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Bacillus Calmette-Guerin (BCG) is the only licensed vaccine to prevent children from
tuberculosis (TB), whereas it cannot provide effective protection for adults. Our previous
work showed a novel vaccine candidate, liposomal adjuvant DMT emulsified with a
multistage antigen CMFO, could protect mice against primary progressive TB, latency,
and reactivation. To develop a more effective vaccine against adult TB, we aimed to further
understand the role of pattern recognition receptor (PRR) agonists monophosphoryl lipid
A (MPLA) and trehalose-6,6’-dibehenate (TDB) of the liposomal adjuvant DMT in the
CMFO subunit vaccine-induced protection. Using C57BL/6 mouse models, the current
study prepared different dimethyldioctadecylammonium (DDA)–based liposomal
adjuvants with MPLA, TDB, or both (DMT), and then compared the immunogenicity
and the protective efficacy among different liposomal adjuvanted CMFO subunit vaccines.
Our study demonstrated that CMFO/DMT provided stronger and longer-lasting protective
efficacy than the CMFO emulsified with adjuvants DDA or DDA/TDB. In addition, DDA/
MPLA adjuvanted CMFO conferred a comparable protection in the lung as CMFO/DMT
did. Higher levels of IFN-g, IL-2, TNF-a, and IL-17A secreted by splenocytes were related
with a more powerful and durable protection induced by CMFO/DMT through a putative
synergistic effect of both MPLA and TDB via binding to TLR4 and Mincle. IL-2+ CD4+ T
cells, especially IL-2+ CD4+ TCM cells, in the lung after infection were significantly
associated with the vaccine-induced protection, whereas stronger IL-10 response and
lower IL-2+ CD4+ T cells also contributed to the inferior protection of the DDA/TDB
adjuvanted CMFO subunit vaccine. Given their crucial roles in vaccine-induced protection,
combinational different PRR agonists in adjuvant formulation represent a promising
strategy for the development of next-generation TB vaccine.
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INTRODUCTION

Despite the only licensed vaccine to prevent children from
tuberculosis (TB), Bacillus Calmette-Guerin (BCG) vaccine
cannot generate lifelong immunity, which has a limited
protection period of no more than 15 years (1). Currently,
adult is a major target population in pulmonary TB epidemics,
which accounts for about 90% of the global TB burden (2).
Moreover, about one-fourth of the world population has been
estimated to be a status of latent TB infection (LTBI) and 5%–
10% of them would progress to active TB disease during lifetime
(3). Such a situation is currently being exacerbated by the
emergence of multidrug-resistant TB (MDR-TB) and
extensively drug-resistant TB (XDR-TB), and co-infection with
HIV, respectively. As a major threat on global public health, a
more effective vaccine is urgently needed to control adult TB.

Attempts have been made to develop novel TB vaccines, such
as subunit vaccines, recombinant BCG vaccines, recombinant
viral vectors, and attenuated strains, etc. (4). Among them, TB
subunit vaccine has attracted increasing attention owing to its
definite components and good safety. To produce a robust
immune response to reduce the burden of Mycobacterium
tuberculosis strains under various metabolic states in vivo, we
and others constructed multistage subunit vaccines, such as
A1D4 (Rv1813-Rv2660c-Ag85B-Rv2623-HspX) (5), WH121
(Rv3407-PhoY2-Ag85A-Rv2626c-RpfB) (6), CMFO (Rv2875-
Rv3044-Rv2073c-Rv0577) (7), ID93 (Rv3619-Rv1813-Rv3620-
Rv2608) (8), and H56 (Ag85B-ESAT-6-Rv2660c) (9), through
combining antigens expressed by logarithmically growing and
dormant M. tuberculosis strains. However, only the antigen
CMFO emulsified with the novel liposome adjuvant DMT was
validated to be an effective booster of the BCG vaccine (7, 10).
Recent clinical trials showed that the efficacy of subunit vaccine
candidates M72/AS01E (11) and H4:IC31 (12) to protect against
adult TB was only 49.7% and 30.5%, respectively. The imperfect
efficacy of clinical trials spurs us on to greater efforts to
understand the action mechanism of these candidates.

