider three potential cases in order to do that:

Table 3 illustrates that set 𝑆 have intersections with the neighborhoods of all vertices in the complement of set 𝑆 (represented as 
𝑉 ⧵ 𝑆) that are both distinct and non-empty.

Case 1: 𝑛 = 3𝑝. Table 3 illustrates that the neighborhoods of all vertices in the complement of the set 𝑆 (represented as 𝑉 ⧵ 𝑆) 
have intersections with 𝑆 that are both distinctive and non-empty. Some of the intersection formulas used in the neighborhoods of 
vertices in the complement of set 𝑆 may appear to be similar, they are in fact distinct from each other. For example, 𝑁[𝑡3𝓁+1] ∩𝑆 =
{𝑠3𝓁+1} ≠ {𝑠3(𝓁+1)} = 𝑁[𝑠3𝓁+2] ∩𝑆 . This is due to the fact that the indices used in the intersection formulas are different, resulting in 
different sets where 3(𝓁 + 1) = 3𝓁 + 3 ≠ 3𝓁 + 1. Similarly to 𝑁[𝑣3𝓁+2] ∩𝑆 = {𝑢3𝓁+2, 𝑣3(𝓁+1)} ≠ {𝑢3𝓁+2, 𝑣3𝓁} = 𝑁[𝑣3𝓁+1] ∩𝑆 , although 
there may be some common elements in these intersections, they are distinct sets with their own unique elements.

Case 2: 𝑛 = 3𝑝 + 1. Similar to the earlier possibility, the intersections of the set 𝑆 with all neighborhoods 𝑁[𝑎], represented as 
𝑆 ∩𝑁[𝑎], are distinct and non-empty. This fact is also depicted in Tables 2 & 3.

Case 3: 𝑛 = 3𝑝 + 2. Similar to both earlier possibilities, the intersections of the set 𝑆 with all neighborhoods 𝑁[𝑎], represented as 
𝑆 ∩𝑁[𝑎], are distinct and non-empty, also depicted in Tables 2 & 3. □

Remark 1. Next, we show that the upper bound in Theorem 4.1 is tight as follows: CPLEX solver has been employed by utilizing 
the ILP formulation possessing inequalities/constraints in Equation (2.1), Equation (2.2), Equation (2.3) & Equation (2.7), optimal 
solutions for the 𝛾𝑙−𝑑 (𝑁𝑛) have been derived as follows: 𝛾𝑙−𝑑(𝑁5) = 7, 𝛾𝑙−𝑑 (𝑁6) = 8, 𝛾𝑙−𝑑 (𝑁7) = 10,. . . ,𝛾𝑙−𝑑 (𝑁15) = 20,. . . ,𝛾𝑙−𝑑 (𝑁50) =
67. Thus, it turns out that, the bound in Theorem 4.1 is tight.

Take note that 𝑄𝑛 have the same set 𝑆 with 𝑁𝑛. For convex polytopes 𝑁𝑛 (Fig. 3), it only has 𝑛 extra edges (𝑢𝓁 , 𝑢𝓁+1), 𝓁 =
0, … , 𝑛 − 1 compared to 𝑄𝑛 (Fig. 4). Therefore, as depicted in Table 3, intersections of 𝑆 with vertices’ neighborhoods in 𝑉 ⧵ 𝑆 are 
5

all similar with the addition of vertices (𝑢𝓁 , 𝑢𝓁+1), 𝓁 = 0, … , 𝑛 − 1. Table 2 present additional data for 𝑁𝑛.
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Table 2

Additional data compared to 𝑄𝑛 for 𝑁𝑛 .

