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Chimeric antigen receptor (CAR) T cells targeting CD19 have been successful treating

patients with relapsed/refractory B cell acute lymphoblastic leukemia (ALL) and B cell

lymphomas. However, relapse after CAR T cell therapy is still a challenge. In addition,

preclinical and early clinical studies targeting acutemyeloid leukemia (AML) have not been

as successful. This can be attributed in part to the presence of an AMLmicroenvironment

that has a dampening effect on the antitumor activity of CAR T cells. The AML

microenvironment includes cellular interactions, soluble environmental factors, and

structural components. Suppressive immune cells including myeloid derived suppressor

cells and regulatory T cells are known to inhibit T cell function. Environmental factors

contributing to T cell exhaustion, including immune checkpoints, anti-inflammatory

cytokines, chemokines, and metabolic alterations, impact T cell activity, persistence,

and localization. Lastly, structural factors of the bone marrow niche, secondary lymphoid

organs, and extramedullary sites provide opportunities for CAR T cell evasion by AML

blasts, contributing to treatment resistance and relapse. In this review we discuss the

effect of the AML microenvironment on CAR T cell function. We highlight opportunities

to enhance CAR T cell efficacy for AML through manipulating, targeting, and evading the

anti-inflammatory leukemic microenvironment.

Keywords: chimeric antigen receptor, cellular therapy, immunotherapy, acute myeloid leukemia,

microenvironment

INTRODUCTION

Chimeric Antigen Receptors (CARs) are a novel immunotherapeutic strategy that incorporates the
antigen specificity of an antibody’s single chain variable fragment (scFv) with the transmembrane
and intracellular signaling domains of the CD3ζ chain and costimulatory molecules (1, 2). CD19
targeted CAR T cell therapy has proven successful for the treatment of relapsed/refractory B cell
acute lymphoblastic leukemia (ALL) (3–7). Efforts to expand adoptive immunotherapy strategies to
acute myeloid leukemia (AML) are complicated by antigen overlap between normal hematopoietic
progenitor cells (HPCs) and leukemic blasts (8). Early clinical studies of CAR T cells for AML are
ongoing, exploring several targets including CD123 (9, 10), CD33 (11), C-type lectin-like molecule
1 (CLL-1) (12, 13), and Lewis-Y (14). Additional targets under preclinical investigation include
CD135 (FLT-3 receptor) (15–17), Folate receptor β (18), CD44v6 (19), WT1 (20), B7-H3 (21–23),
CD70 (24, 25), and CD7 (26). While clinical experience thus far has shown feasibility and safety
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of CAR T cells for AML, efficacy has been limited in comparison
to CD19-CAR T cell therapy for ALL (11, 14).

In addition to these challenges, the AML microenvironment
is highly immunosuppressive. Data on the direct impact of this
aspect on CAR T cells in AML is still emerging. However,
we can extrapolate from the well-established role of the
microenvironment in CAR T cell therapy for solid tumors (27,
28), clinical experience with CD19-CAR T cells for B-ALL, and
evidence detailing the dynamics of the AML microenvironment.
This includes complex interactions between native immune cells,
secreted factors, and structural components (Figure 1). In this
review we discuss how each of these aspects can impact CAR T
cell therapy and highlight opportunities to improve CAR T cell
therapy for AML.

CELLULAR INTERACTIONS

The AML microenvironment contains cell types which can
dampen T cell responses. These include AML blasts, myeloid-
derived suppressor cells (MDSCs), regulatory T cells (Tregs),
macrophages, and dendritic cells. Counteracting these cellular
interactions which promote leukemic survival may bolster the
efficacy of CAR T cell therapy in AML.