A significant proportion of adults have already received the BCG
vaccination or have been latently infected with M. tuberculosis
worldwide (3, 13). Under this context, cell-mediated immunity
might be more required to play a critical role in the vaccine-induced
protection. However, there is still a lack of effective adjuvants to
induce appropriate cellular immune responses. The role of adjuvant
as a decisive factor affecting the efficacy of TB subunit vaccine is
often overlooked. The adjuvant DMT is formulated through the
incorporation of dimethyldioctadecylammonium (DDA) liposome
Abbreviations: TB, tuberculosis; BCG, Bacillus Calmette-Guerin; DDA,
dimethyldioctadecylammonium; MPLA, monophosphoryl lipid A; TDB,
trehalose-6,6’-dibehenate; DM, DDA/MPLA; DT, DDA/TDB; DMT, DDA/
MPLA/TDB; LTBI, latent TB infection; MDR-TB, multidrug resistant TB; XDR-
TB, extensively drug resistant TB; A1D4, Rv1813-Rv2660c-Ag85B-Rv2623-HspX;
WH121, Rv3407-PhoY2-Ag85A-Rv2626c-RpfB; CMFO, Rv2875-Rv3044-
Rv2073c-Rv0577; ID93, Rv3619-Rv1813-Rv3620-Rv2608; H56, Ag85B-ESAT-6-
Rv2660c; PRR, pattern-recognition receptor; TLR4, toll-like receptor 4; antigen-
presenting cells, APCs; PDI, polydispersity index; s.c., subcutaneously; i.n.,
intranasally; CBA, cytometric bead array; FACS, fluorescence activated cell
sorting; TCM, central memory T cell; TEM, effector memory T cell.
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by toll-like receptor 4 (TLR4) and Mincle agonists,
monophosphoryl lipid A (MPLA) and trehalose-6,6’-dibehenate
(TDB) (14–16). The liposomal adjuvant AS01E is composed of
MPLA together with QS-21 (a triterpene saponin purified from
Quillaja saponaria) (11). Another liposome-based adjuvant CAF01
also makes advantage of similar components such as DDA and
TDB (17). The common component MPLA, a detoxified version of
lipopolysaccharides, can be recognized by pattern recognition
receptor (PRR) TLR4 expressing on the surface of antigen-
presenting cells (APCs), which activates NF-ĸB through MyD88
and TRIF-dependent pathways and thus induces a Th1 biased
response (14, 18–20). The other ingredient TDB, a synthetic
analogue of mycobacterial cord factor, binds to the C-type lectin
receptors Mincle and Mcl to activate macrophages (21) and could
induce MyD88 and Card9-dependent Th1/Th17 responses in vivo
against M. tuberculosis challenge (22, 23). In particular, these
adjuvants and their ingredients have been demonstrated to be safe
and tolerable in clinical trials (11, 17, 24). We assumed that different
PRR agonists might modulate the adjuvant effects of the liposomes
and thus affect the efficacy of TB subunit vaccines. To develop a
more effective vaccine against TB, we aimed to further understand
the role of both PRR agonists of the adjuvant DMT in vaccine-
induced protection. In this study, we prepared different DDA-based
liposomal adjuvants with MPLA, TDB, or both in this study, and
then compared the immunogenicity and the protective efficacy
among different liposomal adjuvanted CMFO subunit vaccines in
C57BL/6 mouse models.
MATERIALS AND METHODS

Preparation of Liposomal Adjuvants
and Vaccines
Four liposomal formulations (Table S1), namely, DDA, DDA/
MPLA (DM), DDA/TDB (DT), and DMT, were prepared using
the lipid film hydration method as previously described (25).
Briefly, weighed amounts of DDA (Avanti Polar Lipids Inc., AL,
USA), MPLA (Avanti), or TDB (Avanti) were first dissolved in
chloroform/methanol (9:1 in volume). The solvent was then
blow-dried with N2 to form a thin lipid film by using a roto-
evaporator. Samples were further dried under hypobaric
condition overnight. Unilamellar vesicles were formed by
hydrating the lipid film in sterile Tris-buffer (10 mM, pH 7.4)
at 60°C for 60 min, followed by vortex every 10 min.
Recombinant CMFO protein was expressed by a genetically
engineered expression system in E. coli and purified using
nitrilotriacetic acidmetal ion affinity chromatography (GE
Healthcare, NJ, USA) (7). The endotoxin in each purified
products was removed (<0.1 EU/ml) by ToxinEraser™

Endotoxin Removal Kit (Genscript, Nanjing, China). Different
vaccines were prepared by mixing 100 ml of CMFO solution (0.2
mg/ml) with 100 ml liposomes (Table S1). Physicochemical
property analysis of both liposomes and vaccine formulations
were performed as our previously described (25). The results of
the particle size, polydispersity index (PDI), and zeta potential
from three batches of samples were presented as mean ± SD.
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Mice and Immunization
Specific-pathogen-free female C57BL/6 mice, 6–8 weeks old,
were obtained from the Charles River Company (Beijing,
China) and maintained in animal feeding cabinet (VentiRack,
CA, USA) in an ABSL-3 biosafety laboratory. Mice were
randomly divided into different groups and immunized
subcutaneously (s.c.) with different vaccine formulations (200
ml/dose) twice in a 3-week interval. PBS, different liposomal
adjuvants DDA, DM, DT, and DMT alone were used as controls.
Approximately, 1 × 106 CFU of BCG China strain was vaccinated
once as a positive control. All experiments were repeated twice.