𝑛 𝑎 ∈ 𝑉 ⧵𝑆 𝑆 ∩𝑁[𝑎] 𝑎 ∈ 𝑉 ⧵𝑆 𝑆 ∩𝑁[𝑎]

3𝑝 𝑢3𝓁 {𝑢3𝓁+1, 𝑡3𝓁} 𝑢3𝓁+2 {𝑡3(𝓁+1), 𝑢3𝓁+1, 𝑣3(𝓁+2)}

3𝑝+ 1 𝑢3𝓁 {𝑢3𝓁+1, 𝑡3𝓁 , 𝑣3𝓁} 𝑢3𝓁+2 {𝑢3𝓁+1, 𝑡3(𝓁+1)}

3𝑝+ 2 𝑢3𝓁 {𝑢3𝓁−1, 𝑣3𝓁 , 𝑡3𝓁+1} 𝑢3𝓁+1 {𝑡3𝓁+1, 𝑢3𝓁+2}
𝑢3𝑝 {𝑡3𝑝+1, 𝑢3𝑝−1, 𝑣3𝑝}

Table 3

Locating-dominating vertices in 𝑄𝑛 .

𝑛 𝑎 ∈ 𝑉 ⧵ 𝑆 𝑆 ∩𝑁[𝑎] 𝑎 ∈ 𝑉 ⧵𝑆 𝑆 ∩𝑁[𝑎]

3𝑝 𝑠3𝓁 {𝑠3𝓁+1 , 𝑡3𝓁} 𝑠3𝓁+2 {𝑠3𝓁+1}
𝑡3𝓁+1 {𝑠3𝓁+1 , 𝑡3𝓁 , 𝑢3𝓁+1} 𝑡3𝓁+2 {𝑡3(𝓁+1), 𝑢3𝓁+1}
𝑢3𝓁 {𝑡3𝓁} 𝑢3𝓁+2 {𝑡3(𝓁+1), 𝑣3(𝓁+2)}
𝑣3𝓁 {𝑣3(𝓁−1+2)} 𝑣3𝓁+1 {𝑢3(𝓁+1), 𝑣3𝓁+2, 𝑢3𝓁+1}

3𝑝+ 1 𝑠3𝓁 {𝑠3(𝓁−1)+2, 𝑡3𝓁} 𝑠3𝓁+1 {𝑠3𝓁+2}
𝑡3𝓁+1 {𝑡3𝓁 , 𝑢3𝓁+1} 𝑡3𝓁+2 {𝑠3𝓁+2, 𝑡3(𝓁+1), 𝑢3𝓁+1}
𝑢3𝓁 {𝑡3𝓁 , 𝑣3𝓁} 𝑢3𝓁+2 {𝑡3(𝓁+1)}
𝑣3𝓁+1 {𝑣3𝓁+1 , 𝑣3𝓁} 𝑣3𝓁+2 {𝑣3(𝓁+1)}
𝑠3𝑝 {𝑡3𝑝, 𝑠3(𝑝−1)+2} 𝑢3𝑝 {𝑡0, 𝑡3𝑝, 𝑣3𝑝}
𝑠0 {𝑡0}

3𝑝+ 2 𝑠3𝓁+1 {𝑠3𝓁 , 𝑡3𝓁+1} 𝑠3𝓁+2 {𝑠3(𝓁+1)}
𝑡3𝓁 {𝑠3𝓁 , 𝑡3𝓁+1, 𝑢3(𝓁−1)+2} 𝑡3𝓁+2 {𝑡3𝑖+1, 𝑢3𝑖+2}
𝑢3𝓁 {𝑡3𝓁+1, 𝑣3𝓁} 𝑢3𝓁+1 {𝑡3𝓁+1}
𝑣3𝓁+1 {𝑣3𝓁} 𝑣3𝓁+2 {𝑢3𝓁+2, 𝑣3(𝓁+1)}
𝑡3𝑝 {𝑠3𝑝, 𝑡3𝑝, 𝑢3(𝑝−1)+2} 𝑢3𝑝 {𝑡3𝑝+1, 𝑣3𝑝}
𝑠3𝑝+1 {𝑠3𝑝, 𝑡3𝑝+1} 𝑢3𝑝+1 {𝑡3𝑝+1}
𝑣3𝑝+1 {𝑣3𝑝} 𝑡0 {𝑠0, 𝑡1, 𝑡3𝑝+1}

Fig. 4. Graphical structure of the 𝑛-dimensional of 𝑄𝑛 convex polytope.