FIGURE 1 | Impact of suppressive AML microenvironment on immunosurveillance and CAR T cell efficacy. AML blasts increase number of suppressive immune cells,

which in turn inhibit CAR T cell activity and proliferation. Direct interactions between AML blasts and CAR T cells contribute to T cell exhaustion and decreased

proliferation. A glutamine rich and arginine low environment contributes to AML blast survival and impairs CAR T cell function. AML, acute myeloid leukemia; CAR,

chimeric antigen receptor; NK, natural killer; Treg, regulatory T cell; MDSC, myeloid derived suppressor cell; MSC, mesenchymal stem cell; DC, dendritic cell; IDO,

indoleamine 2,3-dioxygenase; ICOS, inducible T cell costimulator.

AML Blasts
In order to escape immune surveillance, AML blasts
downregulate major histocompatibility complex (MHC)
class I and II expression (29–32) and express inhibitory
ligands such as programmed death-ligand 1(PDL-1), B7-H3
(CD276), and Galectin 9 (Gal-9) (33–35). Immune checkpoint
ligands expressed on cells in the AML microenvironment
interact with receptors including programmed death receptor
1 (PD-1), cytotoxic T-lymphocyte associated protein 4
(CTLA-4), lymphocyte-activation gene 3 (LAG3), and T
cell immunoglobulin and mucin-containing-3 (TIM3) on T
cells, leading to T cell exhaustion (34, 36, 37). Despite success of
antibody-based immune checkpoint blockade for solid tumors,
only modest response has been demonstrated in early trials
for AML (38–40). While the mechanism for limited efficacy of
immune checkpoint inhibitors as monotherapy in AML is not
well-understood, disease burden is most likely one contributing
factor. Thus, there is still potential for application of checkpoint
inhibitors as combination therapies. In the case of combination
with CAR T cells, there is the additional potential benefit that
checkpoint inhibitors may improve T cell persistence and
enhance response.

CAR T cells have been designed to intrinsically block
PD-1 through secreted single chain variable fragments (scFv)
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or antibodies, shRNA, dominant-negative receptors, and
CRISPR/cas9 mediated knockout (41–44). Intrinsically blocking
PD-1 has similar preclinical efficacy in preventing PD-1
mediated T cell exhaustion as co-administration of PD-1/PDL-1
antibodies, with the added benefit of localizing the effect to the
site of T cell activity.

Additionally, AML blasts release reactive oxygen species and
indolamine 2, 3 dioxygenase (IDO). IDO in turn catabolizes
tryptophan degradation, which interferes with T cell proliferation
and effector function (45, 46). Leukemic blasts recruit other
immunosuppressive cells such as MDSCs and Tregs to the tumor
microenvironment, as well as altering metabolite availability.

Myeloid-Derived Suppressor Cells
MDSCs are immature myeloid cells that arise in the bonemarrow
from myeloid progenitors (47, 48). Their presence has been
documented in cancer patients regardless of tumor, and their
potent immunosuppressive function is widely recognized (49).
An increase in inflammatory mediators including interleukin
(IL) 6, IL1β, granulocyte-macrophage colony-stimulating factor
(GMCSF) and granulocyte-colony stimulating factor (GCSF)
drive the accumulation and inhibitory function of MDSCs.
MDSCs localize to the tumor microenvironment through
chemokines such as VEGF (50). MDSCs polarize macrophages,
inhibit natural killer (NK) cell-mediated tumor cell lysis and
recruit regulatory T cells (Tregs). They prevent T cell activation
by sequestering essential amino acids, generating reactive oxygen
species (ROS), and downregulating the expression of CD62L on
circulating T cells (51, 52).

An expansion in the number of MDSCs has been reported
in AML patients, where they inhibit T cell responses (53–56).
Expansion ofMDSC decreases CART cell efficacy in solid tumors
(57), and interventions that aim to inhibit MDSC function have
had preclinical success in improving CAR T cell function (58).
Given this inhibitory role on T cell proliferation and activity,
MDSCs have the potential to contribute to resistance to CAR T
cell therapy. Thus, strategies that are specific for antigens such as
CD33 which are also present on MDSCs have antitumor activity
not only through T-cell mediated direct cytotoxicity of CD33+
blasts, but also through inhibition of CD33+ MDSC (55). This
is the case for a CD33xCD3 bispecific T-cell engaging antibody
(BiTE)55 and potentially of CD33-CAR T cells (59–61).