Challenge With Virulent M. tuberculosis
H37Rv Strain
To evaluate the short-term and long-term protective efficacy, mice
vaccinated with different formulations were challenged intranasally
(i.n.) with ~100 CFU of virulentM. tuberculosisH37Rv strain at the
10th and 20th weeks. Four weeks post-challenge, the protective
efficacy among different groups was assessed by comparing
bacterial loads in both spleen and lung (n = 6), and by scoring
the lung histopathological changes as previously described (n = 3)
(5). Briefly, bacterial load per organ was enumerated by plating 10-
fold continuous dilutions of whole organ homogenates on 7H11
agar plates (Cat#212203, BD Biosciences, NJ, USA). In addition, 2
µg/ml of 2-thiophenecarboxylic acid hydrazide (Beijing Luqiao
Corp, China) was selectively added to inhibit the residual BCG
growth. The results were shown as Log10 CFU/organ of individual
animals (n = 6). The score was obtained by measuring the
percentage of the consolidation area of the whole field of vision
(magnification ×40) and expressed as mean ± SD of five fields of
vision from each group (n = 3).

Antibody Titer Determination of Antigen-
Specific IgG and Its Subclasses
Nine weeks after immunization, CMFO-specific endpoint
titers for IgG, IgG1, and IgG2a (Cat#151276, 133045, and
157720; Abcam, Cambridge, MA, USA) were detected in sera
from each mouse by ELISA as previously described (7). The
results were shown as Log10 (endpoint titer) of individual
animals (n = 6).

Determination of Cytokines Secreted by
Splenocytes
Nine weeks after immunization or 4 weeks after infection,
splenocytes from each mouse were aseptically seeded in
triplicate in 24-well plates at the density of 5 × 106 cells/well.
The cells were re-stimulated with 10 mg CMFO for 72 h. Culture
supernatant was then collected and the cytokines secreted by
splenocytes were detected using Mouse Th1 (IFN-g, IL-2, and
TNF-a), Th2 (IL-4), Th17 (IL-17A), regulatory (IL-10 and IL-6)
Cytokine Kit (BD Biosciences) based on cytometric bead array
(CBA) technology (25).

Detection of CMFO-Specific T Cells
Nine weeks after immunization or four weeks after infection,
intracellular flow cytometry was performed as previously
Frontiers in Immunology | www.frontiersin.org 3
described (7). Briefly, 5 × 106 splenocytes or lung cells from
each mouse were seeded in triplicate in 24-well plates and
incubated with CMFO (10 mg) and anti-CD28/CD49d (1 mg,
eBioscience CA, USA) for 4 h. Then, Brefeldin A (3 mg) and
monensin solution (2 mM, eBioscience) were added for further
incubation for 12 h. RPMI 1640 medium (Hyclone, USA) was
used as a negative control. Cell stimulation cocktail (1 mg,
eBioscience) was used to monitor cell responses. Then, cells
were collected and stained for 30 min at room temperature in
the dark with surface markers, including anti-CD4-APC-Cy7
(Cat#552051, BD Pharmingen™), anti-CD8a-BV510
(Cat#563068, BD Horizon™), anti-CD44-FITC (Cat#561859,
BD Pharmingen™ ) , and ant i -CD62L-PerCP-Cy5 .5
(Cat#560513, BD Pharmingen™). After permeabilization
using a Fixation/Permeabilization Solution Kit (Cat#555028,
BD Cytofix/Cytoperm™ Plus), cells were stained with
intracellular markers, anti-IFN-g-PE (Cat#554412, BD Pharmingen™)
and anti-IL-2-APC (Cat#554429, BD Pharmingen™), for 30 min at
room temperature in the dark. Stained cells (5 × 105) were
collected and examined by an LSRII multicolor flow cytometry
(BD Biosciences). FlowJo software (Tree Star Inc., OH, USA) was
used to analyze the proportion of CMFO-specific IFN-g+ (or
IL-2+) T cells, central memory T cells (TCM, CD62L

hiCD44hi),
and effector memory T cells (TEM, CD62L

loCD44hi) per organ.
The absolute number of each T cell subpopulation was obtained
by multiplying its proportion by the total number of the
organ cells.