The information presented in both Table 2 and Table 3 indicates that, intersections of 𝑆 with the neighborhoods of every vertex 
in 𝑉 ⧵ 𝑆 are distinct and non-empty, based on all 3 cases. Thus 𝑆 is a locating-dominating set for both 𝑄𝑛 and 𝑁𝑛. Therefore, 
𝛾𝑙−𝑑 (𝑁𝑛) ≤

⌈
4⋅𝑛
3

⌉
, since

|𝑆| = ⌈4 ⋅ 𝑛
3

⌉
.

Next, Theorem 4.1 is explained with the help of an example. For the example, we consider 7-dimensional 𝑁𝑛, i.e., 𝑁7. See Fig. 5

for a depiction of 𝑁7.

Example 2. We employ Theorem 4.1 to show that 𝛾𝑙−𝑑 (𝑁7) = 10. We consider the set 𝑆 = {𝑎2, 𝑎5, 𝑏0, 𝑏3, 𝑏6, 𝑐1, 𝑐4, 𝑑0, 𝑑3, 𝑑6}. Note 
that |𝑆| = 10. We show that 𝑆 forms a locating-dominating set. The intersections are

𝑆 ∩𝑁[𝑎0] = {𝑏0}, 𝑆 ∩𝑁[𝑎1] = {𝑎2}, 𝑆 ∩𝑁[𝑎3] = {𝑎2, 𝑏3}, 𝑆 ∩𝑁[𝑎4] = {𝑎5}, 𝑆 ∩𝑁[𝑎6] = {𝑎5, 𝑏6},
6

𝑆 ∩𝑁[𝑏1] = {𝑏0, 𝑐1} , 𝑆 ∩𝑁[𝑏2] = {𝑎2, 𝑏3, 𝑐1}, 𝑆 ∩𝑁[𝑏4] = {𝑏3, 𝑐4}, 𝑆 ∩𝑁[𝑏5] = {𝑎5, 𝑏6, 𝑐4},
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Fig. 5. Graphical structure of 𝑁7 .

𝑆 ∩𝑁[𝑐0] = {𝑏0, 𝑐1, 𝑑0}, 𝑆 ∩𝑁[𝑐2] = {𝑏3, 𝑐1}, 𝑆 ∩𝑁[𝑐3] = {𝑏3, 𝑐4, 𝑑3}, 𝑆 ∩𝑁[𝑐5] = {𝑏6, 𝑐4},

𝑆 ∩𝑁[𝑐6] = {𝑏0, 𝑏6, 𝑑6}, 𝑆 ∩𝑁[𝑑1] = {𝑐1, 𝑑0}, 𝑆 ∩𝑁[𝑑2] = {𝑑3}, 𝑆 ∩𝑁[𝑑4] = {𝑐4, 𝑑3},

𝑆 ∩𝑁[𝑑5] = {𝑑6}.

The non-empty distinctive nature of all these intersections implies that 𝑆 forms a locating-dominating set. Thus, 𝛾𝑙−𝑑 (𝑁7) ≤ 10. 
CPLEX solver has been employed by utilizing the ILP formulation possessing constraints (2.1), (2.2), (2.3) & (2.7) to show that 
𝛾𝑙−𝑑 (𝑁7) = 10. This, in fact, is in agreement with Theorem 4.1.

4.2. Convex polytope 𝑆𝑛

In [9] Fig. 7 showcased the graphical structure of 𝑆𝑛. The set of vertices of 𝑆𝑛 are 𝑉 (𝑆𝑛) = {𝑠𝓁 , 𝑡𝓁 , 𝑢𝓁 , 𝑣𝓁 , 𝑤𝓁|𝓁 = 0, 1, … , 𝑛 − 1}
and the set of edges are 𝐸(𝑆𝑛) = {(𝑠𝓁 , 𝑠𝓁+1), (𝑠𝓁 , 𝑡𝓁), (𝑡𝓁 , 𝑡𝓁+1), (𝑡𝓁 , 𝑢𝓁), (𝑢𝓁 , 𝑢𝓁+1)(𝑢𝓁 , 𝑣𝓁), (𝑢𝓁+1, 𝑣𝓁), (𝑣𝓁 , 𝑤𝓁+1)}.

For 𝑆𝑛, notice that we have 𝐹4(𝑁𝑛) = 2𝑛, 𝐹5(𝑁𝑛) = 𝑛 and 𝐹3(𝑁𝑛) = 𝑛.

