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Abstract: Accumulating evidence shows that oxidative stress and inflammation contribute to the
development of cardiovascular disease. It has been suggested that propolis possesses antioxidant
and anti-inflammatory activities. In this study, the antioxidant and anti-inflammatory effects of
the main flavonoids of propolis (chrysin, pinocembrin, galangin, and pinobanksin) and propolis
extract were researched. The results showed that the cellular ROS (Reactive oxygen species) levels,
antioxidant enzymes, Nrf2 (Nuclear factor erythroid 2-related factor 2) nuclear translocation, and
the expression of NQO1 (NAD(P)H:quinone oxidoreductase 1) and HO-1 (heme oxygenase 1) were
regulated by different concentrations of individual flavonoids and propolis extract, which showed
good antioxidant and pro-oxidant effects. For example, ROS levels were decreased; SOD and CAT
activities were increased; and the expression of HO-1 protein was increased by chrysin. The results
demonstrated that NO (Nitric Oxide), NOS (Nitric Oxide Synthase), and the activation of the NF-
κB signaling pathway were inhibited in a dose-dependent manner by different concentrations of
individual flavonoids and propolis extract. Moreover, the results revealed that the phytochemicals
presented antioxidant effects at lower concentrations but pro-oxidant effects and stronger anti-
inflammatory effects at higher concentrations. To maintain the balance of antioxidant and anti-
inflammatory effects, it is possible that phytochemicals activate the Nrf2 pathway and inhibited the
NF-κB (Nuclear factor kappa B) pathway.

Keywords: antioxidant; anti-inflammatory; propolis; flavonoids; Nrf2 pathway; NF-κB pathway

1. Background

Cardiovascular disorders such as myocardial infarction are considered to be among
the leading causes of mortality. Cardiovascular disorders produce excessive oxygen free
radicals in the pathological process, and the disorders of free-radical metabolism in the state
of oxidative stress are important triggers of myocardial damage [1]. One of the essential
and indispensable immune-defense mechanisms of the human body is inflammation.
However, persistent chronic inflammation can damage the visceral function and cause
immune-system dysregulation, which can lead to a variety of chronic metabolic diseases or
cancers [2,3].

Numerous research studies confirmed that oxidative stress and inflammation are
interdependent and interrelated. The pro-inflammatory response could be enhanced by
oxidative stress. For instance, it was demonstrated that the inflammatory phenotype of
mice was modified via the genetic regulation of antioxidant defenses and ROS-generating
enzymes [4,5]. In addition, the inflammatory process is also regulated by the oxidative
damage of proteins, DNA, and nucleotides and the redox activation of protein kinases. For
instance, mtROS increase the mitochondrial permeability and initiate a process known as
“sterile inflammation” [6,7]. Another contribution of ROS to the inflammatory pathways
includes the redox modulation of inflammatory mediators (e.g., High Mobility Group Box
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1, S100 proteins, damage-associated molecular patterns) and transcriptional regulators
associated with inflammatory pathways [8–10]. Furthermore, inflammatory cells release
large amounts of ROS in the inflamed areas, which leads to excessive oxidative damage.
The activation of immune cells is principally attributed to some superoxides and nitric
oxide as well as oxidant hydrogen peroxide [11]. During inflammation, the generation of
ROS is increased by leukocytes and monocytes, which enhances histological injury [12].

Additionally, oxidative stress caused by ROS was recently regarded as a possible
mechanism in cardiovascular diseases. Numerous genes associated with oxidative stress
are regulated by critical transcription factor Nrf2 [13]. Upon activation, Nrf2 is bound to the
regulatory regions of specific antioxidant genes, increasing their expression and resulting
in the cellular response to oxidant stress [14]. Once NF-κB (nuclear factor-kappa B (NF-κB))
is activated by lipopolysaccharides (LPSs), inflammatory responses are aggravated and
magnified by the production of pro-inflammatory cytokines. Therefore, NF-κB plays a core
role in the modulation of inflammatory and immunological responses. Oxidative stress
and inflammation are regulated by transcription factors Nrf2 and NF-κB, respectively [15].