Statistical Analyses
Statistical analyses were performed using GraphPad Prism 5.0
(San Diego, CA, USA). Two-tailed student’s t-test was used for
two-group comparison. Multigroup analyses were carried out by
one-way ANOVA test, and Tukey’s multiple comparison test was
used for further pair-wise comparison. A significant difference
was considered when a p value was less than 0.05.
RESULTS

Physicochemical Characteristics of Both
Liposomes and CMFO-Liposome
Complexes
Different liposomes had a similar morphology and formed nearly
spherical vesicles as our previous demonstrated by transmission
electron microscopy (data not shown) (25). Compared with the
DDA liposome, an addition of TDB and/or MPLA into the DDA
liposome did not result in the change of particle size and PDI
(Figure 1). In line with previous studies (25, 26), the
incorporation of MPLA into DDA vesicles resulted in a
significant decrease of the surface charge, as demonstrated by
the lower Zeta potential values of DM and DMT. The antigen
CMFO, emulsified with different liposomes, resulted in a general
trend of increased particle size and PDI while reduced zeta
potential across all four formulations. In particular, the particle
sizes of CMFO/DM, CMFO/DT, and CMFO/DMT were
September 2020 | Volume 11 | Article 575504
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significantly smaller than that of CMFO/DDA, respectively.
However, all CMFO-liposome complexes remained cationic.

Short- and Long-Term Protection Among
Liposomal Adjuvanted Subunit Vaccines
To confirm the effect of different adjuvants on the short-term
protective efficacy, C57BL/6 mice were vaccinated with different
vaccines as described in Figure 2A and then challenged with M.
tuberculosis at the 10th week after immunization. All of liposomal
adjuvanted CMFO subunit vaccines resulted in a lower organ
bacterial load than their respective adjuvant alone treated controls
(Figures 2B, C). Notably, CMFO/DMT showed the strongest
protection among liposomal adjuvanted CMFO subunit vaccines,
as demonstrated by bacterial load in both lung and spleen, lung
histopathological changes and scores (Figures 2B–E). Consistent
with our previous findings (7), there was no statistical difference
of bacterial loads in the lung or spleen between CMFO/DMT and
BCG groups. Interestingly, when compared with the CMFO/DDA
group, CMFO/DMT exhibited a stronger ability to inhibit the
growth of M. tuberculosis in both lung and spleen, respectively.
However, mice vaccinated with CMFO/DMT only had a lower
bacterial load in their spleen than CMFO/DM or CMFO/DT did
(Figure 2C).

At the 20th week, vaccinated mice were further challenged
with M. tuberculosis to examine long-term protective efficacy
(Figure 3A). Of the all groups, PBS control group still had the
highest organ bacterial loads and lung pathological scores.
Surprisingly, mice vaccinated with CMFO/DMT had more
significantly decreased bacterial load than did with DDA or
DT adjuvanted CMFO vaccines (Figures 3B, C). In comparison
with the CMFO/DM vaccine, CMFO/DMT had milder lung
histopathological change and lower score (Figures 3D, E).
However, both groups had no statistical difference in terms of
bacterial load in lung and spleen (Figures 3B, C).

Similar Patterns of Antibody Response
Elicited by Liposomal Adjuvanted
Subunit Vaccines
To analyze the effect of different adjuvants on antibody
production, CMFO-specific antibodies, including IgG, IgG2a,
Frontiers in Immunology | www.frontiersin.org 4
and IgG1, in the sera of different vaccinated mice were tested by
ELISA. As expected, PBS and adjuvant control groups did not
produce any antigen-specific antibodies (data not shown). When
compared with the CMFO/DDA group, CMFO/DMT induced
much higher levels of CMFO-specific IgG, IgG2a, and IgG1,
while CMFO/DM elicited stronger anti-CMFO IgG and IgG2a
responses (Figures 4A–C). Interestingly, four liposome–based
CMFO subunit vaccinated groups induced similar antibody
responses, as evidenced by the ratio of IgG2a/IgG1 response to
CMFO (Figure 4D).