Theorem 4.2.

𝛾𝑙−𝑑 (𝑆𝑛) ≤
⌈5 ⋅ 𝑛

3

⌉
.

Proof. Let

𝑆 =

⎧⎪⎪⎨⎪⎪⎩
{𝑡3𝓁 , 𝑠3𝓁+1, 𝑢3𝓁+1,𝑤3𝓁 , 𝑣3𝓁+2|𝓁 = 0,… , 𝑝− 1}, 𝑛 ≡ 0( mod 3), 𝑛 = 3𝑝
{𝑠3𝑝, 𝑢3𝑝,𝑤3𝑝} ∪ {𝑠3𝓁 , 𝑡3𝓁+2, 𝑢3𝓁 , 𝑣3𝓁+1,𝑤3𝓁|𝓁 = 0,… , 𝑝− 1}, 𝑛 ≡ 1( mod 3), 𝑛 = 3𝑝+ 1
{𝑠3𝑝+1, 𝑡3𝑝, 𝑢3𝑝+1,𝑤3𝑝+1}
∪{𝑠3𝓁+1,𝑤3𝓁+1, 𝑢3𝓁+1, 𝑡3𝓁 , 𝑣3𝓁+2|𝓁 = 0,… , 𝑝− 1}, 𝑛 ≡ 2( mod 3), 𝑛 = 3𝑝+ 2

Next, we deliver that the vertices in 𝑆 form a locating-dominating set in 𝑈𝑛. We need to take into consideration three potential 
cases to achieve that, just as we did in the proofs of earlier theorems. In all three cases, Table 5 demonstrates that the vertices’ 
neighborhoods in the complement of the set 𝑆 (represented as 𝑉 ⧵ 𝑆) have intersections with the set 𝑆 that are both distinct and 
non-empty.

Take note that 𝑈𝑛 have the same set 𝑆 with 𝑆𝑛. For convex polytopes 𝑆𝑛 (Fig. 7), it only has 𝑛 extra edges (𝑢𝓁 , 𝑢𝓁+1), 𝓁 = 0, … , 𝑛 −1
compared to 𝑈𝑛 (Fig. 6). Therefore, as depicted in Table 3, intersections of 𝑆 with the neighborhoods of the vertices in 𝑉 ⧵𝑆 are all 
similar with the addition of vertices (𝑢𝓁 , 𝑢𝓁+1), 𝓁 = 0, … , 𝑛 − 1. Table 4 present additional data for 𝑆𝑛.

The information presented in both Table 4 and Table 5 indicates that, intersections of 𝑆 with the neighborhoods of every vertex 
in 𝑉 ⧵ 𝑆 are distinct and non-empty, based on all 3 cases. Thus 𝑆 is a locating-dominating set for both 𝑈𝑛 and 𝑆𝑛. Therefore, 
𝛾𝑙−𝑑 (𝑆𝑛) ≤

⌈
5⋅𝑛
3

⌉
, since

|𝑆| = ⌈5 ⋅ 𝑛
3

⌉
. □

Remark 2. Next, we show that the upper bound in Theorem 4.2 is tight as follows: CPLEX solver has been employed by utilizing the 
7

ILP formulation possessing inequalities/constraints (2.1), (2.2), (2.3) & (2.7), optimal solutions for the 𝛾𝑙−𝑑(𝑆𝑛) have been derived 
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Fig. 6. Graphical structure of the 𝑛-dimensional of 𝑈𝑛 convex polytope.

Table 4

Additional data compared to 𝑈𝑛 for 𝑆𝑛 .