In recent years, studies showed that propolis has antioxidant, anti-inflammatory, anti-
cancer, anti-bacterial, and hepatoprotective properties. Propolis is widely used as a func-
tional food to promote public health and prevent chronic conditions such as atherosclero-
sis [16,17], type 2 diabetes mellitus [18,19], chronic kidney disease [20,21], and Alzheimer’s
disease [22]. Propolis contains flavonoids that are beneficial to human’s health [23]. To a
considerable extent, flavonoids demonstrate significant anti-inflammatory and antioxidant
effects, and these effects are associated with different concentrations. Different concen-
trations of chrysin were shown to inhibit intracellular ROS levels, and ROS is a crucial
factor in the development of oxidative stress [24]. Khezri et al. [25] indicated that chrysin
reduced the cytotoxicity, MDA levels, and lysosomal and mitochondrial damage induced
by AlP in a dose-dependent manner and increased the GSH activity induced by AlP in a
dose-dependent manner at concentrations of 10, 50, and 100 µM. Galangin was observed
to show few anti-inflammatory effects at low concentrations (0–5 µM) but to significantly
inhibit the secretion of nitric oxide (NO) and nitric oxide synthase (NOS) and even the
mRNA expression of inflammatory factors at concentrations of 20–30 µM [26]. Similarly,
galangin at 15, 30, and 60 mg/kg inhibited the expression of NF-κB p65, NOS, TNF-α, and
IL-1β in a dose-dependent manner [27].

Therefore, the fundamental mechanisms of antioxidant and anti-inflammatory ac-
tivities in H9c2 cells were investigated using propolis extract and its main flavonoids
at different concentrations. H9c2 cells are usually used to simulate heart disorders, my-
ocardial diseases, cardiovascular diseases, etc. For example, H9c2 cells were used to
induce oxidative stress in order to simulate septic cardiomyopathy by Jiang et al. [28]; to
induce inflammatory injury and apoptosis in order to simulate myocardial dysfunction
by Hao et al. [29]; to induce apoptosis in order to simulate acute myocardial infarction by
Zhang et al. [30]; and to induce oxidative stress and inflammatory damage in order to
simulate obesity and cardiovascular disease by Lama et al. [31].

2. Materials and Methods
2.1. Materials and Sample Preparation

Propolis was bought from Jiangxi Nanchang Tongxinzicao Biological Engineering
Co. Ltd. (Nanchang, China) and had been gathered in September 2015 in Nanchang
(28◦32′18′′ N, 115◦51′30′′ E). H9c2 cells were bought from Procell Life Science&Technology
Co., Ltd. (Wuhan, China); it is a clonal cell line subclonally obtained from BD1X rat embry-
onic heart tissue; Dulbecco’s modified Eagle’s medium (DMEM) and fetal bovine serum
(FBS) were bought from Biological Industries (Shanghai, China). Penicillin–streptomycin
liquid, Tris-buffered saline–Tween-20 (TBST), pinobanksin standards, and pinocembrin
standards were bought from Solarbio Life Sciences (Beijing, China). Acetone, methanol,
dimethyl sulfoxide (DMSO), and 30% hydrogen peroxide (H2O2) were bought from Damao
Co. Ltd. (Tianjin, China). Cell Counting Kit-8, Total Superoxide Dismutase Assay
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Kit with WST-8, Catalase Assay Kit, Griess Reagent, Nitric Oxide Synthase Assay Kit,
Dichlorodihydrofluorescein-Diacetate (DCF-DA), sodium dodecyl sulfate (SDS) loading
buffer (6×), sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and ultra-enhanced
chemiluminescence detection reagents were bought from Beyotime Biotechnology (Shang-
hai, China). Polyvinylidene fluoride (PVDF) membranes were bought from Roche Di-
agnostics GmbH (Mannheim, Germany). VCAM (1:3000), Nrf2 (1:1000), HO-1 (1:3000),
and NQO1 (1:3000) were purchased from Abcam (Cambridge, UK). Phospho-NF-κB p65
(1:1000), IL-6 (1:1000), and Histone H3 (1:3000) were bought from Cell Signaling Tech-
nology (Waltham, MA, USA). β-actin (1:3000) was bought from Santa Cruz (Dallas, TX,
USA). Horseradish-peroxidase-conjugated anti-rabbit (1:3000) and anti-mouse (1:3000)
were bought from Signalway Antibody (Nanjing, China).