Differential Cytokine Profiles Among
Liposomal Adjuvanted Subunit Vaccines
CMFO-specific cytokine profiles in the supernatant of
splenocytes from different vaccination groups before and after
challenge were detected by using a CBA kit. Prior to the
exposure, splenocytes from BCG vaccinated mice secreted
the higher levels of CMFO-specific IFN-g, IL-2, IL-6, IL-17A,
and TNF-a than those from the PBS control group (Figure 5).
When compared with DDA alone, DMT alone significantly
increased the levels of CMFO-specific IFN-g, IL-6, IL-17A, or
TNF-a, while DM alone enhanced the secretion of IFN-g, IL-6,
and TNF-a. Different liposomal adjuvanted CMFO vaccinated
mice elicited higher levels of IFN-g, IL-2, IL-6, IL-17A, and TNF-
a than their respective adjuvant alone controls. In particular,
CMFO/DMT induced the highest levels of IFN-g, IL-2, IL-17A,
and TNF-a of all groups. In addition, mice vaccinated with either
CMFO/DM or CMFO/DT also produced more IFN-g, IL-2, IL-6,
TNF-a, and IL-17A than CMFO/DDA did. Only IL-2 response
to CMFO in the CMFO/DM group was stronger than that in
the CMFO/DT group (Figure 5B), while splenocytes from the
CMFO/DT vaccinated mice secreted more CMFO-specific IL-6,
IL-10, and IL17A than those of the CMFO/DM vaccinated mice
(Figures 5C–E). Interestingly, CMFO/DT induced the highest
level of IL-10 among all liposomal adjvanted CMFO vaccinated
mice (Figure 5D).

After exposure, the levels of CMFO-specific IL-10 and IL-17A
were decreased significantly, whereas IL-2 secretion from
splenocytes of different groups had a marked increase (Figure
6). Mainly, the results of different groups post-exposure were
FIGURE 1 | The particle size, PDI, and zeta potential of both liposomes and CMFO-liposome complexes. Results were shown as mean ± SD of three independent
liposome batches. *p < 0.05, **p < 0.01, ***p < 0.001, ▾p < 0.01 vs. CMFO/DDA, and ♦p < 0.05 vs. DDA.
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consistent with those pre-exposure, in addition to the
splenocytes from the CMFO/DT vaccinated mice secreted
more CMFO-specific IFN-g, IL-6, IL-10, and IL-17A than
those of the CMFO/DM vaccinated mice. Whatever before and
after exposure, the level of IL-4 in all groups was very low, less
than 1 pg/ml (data not shown).

Differential T Cell Responses Induced in
Spleens Before and After Infection
To investigate immunological effects related with the protection
against primary infection, the numbers of CMFO-specific IFN-
Frontiers in Immunology | www.frontiersin.org 5
g+ (or IL-2+) T cells, IL-2+ TCM (CD62LhiCD44hi) cells, and
IFN-g+ TEM (CD62LloCD44hi) cells in splenocytes from
different vaccinated mice were determined by fluorescence
activated cell sorting (FACS) before (Figures 7A, B) and after
infection (Figure 8). CMFO-specific IFN-g+ CD4+ T cells and
IFN-g+ CD4+ TEM cells were dominated in the spleen of all
vaccinated mice before the exposure (Figure 7B). As expected,
the BCG group had higher numbers of CMFO-specific T cells
than that from the PBS control. Liposomal adjuvants alone did
not induce any of these T cells at the 10th week. Interestingly,
CMFO/DMT induced the highest levels of IFN-g+ or IL-2+
A

B D

E

C

FIGURE 2 | Comparison of the short-term protective efficacy against primary TB infection among different regimens. (A) Vaccination and challenge schedule. At the
14th week, bacterial load in the lung (B) and the spleen (C) of different groups was enumerated and shown as Log10 CFU/organ of individual animals (n = 6). The line
in each group represented mean value. (D) The lung pathological scores of different groups. *p < 0.05, **p < 0.01, and ▾p < 0.05 vs. respective controls. (E) The
representative lung pathological changes were shown for HE and AF staining (n = 3). HE, hematoxylin-eosin; AFS, acid-fast staining. Scar bar: 400 mm for HE
staining, 20 mm for AF staining. Arrows indicated AF-positive bacteria. All experiments were repeated twice and similar results were obtained.
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CD4+ T cells, IFN-g+ CD4+ TEM cells, and IL-2+ CD4+ TCM

cells in the spleen of all groups. When compared with the
CMFO/DDA group, CMFO/DM induced more IL-2+ CD4+ T
cells and IL-2+ TCM cells, while CMFO/DT induced more IFN-
g+ or IL-2+ CD4+ T cells and IFN-g+ CD4+ TEM cells. More
importantly, both DM and DMT adjuvanted CMFO vaccines
elicited more IL-2+ CD8+ TCM cells than CMFO/DDA or
CMFO/DT did.