𝑛 𝑎 ∈ 𝑉 ⧵𝑆 𝑆 ∩𝑁[𝑎] 𝑎 ∈ 𝑉 ⧵𝑆 𝑆 ∩𝑁[𝑎]

3𝑝 𝑢3𝓁 {𝑡3𝓁 , 𝑣3(𝓁−1)+2, 𝑢3𝓁+1} 𝑢3𝓁+2 {𝑣3𝓁+2, 𝑢3𝓁+1}

3𝑝+ 1 𝑢3𝓁+1 {𝑣3𝓁+1 , 𝑢3𝓁} 𝑢3𝓁+2 {𝑣3𝓁+1, 𝑡3𝓁+2, 𝑢3𝓁+1}

3𝑝+ 2 𝑢3𝓁 {𝑡3𝓁 , 𝑢3𝓁+1, 𝑣3(𝓁−1)+2} 𝑢3𝓁+2 {𝑣3𝓁+2, 𝑢3𝓁+1}
𝑢3𝑝 {𝑣3(𝑝−1)+2, 𝑢3𝑝+1, 𝑡3𝑝} 𝑢0 {𝑡0, 𝑢1}

Fig. 7. Graphical structure of the 𝑛-dimensional of 𝑆𝑛 convex polytope.

as follows: 𝛾𝑙−𝑑 (𝑆5) = 9, 𝛾𝑙−𝑑 (𝑆6) = 10, 𝛾𝑙−𝑑(𝑆7) = 12,. . . ,𝛾𝑙−𝑑 (𝑆15) = 25,. . . ,𝛾𝑙−𝑑 (𝑆50) = 84. Thus, it turns out that, the bound in 
Theorem 4.2 is tight.

Next, Theorem 4.2 is explained with help of an example. For the example, we consider 6-dimensional 𝑆𝑛, i.e., 𝑆6. See Fig. 8 for 
a depiction of 𝑆6.

Example 3. We employ Theorem 4.2 to show that 𝛾𝑙−𝑑 (𝑆6) = 10. We consider the set 𝑆 = {𝑎1, 𝑎4, 𝑏0, 𝑏3, 𝑐1, 𝑐4, 𝑑2, 𝑑5, 𝑒0, 𝑒3}. Note that |𝑆| = 10. We show that 𝑆 forms a locating-dominating set. The intersections are

𝑆 ∩𝑁[𝑎0] = {𝑎1, 𝑏0}, 𝑆 ∩𝑁[𝑎2] = {𝑎1}, 𝑆 ∩𝑁[𝑎3] = {𝑎4, 𝑏3}, 𝑆 ∩𝑁[𝑎5] = {𝑎4},

𝑆 ∩𝑁[𝑏1] = {𝑎1, 𝑏0, 𝑐1}, 𝑆 ∩𝑁[𝑏2] = {𝑏3}, 𝑆 ∩𝑁[𝑏4] = {𝑎4, 𝑏3, 𝑐4} 𝑆 ∩𝑁[𝑏5] = {𝑏0},

𝑆 ∩𝑁[𝑐0] = {𝑏0, 𝑐1, 𝑑5}, 𝑆 ∩𝑁[𝑐2] = {𝑐1, 𝑑2}, 𝑆 ∩𝑁[𝑐3] = {𝑏3, 𝑐4, 𝑑2}, 𝑆 ∩𝑁[𝑐5] = {𝑐4, 𝑑5},

𝑆 ∩𝑁[𝑑0] = {𝑐1, 𝑒0}, 𝑆 ∩𝑁[𝑑1] = {𝑒1}, 𝑆 ∩𝑁[𝑑3] = {𝑐4, 𝑒3}, 𝑆 ∩𝑁[𝑑4] = {𝑐4}, 𝑆 ∩𝑁[𝑒1] = {𝑒0},
8

𝑆 ∩𝑁[𝑒2] = {𝑑2, 𝑒3}, 𝑆 ∩𝑁[𝑒4] = {𝑒3}, 𝑆 ∩𝑁[𝑒5] = {𝑑5, 𝑒0}.



Heliyon 10 (2024) e29304S. Hayat, N. Kartolo, A. Khan et al.

Table 5

Locating-dominating vertices in 𝑈𝑛 .