The preparation of propolis extract was performed as follows: Propolis was de-mixed
and frozen at −18 ◦C for 24 h; then, it was crushed with a pulverizer and sieved through
a 120-mesh sieve, and the finished powder was stored at −80 ◦C. Propolis powder was
immersed in a ratio of 1:30 (w/v) in ethanol–water solution (80%, v/v) and ultrasonicated
(GA92-II DA Ultrasonic cell grinder, China) at the power of 100 W and 20 kHz. The
mixture was centrifuged (Heal Force Neofuge 15R high-speed freezing centrifuge; China)
at 4200× g for 5 min. Subsequently, the supernatant was gathered, and the extraction of
the residue was repeated four times at least under the same conditions as before. After
that, the supernatants obtained in multiple extraction experiments were mixed together,
condensed under vacuum at 37 ◦C, and finally lyophilized for further study.

2.2. Coupling of HPLC-ESI-QTOF-MS/MS

The liquid chromatography analyses were performed on an Agilent 1260 HPLC system
(Agilent, Santa Clara, CA, USA). Chromatographic separation was implemented on an
Agilent Eclipse XDB C18 (Agilent, Santa Clara, CA, USA) column with detection being
carried out at 280 nm with the operating temperatures being kept at 35 ◦C. The analyses
were completed with a gradient elution of methol (A) and 0.1% formic acid in purified
water (B). The gradient protocol was: 22–36% A, 0–5 min; 36–52% A, 5–30 min; 52–63% A,
30–65 min; 63–70% A, 65–95 min; 70–80% A, 95–120 min; 80–22% A, 120–122 min. The
injected sample volume was 5 µL, and the flow rate was 0.6 mL/min.

An Agilent 1260 HPLC (quaternary pump) system and AB Sciex TripleTOF™ 5600 mass
spectrometer were used in the ESI-QTOF-MS/MS system. An electrospray ionization source
was used to drive the TOF mass spectrometer. The capillary voltage was set to 4 kV; the
collision voltage was set to 135 V; the drying-gas temperature was set to 350 ◦C; the drying-
gas flow rate was set to 10 L/min; the nebulizer pressure was set to 40 psi; the collision gas
was nitrogen; the collision energy was set to 30 eV; the full ionic scan mode was used; and
the scan range was set to m/z = 50–2000.

2.3. Cell Culture and Treatment

H9c2 cells were plated into DMEM containing inactivated 10% FBS, 100 U/mL peni-
cillin, and 0.1 mg/mL streptomycin. The cells were incubated in an incubator at 37 ◦C with
5% CO2. Cells were seeded into appropriate dishes or plates for 24 h before being subjected
to various treatments. Chrysin, pinobanksin, galagin, and pinocembrin were dissolved
in DMSO as reserve solutions (10 mM). All reserve solutions were stored at −80 ◦C and
diluted into DMEM at various ratios prior to cellular incubating.