After infection, IL-2+ CD4+ T cells and TCM cells were
dominant in the spleen of all groups (Figure 8). Among all
groups, CMFO/DMT induced the highest levels of CMFO-
Frontiers in Immunology | www.frontiersin.org 6
specific IFN-g+ T cells, IFN-g+ CD4+ TEM cells, and IL-2+

CD4+ T cells or TCM cells. When compared with the CMFO/
DDA group, CMFO/DM induced more IFN-g+ CD4+ TEM cells,
IL-2+ CD4+ T cells, and IL-2+ CD4+ TCM cells, while CMFO/DT
induced more IFN-g+ T cells, IFN-g+ CD4+ TEM cells, IL-2+

CD8+ T cells, and IL-2+ TCM cells.

Differential T Cell Responses Elicited in
Lungs After Infection
T cell responses to the antigen CMFO were also detected in the
lung by FACS (Figures 9, 10). At the 10th week after
A

B D

E

C

FIGURE 3 | Comparison of the long-term protective efficacy against primary TB infection among different regimens. (A) Vaccination and challenge schedule. At the
24th week, bacterial load in the lung (B) and the spleen (C) of different groups was enumerated and shown as Log10 CFU/organ of individual animals (n = 6). The line
in each group represented mean value. (D) The lung pathological scores of different groups. *p < 0.05, **p < 0.01, ***p < 0.001, and ▾p < 0.05 vs. respective
controls. (E) The representative lung pathological changes were shown for HE and AF staining (n = 3). HE, hematoxylin-eosin; AFS, acid-fast staining. Scar bar: 400
mm for HE staining, 20 mm for AF staining. Arrows indicated AF-positive bacteria. All experiments were repeated twice and similar results were obtained.
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immunization, IL-2+ CD4+ T cells were dominated in all
vaccinated mice (Figure 9). Different adjuvanted CMFO
vaccines elicited higher levels of IL-2+ CD4+ T cells than
their respective adjuvant controls. However, the levels of
CMFO-specific IFN-g+ T cells or TEM cells, IL-2+ CD8+ T cells
and IL-2+ TCM cells in the lung of all groups were very low, only
less than 104.

After infection, IL-2+ CD4+ T cells or TCM cells were
still dominated in the lung of all vaccinated groups (Figure
10). Notably, CMFO/DMT elicited the highest levels of IFN-g+

or IL-2+ CD4+ T cells, IFN-g+ TEM cells, and IL-2+ CD4+ TCM

cells in the lung of all groups. When compared with the CMFO/
DDA group, CMFO/DM induced more IFN-g+ or IL-2+ T cells,
Frontiers in Immunology | www.frontiersin.org 7
IFN-g+ CD4+ TEM cells, and IL-2+ TCM cells, while CMFO/DT
induced more IFN-g+ or IL-2+ CD8+ T cells, IFN-g+ CD4+ TEM

cells, and IL-2+ TCM cells. In addition, the similar levels of IFN-g+

or IL-2+ CD8+ T cells were observed in DM, DT, and DMT
adjuvanted CMFO vaccinated groups.
DISCUSSION

Currently, only a few subunit vaccine candidates with or
without prime-boost strategies could exert superior effects
than the BCG vaccine does against adult TB in preclinical or
clinical trials (27, 28). To develop more effective vaccines, it is
September 2020 | Volume 11 | Article 57550
A B DC

FIGURE 4 | Sera antigen-specific antibody responses (n = 6). Nine weeks after immunization, CMFO-specific endpoint titers for IgG (A), IgG2a (B), and IgG1 (C) in
sera of mice were detected by ELISA. All results were shown as Log10 endpoint titer of individual animals and the line in each group represented mean value. *p <
0.05 and **p < 0.01. (D) The ratio of IgG2a/IgG1 in different vaccinated mice. All experiments were repeated twice and similar results were obtained.
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FIGURE 5 | CMFO-specific cytokine responses before exposure (n = 6). Nine weeks after immunization, CMFO-specific Th1/Th2/Th17 cytokines including IFN-g (A), IL-2 (B),
IL-6 (C), IL-10 (D), IL-17 (E), and TNF-a (F) in the supernatant of splenocytes from different vaccinated mice were detected by a CBA kit. All experiments were repeated twice
and similar results were obtained. The line in each group represented mean value. *p < 0.05, ***p < 0.001, and ▾p < 0.05 vs. respective controls.
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significant to understand the role of adjuvants on the efficacy of
subunit vaccines. In this study, we investigated the effects of
each components of the adjuvant DMT on the protection
against primary TB infection in CMFO/DMT subunit
vaccinated mice. Our study demonstrated a comparable
efficiency between CMFO/DMT and BCG vaccines in terms
of their short- and long-term protection. CMFO/DMT
achieved a stronger and longer-lasting protection than that
from CMFO emulsified with adjuvants DDA or DDA/TDB.
Interestingly, DDA/MPLA adjuvanted CMFO could confer to a
similar protection in the lung as did with CMFO/DMT.
Adjuvants DDA/MPLA, DDA/TDB, and DMT induce similar
antibody responses and all are strong inducers of Th1/Th17
cytokine responses. Compared with DMT and DDA/MPLA,
the induction of strong IL-10 response and low IL-2+ CD4+ T
cells was relevant to the reduced protection of DDA/TDB
adjuvanted CMFO subunit vaccine. Therefore, our findings
confirmed that different PRR agonists could modulate the
immune responses, especially cellular immune responses in
subunit vaccinated mice. The DMT might be a very promising
adjuvant for TB subunit vaccines.