Regulatory T Cells
Tregs limit activation and proliferation of cytolytic T cells. They
act both directly through anti-inflammatory cytokine secretion
and contact dependent suppression and indirectly, by interfering
with the activation status of antigen presenting cells (62). The
AML microenvironment favors the expansion of Tregs (37, 63–
65). Expression of inducible T cell co-stimulator ligand (ICOSL)
on AML blasts stimulates T cells through inducible T cell co-
stimulator (ICOS), leading to differentiation to Treg phenotype
and expansion of the Treg subset (66). Additionally, AML blasts
and bone marrow mesenchymal cells overexpress IDO, which
promotes the emergence of a Treg phenotype and limits T cell
proliferation (67).

The depletion of Tregs in a murine AML model led
to an increase in proliferation and activity of adoptively
transferred tumor reactive cytotoxic T cells, highlighting
the immunosuppressive capabilities of Tregs in the AML
microenvironment (68). In the clinical setting a lower frequency
of Tregs has proven predictive of better antitumor response to the
CD19xCD3 bispecific BiTE blinatumomab for ALL (69).

Several strategies can potentially circumvent the inhibitory
effects of Tregs on CAR T cells. The integration of co-stimulatory
domains in second or third generation CAR T cells allows
CAR T cells to proliferate despite the inhibitory effects of Treg
cells (70). Genetic modifications in the PYAP Lck-binding motif
of CD28 costimulatory domain of a CD28.4-1BB CAR have
resulted in disruption of the IL2 signaling pathway, blocking
Treg activity with modest enhancement of efficacy in preclinical
solid tumor models (71). In addition, transgenic expression of
IL15 in CAR T cells favors proliferation of cytotoxic T cells over
Tregs (72). Additionally, the administration of lymphodepleting
chemotherapy prior to CAR T cell infusion depletes Tregs in the
tumor microenvironment and allows for expansion of adoptively
transferred CAR T cells (71).

Natural Killer Cells
NK cells that are present in the AML microenvironment
are often dysfunctional since it promotes the expression of
inhibitory Killer-Cell Immunoglobulin-like Receptors (KIRs)
resulting in decreased interferon (IFN)-γ secretion and cytolytic
capacity (73). Additionally, downregulation of micro-RNAs
(MIRs), single stranded non-coding RNAs that play a role in
gene expression, leads to a downregulation of IL2 and IL15
cytokine receptors, NKG2D, and transcription factors such as
c-myb in NK cells (74–76). Downregulation of transcription
factors inhibits the activity of naturally occurring NK cells
in the leukemic microenvironment. Despite this, the infusion
of unmodified donor-derived NK cells in post-transplant
patients has proven beneficial in controlling leukemia relapse
by contributing to Graft-vs.-Leukemia (GVL) effects (77–81).
This antitumor response can be enhanced by generation of
a cytokine-induced memory-like NK cell subset (82). Genetic
modifications to NK cells including introduction of CARs have
been investigated as a platform for cellular immunotherapy
in preclinical leukemia models (83–86). CD19-CAR NK
cells expressing IL15 have shown improved persistence, with
encouraging results in an ongoing clinical study (NCT03056339)
(86). CAR NK cells have potential benefit for use as an allogeneic
product given a lower risk of graft-vs.-host disease than T cell-
based therapies as well as the presence of native activating
receptors such as NKG2D, which may amplify antitumor activity
(77, 87–89).