2.4. Cell Counting Kit-8 Assay for Cell Viability

H9c2 cells (1 × 105 cells per well) were seeded in a 96-well plate and allowed to
complete from 80% to 90% confluence before being treated. Subsequently, the cells were
exposed to various different treatments. Then, CCK-8 reagent (10 µL) was combined with
90 µL of DMEM to generate a working solution. After that, 100 µL of CCK-8 working
solution was transferred towards each well, and the cells were additionally cultured for 1 h.
Ultimately, the absorption at 450 nm was monitored with a microplate reader.
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2.5. Production of Reactive Oxygen Species (ROS)

H9c2 cells (1 × 106 cells per well) were seeded inside a six-well plate and allowed
to complete from 80% to 90% confluence before being treated. Cells were treated with
standards and propolis extract for 12 h, followed by inducing with 150 µM H2O2 for
1 h, and then incubated with 5 mM DCF-DA (fluorescent probe) in DMEM at 37 ◦C for
15–20 min in the dark. Cells were digested with 0.02% EDTA (ratios of commonly used cell
lysis solutions that are recommended in flow cytometry) and then centrifuged at 1500 rpm
for 10 min to remove the supernatant. The pellets were re-suspended in 200 µL of cold PBS.
Fluorescence intensity was monitored via flow cytometry (BD FACS, Becton Dickinson Co.,
Franklin Lakes, NJ, USA).

2.6. SOD and CAT Assays

H9c2 cells (1 × 106 cells per well) were seeded inside a six-well plate and allowed to
complete from 80% to 90% confluence before being treated. After various treatments, upon
lysis with a tissue lysis solution, the supernatant of H9c2 cells was collected to measure the
SOD and CAT activities. The supernatant was then added to the corresponding 96-well
plate in a volume of 50 µL. The intracellular SOD and CAT activities were determined
according to the procedures of Total Superoxide Dismutase Assay Kit and Catalase Assay
Kit. Finally, the absorbance at 560 nm (SOD) or 520 nm (CAT) was measured with a
microplate reader (BioTek Instruments, Santa Clara, CA, USA). The supernatant was used
to determine the protein concentration in the BCA protein-concentration assay kit.

2.7. NO and NOS Assays

H9c2 cells (1 × 106 cells per well) were seeded inside a six-well plate and allowed
to complete from 80% to 90% confluence before being treated. After various treatments,
Griess Reagent was used to detect the release of NO. Then, we took a 96-well plate and
placed 50 µL of cell culture medium into the corresponding wells. A total of 50 µL of Griess
Reagent I and 50 µL of Griess Reagent II were added to the corresponding wells. Nitric
Oxide Synthase Assay Kit was allowed to equilibrate at 25 ◦C for 20 min. The treated
96-well plate was aspirated out of the culture solution, and 100 µL of NOS Assay Buffer was
added. Another 100 µL of Assay Reaction Solution was added and gently mixed. Finally,
the absorbance at 540 nm was measured with a microplate reader (BioTek Instruments,
Santa Clara, CA, USA).

2.8. Extraction of Whole-Cell Protein, Cytosolic Protein, and Nuclear Protein

H9c2 cells (1 × 106 cells per well) were cultured in culture dishes 3 cm in diameter
and were allowed to reach from 80% to 90% of confluence before treatment. After various
treatments, cells were cleaned three times with cold PBS. Whole-cell proteins were extracted
using a protein extraction kit (Shanghai, China). Briefly, after adding 200 µL of lysate/dish,
the culture dishes were placed in an ice-box for 30 min and then centrifuged at 12,000× g
for 10 min; finally, the supernatant was obtained as whole-cell proteins.