Differential protective efficacy among liposomal adjuvanted
CMFO subunit vaccines provides us opportunities to elucidate
immunological mechanisms of different subcomponents in
liposomal adjuvants. In this study, the introduction of the
negatively charged MPLA into the DDA liposome significantly
decreased the surface charge of the liposome, which might
improve the stabi l i ty of DDA-based l iposomes as
Frontiers in Immunology | www.frontiersin.org 8
demonstrated in previous studies (25, 26). Cationic adjuvant
systems, such as IC31 and CAF01, have been proved to be
crucial for the formation of an antigen depot at the site-of-
injection, the prolonged uptake of antigens by APCs, and the
ability of a vaccine to induce adaptive immune responses (29–
31). Our previous study also confirmed that the cationic
adjuvant DMT had a slower and longer-lasting release effect
on antigens and agonists than the DDA liposome (25). The
recombinant antigen CMFO was negative charge, which could
be readily adsorbed by the positively charged DMT liposome.
The controlled release effect of the DMT adjuvant on antigens
and agonists might result in the long-term deposition of the
vaccine antigen at the injection site for APCs uptaking,
increase the time of vaccine exposure to the immune cells,
and thus facilitate the sustained Th1 responses. In the current
study, both DM and DMT adjuvanted CMFO subunit vaccines
potentiated the production of serum IgG and IgG2b antibodies
than the antigen complexed with DDA alone, indicating that
antibody-mediated immunity might also play roles in the
protection against TB, as previously reported (32–35). The
multifaceted functions of the antibody have been proposed as
mediating opsonic killing, removing immunomodulatory
antigens of M. tuberculosis and modulating inflammation
(36). Low-antibody titers and defective humoral immunity
may increase the risk of M. tuberculosis infection and
dissemination (37–39). More importantly, different liposomal
adjuvanted CMFO vaccines also elicited differential cytokine
profiles and T cell responses in the spleen and lung before and
A B

D E F

C

FIGURE 6 | CMFO-specific cytokine responses after exposure (n = 6). Nine weeks after immunization, C57BL/6 mice were challenged with M. tuberculosis. Four
weeks after infection, CMFO-specific Th1/Th2/Th17 cytokines including IFN-g (A), IL-2 (B), IL-6 (C), IL-10 (D), IL-17 (E), and TNF-a (F) in the supernatant of
splenocytes from different vaccinated mice were detected by a CBA kit. All experiments were repeated twice and similar results were obtained. The line in each
group represented mean value. *p < 0.05, **p < 0.01, ***p < 0.001, and ▾p < 0.05 vs. respective controls.
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after exposure. In line with previous reports (9, 22, 23, 40), the
adjuvant DDA/MPLA is a strong inducer of antigen-specific
IFN-g and IL-2 responses, while the adjuvant DDA/TDB
stimulated high levels of antigen-specific IFN-g and IL-17A.
However, DDA/TDB also induced the highest level of IL-10
responses to the antigen CMFO before and after infection of all
groups. IL-10 suppresses the functions of macrophages and
dendritic cells (41, 42), and thus might play a suppressive role
in the efficacy of DDA/TDB emulsified CMFO subunit vaccine.
Among all groups, DMT adjuvanted CMFO elicited the highest
levels of IFN-g, IL-2, TNF-a, and IL-17A. IFN-g can trigger the
activation of alveolar macrophage, thus killing engulfed M.
tuberculosis (43–45). TNF-a triggers cytotoxic T cells to
Frontiers in Immunology | www.frontiersin.org 9
directly kill intracellular pathogen, and recruits monocytes
and circulate antigen-specific T lymphocytes to the infection
site (46, 47). IL-2 is secreted by activated T cells, which can
promote the differentiation and proliferation of lymphoid
cells, further enhancing the cell-mediated anti-infective
immune responses (48). IL-17A plays a critical role in the
formation of mature granuloma for pathogen containment at
early disease stage (49–51). In addition, IL-6 could induce early
IFN-g expression to inhibit M. tuberculosis growth, however it
is not necessary for the development of protective immunity
(52). Therefore, the CMFO/DMT induced protection
correlates with the levels of IFN-g, IL-2, TNF-a, and IL-17A
secreted by splenocytes, which might be a synergistic effect of
A