Myeloid Cells
Macrophages can perform both inhibitory and stimulatory
functions. In the AML microenvironment, blasts and MDSCs
skewmacrophage differentiation to an inhibitory phenotype (90).
Inhibitory macrophages contribute to a hostile environment for
CAR T cells in AML. In patients receiving CD19-CAR T cells for
B cell lymphoma, infiltration with tumor associatedmacrophages

Frontiers in Oncology | www.frontiersin.org 3 February 2020 | Volume 10 | Article 262

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Epperly et al. AML Microenvironment Impacts CAR Therapy

diminishes response to CAR T cells (91). Macrophages have
been implicated in the pathogenesis of cytokine release syndrome
associated with CAR T cell therapy (92), evidence that
modulation of macrophage function has significance for titrating
clinical response.

Dendritic cells also play an important role in modulating
the immune microenvironment. AML blasts can cause arrest
of dendritic cell maturation, promoting immune tolerance
and inducing Treg development (93). Chemotherapy induced
cell death contributes to production of tolerogenic dendritic
cells, potentially impacting immunotherapy efforts when used
in combination (94). Driving dendritic cells toward a T cell
stimulatory phenotype could improve CAR T cell therapy. For
example, CAR T cells genetically modified to constitutively
express CD40 ligand promote secretion of the pro-inflammatory
cytokine IL12 by dendritic cells, which enhances antitumor
efficacy (95).

SOLUBLE ENVIRONMENTAL FACTORS

Many suppressive effects of the AML microenvironment
are mediated through soluble environmental factors. AML
blasts influence cells in the microenvironment to secrete
anti-inflammatory cytokines and alter chemokine-mediated
trafficking. Metabolic changes drive the microenvironment
to support leukemic cell growth and survival while limiting
immune responses.

Anti-inflammatory Cytokines and
Chemokines
Both exogenous and endogenous cytokines are integral in
promoting the expansion and effector function of CAR T
cells (96, 97). Specific cytokine signatures have been linked to
efficacy, for example increased IL6 levels observed in responders
to CD19-directed CAR T therapy for ALL (98). While the
presence of AML blasts can stimulate monocytes to secrete pro-
inflammatory cytokines including tumor necrosis factor-α (TNF-
α), IL1β, and IL6, they also cause increased production of the
anti-inflammatory cytokine IL10 (93). Additionally, increased
Treg subsets contribute to production of IL10 and transforming
growth factor β (TGF-β), which can limit the effector function
of CAR T cells (66). In analysis of CD123-CAR T cells targeting
AML, TNF-α and IFN-γ upregulate CD123 expression on
endothelial cells, increasing risk for capillary leak. Production of
IL6 and IL1 by monocytes and macrophages mediates cytokine
release syndrome and is associated with neurotoxicity in the
CD19-CAR clinical experience (99, 100). This illustrates that the
cytokine milieu in the leukemic microenvironment impacts not
only antitumor activity of CAR T cells, but also toxicities.

Chemokines play an important role in trafficking of T cells
to the lymphoid compartment and toward malignant cells in
other sites. The serum chemokine profile in AML patients
differs from healthy controls including levels of CCL3, CCL4,
CCL5, CCL17, and CXCL10 (101, 102). Variations in systemic
chemokine levels and expression of chemokine receptors in
patients with AML have been linked with prognosis and

treatment response (103, 104). Chemokine-mediated trafficking
has been exploited to enhance CAR T cell activity. For example,
forced co-expression of the chemokine receptor CCR4 with
CAR increases accumulation of CD8+ effector CAR T cells in
the lymphoid compartment in a Hodgkin Lymphoma model
(105). Expression of chemokine ligand CCL19 together with IL7,
which are typically produced by lymphoid T-cell zones, enhances
CAR T infiltration into solid tumors (106). These strategies
are particularly relevant to targeting CAR T cells toward AML
disease burden in chloromas or extramedullary sites.