𝑛 𝑎 ∈ 𝑉 ⧵𝑆 𝑆 ∩𝑁[𝑎] 𝑎 ∈ 𝑉 ⧵𝑆 𝑆 ∩𝑁[𝑎]

3𝑝 𝑠3𝓁 {𝑠3𝓁+1 , 𝑡3𝓁} 𝑠3𝓁+2 {𝑠3𝓁+1}
𝑡3𝓁+1 {𝑠3𝓁+1 , 𝑡3𝓁 , 𝑢3𝓁+1} 𝑡3𝓁+2 {𝑡3(𝓁+1), 𝑢3𝓁+1}
𝑢3𝓁 {𝑡3𝓁 , 𝑣3(𝓁−1)+2} 𝑢3𝓁+2 {𝑣3𝓁+2}
𝑣3𝓁 {𝑢3𝓁+1 ,𝑤3𝓁} 𝑣3𝓁+1 {𝑢3𝓁+1}
𝑤3𝓁+1 {𝑤3𝓁} 𝑤3𝓁+2 {𝑣3𝓁+2,𝑤3(𝓁+1)}

3𝑝+ 1 𝑠3𝓁+1 {𝑠3𝓁} 𝑠3𝓁+2 {𝑠3(𝓁+1), 𝑡3𝓁+2}
𝑡3𝓁 {𝑠3𝓁 , 𝑢3𝓁 , 𝑡3(𝓁−1)+2} 𝑡3𝓁+1 {𝑡3𝓁+2}
𝑢3𝓁+1 {𝑣3𝓁+1} 𝑢3𝓁+2 {𝑡3𝓁+2, 𝑣3𝓁+1}
𝑣3𝓁 {𝑢3𝓁 ,𝑤3𝓁} 𝑣3𝓁+2 {𝑢3(𝓁+1)}
𝑤3𝓁+1 {𝑣3𝓁+1 ,𝑤3𝓁} 𝑤3𝓁+2 {𝑤3(𝓁+1)}
𝑡3𝑝 {𝑠3𝑝, 𝑡3(𝑝−1)+2, 𝑢3𝑝} 𝑣3𝑝 {𝑢3𝑝,𝑤3𝑝}
𝑡0 {𝑠0 , 𝑢0}

3𝑝+ 2 𝑠3𝓁 {𝑠3𝓁+1 , 𝑡3𝓁} 𝑠3𝓁+2 {𝑠3𝓁+1}
𝑡3𝓁+1 {𝑠3𝓁+1 , 𝑡3𝓁 , 𝑢3𝓁+1} 𝑡3𝓁+2 {𝑡3(𝓁+1)}
𝑢3𝓁 {𝑣3(𝓁−1)+2, 𝑡3𝓁} 𝑢3𝓁+2 {𝑣3𝓁+2}
𝑣3𝓁 {𝑢3𝓁+1} 𝑣3𝓁+1 {𝑢3𝓁+1, 𝑒3𝓁+1}
𝑤3𝓁 {𝑤3𝓁+1} 𝑤3𝓁+2 {𝑣3𝓁+2,𝑤3𝓁+1}
𝑠3𝑝 {𝑠3𝑝+1 , 𝑡3𝑝} 𝑢3𝑝 {𝑡3𝑝, 𝑣3(𝑝−1)+2}
𝑣3𝑝 {𝑢3𝑝+1} 𝑤3𝑝 {𝑤3𝑝+1}
𝑡3𝑝+1 {𝑠3𝑝+1 , 𝑡0, 𝑡3𝑝, 𝑢3𝑝+1} 𝑣3𝑝+1 {𝑢3𝑝+1,𝑤3𝑝+1}
𝑠0 {𝑠1 , 𝑠3𝑝+1, 𝑡0} 𝑢0 {𝑡0}
𝑤0 {𝑤1 ,𝑤3𝑝+1}

Fig. 8. Graphical structure of 𝑆6 .

The non-empty distinctive nature of all these intersections implies that 𝑆 forms a locating-dominating set. Thus, 𝛾𝑙−𝑑 (𝑆6) ≤ 10. CPLEX 
solver has been employed by utilizing the ILP formulation possessing constraints (2.1), (2.2), (2.3) & (2.7) to show that 𝛾𝑙−𝑑 (𝑆6) = 10. 
This shows that 𝛾𝑙−𝑑 (𝑆6) = 10 and this is in agreement with Theorem 4.2.

5. Application of 𝜸𝒍−𝒅 in structure-property modeling

In this section, we study an important application of the locating-dominating number in structure-property modeling of benzene 
hydrocarbons.