Cytoplasmic Protein Extraction Reagent was included in Nucleoprotein and Cytoplas-
mic Protein Extraction Kit. We scraped off the treated cells with a cell scraper, centrifuged
the cells, poured off the supernatant, and added 200 µL of PMSF-added Cytoplasmic
Protein Extraction Reagent A per 20 µL of cell sediment. To completely suspend and
distribute the cell sediment, it was violently vortexed for 5 s; then, it was subjected to
an ice bath for 10–15 min. Then, 10 µL of Cell Plasma Protein Extraction Reagent B was
added. It was vigorously vortexed for 5 s; then, it was subjected to an ice bath for 1 min.
It was centrifuged at 12,000× g for 5 min at 4 ◦C after being violently vortexed for 5 s.
The resulting supernatant was the cell pulp protein obtained via extraction. For the re-
maining precipitate, we completely aspirated the residual supernatant and added 50 µL of
PMSF-added cell nuclear-protein extraction reagent. It was vigorously vortexed for 15–30 s
to completely suspend and disperse the cell precipitate; then, it was returned to the ice
bath and vigorously vortexed for another 15–30 s every 1–2 min for 30 min. Finally, it was
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centrifuged at 12,000× g for 10 min at 4 ◦C. The nucleoproteins recovered from the cells
were observed in the supernatant.

2.9. Western Blot Analysis

Proteins (about 20–30 µg) were mixed with sodium dodecyl sulfate (SDS) loading
buffer (6×; Beyotime Biotechnology, Shanghai, China), and proteins were detected via
10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and trans-
ferred to PVDF membranes using constant current. After being blocked with 5% skimmed
milk in TRIS-buffered saline–Tween-20 for 2 h at room temperature (about 25 ◦C), PVDF
membranes were incubated with the corresponding primary antibodies VCAM (1:3000),
Nrf2 (1:1000), HO-1 (1:3000), NQO1 (1:3000), phospho-NF-κB p65 (1:1000), IL-6 (1:1000),
and Histone H3 (1:3000) or β-actin (1:5000) overnight at 4 ◦C. The membranes were washed
with TBST and then incubated with horseradish-peroxidase-conjugated anti-mouse (1:3000)
or anti-rabbit (1:3000) secondary antibodies in TBST for 2 h at room temperature. Finally,
target bands were observed in enhanced chemiluminescence (ECL) detection solution using
the ECL technique (Image Lab™ Touch Software, Bio-Rad Laboratories, Inc., Hercules,
CA, USA) in the dark after three washes with TBST. The intensity of the target bands was
determined using an imaging analyzer (Image Lab™ Touch Software, Bio-Rad Laboratories,
Inc., Hercules, CA, USA). The relative expression of proteins was standardized to Histone
H3 or β-actin.

2.10. Statistical Analysis

The SPSS 26.0 statistical software tool (SPSS Inc., Chicago, IL, USA) was used to
analyze the data, which were given as mean standard errors of the mean (SEMs). Duncan’s
tests were used to assess differences after a single-factor analysis of variance (ANOVA),
and p < 0.05 was used to denote significant differences. The data were statistically analyzed
using GraphPad Prism 8 software (San Diego, CA, USA).

3. Results
3.1. Identification of Chemical Constituents in Propolis Extract

Eleven flavonoids, including chrysin, galangin, pinocembrin, pinobanksin, pinobanksin
3-O-acetate, pinobanksin-3-O-butyric, pinobanksin-5-methyl ether, apigenin-7-O-glucoside,
methoxyl-cyanide, galangin-5-methyl ether, and pinocembrin-7-methyl ether, were iden-
tified in propolis extract by comparing the coupling of HPLC-ESI-QTOF-MS/MS frag-
mentation with reference standards and literature information [32–35] (Figure 1 and
Table 1). The ESI-QTOF-MS/MS data showed that the molecular ions of Peak 5, Peak
6, Peak 7, Peak 11, Peak 14, and Peak 15 were 285.0689, 431.0854, 271.0612, 255.0663,
253.0419, and 269.0418, respectively, which corresponded with the reference standards.
The characteristic fragment ion (284.0228 [M-H-CH3]−) of Peak 8, the characteristic frag-
ment ion ([M-H-CO2-CO]− = 211.0319) of Peak 16, and the characteristic fragment ion
([M-H-CH3-CO]− = 226.0548) of Peak 17 were identified as methoxyl-cyanidenon [36].
Peaks 12 and 18 were identified as shortleaf-pine derivatives, having similar fragment
ions (271.0509 [M-acetate]− and 253.0419 [M-acetate-H2O]−), which may be related to
the cleavage of acyl bonds (acetyl, butyryl). Peaks 12 and 18 were identified as 3-O-
acetyl-pinobanksin (m/z = 313.0612) and 3-O-butyryl-pinobanksin (m/z = 341.0917), re-
spectively, based on fragment ions, molecular ions, and the literature [37]. From the
results and previous data [38], the main flavonoids of propolis extract were identical to
chrysin (30.56 ± 0.60 mg/g DW), pinocembrin (30.96 ± 0.34 mg/g DW), galangin (16.69
± 0.45 mg/g DW), and pinobanksin (9.56 ± 0.25 mg/g DW; Figure 2).
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Table 1. Flavonoids in propolis extract determined via HPLC-TOF-MS analyses.