Metabolic Alterations
The immunosuppressive capabilities of the AML
microenvironment are potentiated by metabolic alterations
including changes in amino acid and nucleotide concentrations.
The AML microenvironment rich in glutamine contributes to
immunosuppression as higher concentrations of this amino
acid inhibit T cells by contributing to T cell exhaustion (107).
Inhibiting glutamine metabolism using L-asparaginase, a
chemotherapeutic agent that also has glutaminase activity, has
proven effective treating AML (108–111). In addition, culturing
T cells in glutamine restricted media can improve antitumor
activity of CD8+ T cells by reducing T cell exhaustion and
allowing for enrichment of an effector memory T cell subset
(107). Thus, modulating glutamine concentrations in culture
media has the potential to improve CAR T cell activity in a
similar fashion.

Conversely, AML blasts promote a low arginine
microenvironment mediated through the expression of arginase
II. Limiting arginine availability steers monocytes toward a
suppressive phenotype and acts as a metabolic brake for T cells,
evidenced by lower IFN-γ production and increased expression
of checkpoint inhibitors leading to decreased proliferation (112).
Inhibiting arginine metabolism enhances antitumor activity
of CD33-CAR T cells for AML in preclinical studies (113),
demonstrating the importance of metabolic dynamics on efficacy
of CAR T cell therapy.

Increases in adenosine concentration also inhibit T cell
activity in the leukemia microenvironment. Adenosine is
metabolized by CD73 and CD39 from extracellular ATP (114,
115). CD73 is expressed on tumor cells, MDSCs and Tregs (114),
while CD39 has been described on CD8+ T cells. Increased
adenosine leads to signaling through adenosine receptors,
such as adenosine 2A (A2A), which in turn results in T
cell suppression. Altering adenosine metabolism by targeting
CD73 or CD39 with monoclonal antibodies or inhibitory drugs
result in more effective antitumor activity (116). Targeting
downstream adenosine metabolism by blocking A2A receptors
with pharmacological agents has resulted in enhanced CAR T
cell therapy for solid tumors preclinically (114), but its role in
hematologic malignancies is less established.

STRUCTURAL COMPONENTS

The physical spaces where AML blasts reside include the bone
marrow niche, secondary lymphoid organs, and extramedullary
sites. For CAR T cells to be effective, they not only have to
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penetrate the complex bone marrow environment, but also
sanctuary sites such as the central nervous system, which can
harbor blasts and allow for immune escape.

Bone Marrow Niche
The bone marrow microenvironment includes hematopoietic,
endothelial, osteoblastic, and stromal components. Mesenchymal
stem cells (MSCs) are stromal cells which define the bonemarrow
microenvironment and give rise to other supporting cells. MSCs
highly express IDO, which correlates with expansion of Tregs and
could inhibit CAR T cell effector function (117).

MSCs from AML patients have a higher propensity to
differentiate into adipocytes, and the interactions between
AML blasts and adipocytes in the bone marrow niche impact
cellular metabolism (118). AML blasts induce lipolysis in bone
marrow adipocytes, shifting toward fatty acid oxidation and an
environment favorable for leukemic survival (119). These AML-
adipocyte interactions have been linked to chemotherapeutic
resistance (120, 121). The ability of substrates for fatty acid
oxidation can impact not only AML blast survival, but also
T cell persistence. Specifically, fatty acid oxidation is key in
development of memory CD8+ T cells (122, 123). Signaling
through a 4-1BB costimulatory domain is associated with a shift
toward fatty acid oxidation rather than glycolysis (124), which is
proposed as a potential mechanism for improved persistence of
41-BB containing CAR constructs (124).

Interactions through the chemokine receptor
CXCR4/CXCL12 pathway are integral in leukocyte trafficking
in the bone marrow niche, involving both the endothelium and
leukocytes. CXCR4 expression dictates AML blast migration, is
implicated in prognosis, and is being explored as a therapeutic
target (125). The CXCR4 pathway can also be involved
in migration of CAR T cells to the bone marrow niche,
demonstrated by improvement in bone marrow localization
when CAR T cells are co-transduced with CXCR4 in preclinical
studies (126).