Structure-property modeling of the total 𝜋-electronic energy (𝐸𝜋 ) of benzenoid hydrocarbons (BHs) has been an active area 
of research recently. For instance, Lučić et al. [16] showed that the sum-connectivity and product-connectivity indices are closely 
interrelated to each other and they predict 𝐸𝜋 of BHs with significant accuracy. They chose lower 30 BHs for their study as test 
molecules. The work of Lučić et al. [16] was later extended to the generalized version of both sum/product connectivity indices i.e., 
𝜒𝛼 and 𝜒𝑠

𝛼
and derived the value(s) for which these indices give the best correlation with 𝐸𝜋 of BHs for lower 30 BHs. The study 

concluded that 𝜒−0.2661 and 𝜒𝑠
−0.5601 deliver the best prediction 𝐸𝜋 of BHs. Hayat et al. [17] (resp. Hayat et al. [18]) studied the 

predictive potential of commonly occurring degree-based (resp. distance-based) for 𝐸𝜋 of BHs. For correlation ability of eigenvalues-

based graphical indices in predicting 𝐸𝜋 of BHs, we refer the reader to [19] and [20]. For the importance of structure-property 
modeling, we refer the reader to [21–23]. Regarding some recent progress on structure-property modeling of physicochemical 
properties of nanostructures and bio-molecular networks, we refer to [24–27].

Recently, Khan [28] conducted a comparative study of seven domination-related parameters (not including 𝛾𝑙−𝑑 ) to correlate 
the 𝐸𝜋 of lower BHs. Out of those seven parameters, the study concluded that the paired domination number 𝛾𝑝 delivers the best 
9

predictive ability with correlation coefficient 𝜌 = 0.9967. The study was concluded with the following open problem:
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Fig. 9. Chemical graphs of the 30 test molecules considered for this study.

Problem 1. Does there exist a domination-related graphical parameter such that the correlation coefficient with 𝐸𝜋 of benzenoid 
hydrocarbons is 𝜌 > 0.9967?

In this section, we answer Problem 1 and show that the locating-dominating number produces even stronger predictive potential 
with 𝐸𝜋 of BHs having correlation coefficient 𝜌 = 0.9987 > 0.9967. In order to show it, we consider the lower 30 BHs as our test 
molecules. Fig. 9 exhibits the lower 30 BHs considered in this study.

Next, we compute the locating-dominating number 𝛾𝑙−𝑑 of the 30 BHs presented in Fig. 9. Table 6 delivers the locating-dominating 
number 𝛾𝑙−𝑑 and 𝐸𝜋(𝛽) measured in 𝛽 units for the 30 lower BHs showcased in Fig. 9. We used the data in Table 6 to conduct the 
detailed correlation & regression analysis. First, we calculate the correlation coefficient and it is 𝜌 = 0.9987 which is significantly 
higher than the minimum threshold in Problem 1. Next, we conduct a detailed statistical analysis of the data. Our analysis suggested 
that most data-fitting regression model is, in fact, linear. The following are the linear regression model (with 95% confidence intervals 
for the slope & intercept), correlation coefficient 𝜌, the standard error of fit 𝑠, the determination coefficient 𝑟2 for the data in Table 6.

𝐸𝜋(𝛽) = −1.003±0.5066 + 2.911±0.0490𝛾𝑙−𝑑 , 𝜌 = 0.9987, 𝑠 = 0.3134, 𝑟2 = 0.9981.

In what follows, we deliver the scatter plot between 𝛾𝑙−𝑑 and 𝐸𝜋 for 30 lower BHs. See Fig. 10.

6. Conclusion and future work

In this paper, we study the locating-dominating number of certain infinite families of convex polytopes. We find exact value 
10

of 𝛾𝑙−𝑑 for the infinite family 𝑇𝑛 and tight upper bounds on 𝛾𝑙−𝑑 are derived for two more infinite families that are 𝑁𝑛 and 𝑆𝑛. 
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Table 6

𝐸𝜋 (𝛽) and 𝛾𝑙−𝑑 values for 30 lower BHs (see Fig. 9).