B

FIGURE 7 | Comparison of the levels of CMFO-specific T cells in the spleen of different immunized mice before exposure (n = 6). Nine weeks after immunization,
splenocytes of different groups were collected and stained with different markers for FACS analysis. (A) Gating strategy to identify CMFO-specific T cell sub-
populations. (B) The absolute numbers of CMFO-specific IFN-g+ CD4+ (or CD8+) T cells, IL-2+ CD4+ (or CD8+) T cells, IFN-g+ CD4+ (or CD8+) TEM cells, and IL-2+

CD4+ (or CD8+) TCM cells per spleen of individual animals were shown. All experiments were repeated twice and similar results were obtained. The line in each group
represented mean value. *p < 0.05, **p < 0.01, ***p < 0.001, and ▾p < 0.05 vs. respective controls. Representative FACS plots were shown in Figure S1.
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FIGURE 8 | Comparison of the levels of CMFO-specific T cells in the spleen of different immunized mice after exposure (n = 6). Nine weeks after immunization,
C57BL/6 mice were challenged with M. tuberculosis. Four weeks after infection, the absolute numbers of CMFO-specific IFN-g+ CD4+ (or CD8+) T cells, IFN-g+ CD4+

(or CD8+) TEM cells, IL-2+ CD4+ (or CD8+) T cells, and IL-2+ CD4+ (or CD8+) TCM cells per spleen were detected. The experiments were repeated twice and similar
results were obtained. The line in each group represented mean value. ***p < 0.001 and ▾p < 0.05 vs. respective controls. Representative FACS plots were shown in
Figure S2.
FIGURE 9 | Comparison of the levels of CMFO-specific T cells in the lung of different immunized mice before exposure (n = 6). Nine weeks after immunization, the
absolute numbers of CMFO-specific IFN-g+ CD4+ (or CD8+) T cells, IFN-g+ CD4+ (or CD8+) TEM cells, IL-2+ CD4+ (or CD8+) T cells, and IL-2+ CD4+ (or CD8+) TCM
cells per lung were detected. The experiments were repeated twice and similar results were obtained. The line in each group represented mean value. *p < 0.05,
**p < 0.01, ***p < 0.001, and ▾p < 0.05 vs. respective controls. Representative FACS plots were shown in Figure S3.
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MPLA and TDB via binding to TLR4 and Mincle (Figure 11).
Most importantly, higher levels of effector and central memory
T cells correspond to the better vaccine-induced protection
against TB as demonstrated in previous studies (7, 17, 53).
Differential T cell responses in the spleen and lung before and
after exposure were also induced by different subunit vaccines
in this study. CD4+ T cells play a central role in adaptive
immune responses for TB control and even clearance. Vaccine-
induced immunological memory is the key to provide lifelong
protection. Memory T cells exist in at least two sub-
populations, namely, TEM and TCM cells (54, 55). TEM cells
express receptors needed for the migration into non-lymphoid
organs, which immediately produce microbicidal lymphokines
upon reactivation (54, 55). TCM cells express high levels of
CCR7, which direct recirculation through lymph nodes and
proliferate to produce new antigen-specific CD4+ T cells (54,
55). IL-2+ CD4+ T cells, especially IL-2+ CD4+ TCM cells might
play a pivotal role in vaccine-induced protection as these cells
were dominated in the lung of CMFO/DMT vaccinated mice
after M. tuberculosis infection. In addition, the adjuvants
DDA/MPLA and DDA/TDB could elicit different kinds of T
cells in the spleen and lung. Depending on the mechanisms of
the required protective immunity, these adjuvants can be
utilized to develop subunit vaccines for preventing against
different infectious diseases.
Frontiers in Immunology | www.frontiersin.org 11
Taken together, our findings have illustrated a synergistic
effect among subcomponents MPLA and TDB of the adjuvant
DMT, which together contribute an enhanced immunogenicity
and better longer-lasting protection of the CMFO/DMT vaccine
against primary progressive TB. Therefore, the current work is
an important extension of the CMFO/DMT vaccine. Given a
crucial role of adjuvants in vaccine-induced protection, a
combinational strategy with different PRR agonists might be
a direction deserved for further investigation toward a next-
generation TB vaccine.
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results were obtained. The line in each group represented mean value. *p < 0.05, **p < 0.01, ***p < 0.001, and ▾p < 0.05 vs. respective controls. Representative
FACS plots were shown in Figure S4.
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