Inflammatory responses impact the interaction betweenHPCs
and the bone marrow niche, prompting quiescent HPCs to
actively proliferate. This has been demonstrated secondary to
viral infections (127), chemotherapy, and mediated through
cytokines including the IFN-α signaling pathway (128). This
IFN-α based shift in HSC populations can sensitize leukemic
stem cells to cytotoxic therapies and has justified the use of
IFN-α in management of chronic myelogenous leukemia. IFN-
α supports proliferation of T cells, and co-administration of
IFN-α with CD19-CAR T cells has shown enhanced activity in
vitro for treatment of B cell lymphoma (129). The impact on
myeloid progenitors in the bone marrow niche and enhanced
T cell proliferation suggests a potential benefit for combining
IFN-α with CAR T cell therapy to enhance anti-leukemic effect
in AML.

Secondary Lymphoid Organs
Clinical trials with CD30-CAR T cells in Hodgkin lymphoma and
CD19-CAR T cells in non-Hodgkin lymphoma have shown that
CAR T cells do penetrate into lymph nodes and have persistent
antitumor activity (130, 131). While lymphoid tissues have an

important role to enhance antigen presentation and selective T
cell proliferation, fibroblastic reticular cells (FRC) can attenuate T
cell expansion through immune suppressive mediators including
IDO, A2A receptor, prostaglandins, and TGFβ (132, 133). This
suppressive effect has been demonstrated on native T cells both
inmurine models and humanized in vitro systems, however there
is some evidence that activated effector CAR T cells may be
resistant to this suppression (133).

Extramedullary Sites
AML demonstrates a variety of extramedullary manifestations,
either in isolation or associated with bone marrow disease (134,
135). Chloromas are noted both at the time of initial diagnosis
and relapse. The central nervous system and reproductive organs
are particularly vulnerable to relapse, including after allogeneic
hematopoietic stem cell transplant, as they can act as sanctuary
sites to harbor leukemic cells through physical barriers (136). In
order for CAR T cell therapy to be effective in treating refractory
or relapsed AML, CAR T cells must be able to penetrate and
persist in these sites. In clinical studies, CD19-CAR T cells have
been shown to infiltrate, expand, and have antitumor activity in
the CNS (137) and reproductive sites (138).

CONCLUSION

The hostile AML microenvironment has a notable role in
dampening T cell effector function. The cellular interactions,
soluble environmental factors, and structural components of
the AML microenvironment have potential to limit antitumor
efficacy of CAR T cells. Investigating complex interactions
between the AML microenvironment, CAR T cell therapy, and
other novel anti-leukemic therapies allows the opportunity to
improve upon our current regimens. Targeting antigens shared
between AML blasts and suppressive immune cells such as
CD33 and B7-H3 present the opportunity to modulate the
microenvironment while targeting tumor cells. Designing CAR
T cells capable of modulating the microenvironment’s cytokine
and chemokine milieu have the potential to enhance T cell
effector function, leading to increased antileukemic activity. In
addition, exploring combinatorial therapies with antibodies and
other pharmacological compounds, such as checkpoint inhibitors
or adenosine receptor blockers may improve CAR T cell efficacy
and persistence. In our opinion, incorporation of combination
therapies would tackle antigen escape and bypass limitations
regarding the number of additional CAR modifications that
can be performed with current technologies. Current clinical
experience has stemmed predominantly from autologous CAR
T cells. The use of allogeneic CAR T cells could overcome
limitations of autologous T cell production including logistics
and reduced T cell quality in heavily pretreated patients.
However, most allogeneic CAR T cell products require additional
genetic engineering to reduce the risk for graft-vs.-host effect; in
addition their in vivo expansion and persistence may be limited
in comparison to autologous products. As we gain insights
into the intricate dynamics that affect modulation of immune
cells, there is an opportunity to convert an immunosuppressive
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microenvironment into one that favors CAR T cell effector
function and persistence.
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