Molecule 𝛾𝑙−𝑑 𝐸𝜋 (𝛽)

Benzene 3 8

Naphthalene 5 13.6832

Anthracene 7 19.3137

Phenanthrene 7 19.4483

Tetracene 9 24.9308

Benzo[c]phenanthrene 9 25.1875

Benzo[a]anthracene 9 25.1012

Chrysene 9 25.1922

Triphenylene 9 25.2745

Pyrene 9 22.5055

Pentacene 11 30.544

Benzo[a]tetracene 11 30.7255

Dibenzo[a,h]anthracene 11 30.8805

Dibenzo[a,j]anthracene 11 30.8795

Pentaphene 11 30.7627

Benzo[g]chrysene 11 30.999

Pentahelicene 11 30.9362

Benzo[c]chrysene 11 30.9386

Picene 11 30.9432

Benzo[b]chrysene 11 30.839

Dibenzo[a,c]anthracene 11 30.9418

Dibenzo[b,g]phenanthrene 11 30.8336

Perylene 10 28.2453

Benzo[e]pyrene 10 28.3361

Benzo[a]pyrene 10 28.222

Hexahelicene 13 36.6814

Benzo[ghi]perylene 11 31.4251

Hexacene 13 36.1557

Coronene 12 34.5718

Ovalene 16 46.4974

Fig. 10. Scatter plot for between 𝛾𝑙−𝑑 and 𝐸𝜋 for 30 lower BHs.

We employed an updated integer linear programming model in CPLEX solver to show tightness in the obtained upper bounds. We 
present an application of 𝛾𝑙−𝑑 in structure-property modeling of the total 𝜋-electronic energy of benzenoid hydrocarbons. This, in 
turn, answers positively to Problem 1 by Khan [28].

We propose the following open problems:

Problem 2. Find the exact values of 𝛾𝑙−𝑑 for both families of 𝑛-dimensional convex polytopes 𝑁𝑛 and 𝑆𝑛.

Problem 3. Find the exact value of 𝛾𝑙−𝑑 for the infinite families of triangular graphs & square grid graphs.

The quest for finding the most suitable domination-related parameter for predicting 𝐸𝜋 (𝛽) is still ongoing. Thus, we have the 
following problem.

Problem 4. Does there exist a domination-related graphical parameter such that the correlation coefficient with 𝐸𝜋 of benzenoid 
11

hydrocarbons is 𝜌 > 0.9987?



Heliyon 10 (2024) e29304S. Hayat, N. Kartolo, A. Khan et al.

Authors’ contributions

All authors contributed equally to this work.

Funding

S. Hayat is supported by UBD Faculty Research Grants (No. UBD/RSCH/1.4/FICBF(b)/2022/053). A. Khan was sponsored by 
the Key Laboratory of Philosophy and Social Sciences in Guangdong Province of Maritime Silk Road of Guangzhou University 
(GD22TWCXGC15) and the National Natural Science Foundation of China (Grant No. 622260-101). M.J.F. Alenazi extends his 
appreciation to Researcher Supporting Project number (RSPD2024R582), King Saud University, Riyadh, Saudi Arabia.

CRediT authorship contribution statement

Sakander Hayat: Writing – review & editing, Writing – original draft, Software, Formal analysis, Conceptualization. Naqiud-

din Kartolo: Writing – original draft, Validation, Methodology, Investigation, Formal analysis, Data curation. Asad Khan: Writing 
– review & editing, Visualization, Validation, Supervision, Project administration, Investigation, Data curation. Mohammed J.F. 
Alenazi: Writing – review & editing, Validation, Software, Resources, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Data availability

No data was used for the research described in the article. No data associated with this study was deposited into a publicly 
available repository.

Acknowledgements

The reviewers suggested significant improvement to the submitted version for which the authors are grateful.

References

[1] C. Hernando, M. Mora, I.M. Pelayo, LD-graphs and global location-domination in bipartite graphs, Electron. Notes Discrete Math. 46 (2014) 225–232.

[2] P.J. Slater, Locating dominating sets and locating-dominating sets, in: Y. Alavi, A. Schwenk (Eds.), Graph Theory, Combinatorics, and Algorithms, vol. 2, 
Proceedings of the Seventh Quadrennial International Conference on the Theory and Applications of Graphs, Western Michigan University, John Wiley & Sons, 
New York, 1995, pp. 1073–1079.
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