No. Identification RT (min) Formula
[M-H]/(m/z)

Major Fragment Ions (m.z)
Measured Calculated

5 Pinobanksin-5-methylether 63.98 C16H14O5 285.0689 285.0692

[M-H-H2O]− = 267.0559
[M-H-H2O-CH3]− = 252.0333

[M-H-H2O-CH3-CO]− = 224.0397
[1,3A]− = 195.0382
[1,4A]− =138.0270

6 apigenin-7-O-glucoside 67.33 C21H20O10 431.0854 431.0849 [M-H-C6H11O5]− = 268.0295

7 pinobanksin 68.98 C15H12O5 271.0612 271.0552

[M-H-H2O]− = 253.0428
[M-H-H2O-CO]− = 225.0489
[M-H-H2O-2CO]− =197.0547

[1,3A]− = 150.9997
[1,4A]− = 125.0218

8 methoxyl-cyanidenon 88.81 C16H12O6 299.0464 299.0464
[M-H-CO2]− = 255.0218
[M-H-CH3]− = 284.0228

[M-H-CO2-CO]− = 227.0276

11 Pinocembrin 97.01 C15H12O4 255.0663 255.0582

[M-H-C2H2O]− = 213.0472
[M-H-C3O2]− = 187.0691

[1,3A]− = 150.9974
[1,3A-CO2]− = 107.0091

12 Pinobanksin 3-O-acetate 100.02 C17H14O6 313.0612 313.0609

[M-acetate]− = 271.0509
[M-acetate-H2O]− = 253.0419

[M-acetate-H2O-CO2]− = 209.0529
[M-acetate-H2O-C3O2-C2H2O]− = 143.0457

14 chrysin 107.44 C15H10O4 253.0419 253.0424

[M-H-CO2]− = 209.0517
[M-H-CO2-CO]− = 181.0579

[1,3A]− = 143.0441
[1,4A]− = 107.0000

15 galangin 110.87 C15H10O5 269.0418 269.0423 [M-H-2CO]− = 213.0504
[M-H-2CO-CO2]− = 169.0611

16 galangin-5-methylether 114.38 C16H12O5 283.052 283.0519
[M-H-CH3]− = 268.0273
[M-H-CO2]− = 239.0262

[M-H-CO2-CO]− = 211.0319

17 pinocembrin-7-methylether 123.22 C16H14O4 269.073 269.0729

[M-H-CH3]− =254.0485
[M-H-CH3-CO]− = 226.0548

[M-H-C8H8]− = 165.0132
[M-H-C8H8-CO2]− = 121.996

18 Pinobanksin-3-O-butyric 126.72 C19H18O6 341.0917 341.092 [M-butyrate-H2O]− = 253.0401
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3.2. Effects of H2O2 on Cell Viability and Production of ROS

To induce oxidative stress, H9c2 cells were exposed to multiple H2O2 concentrations (0,
50, 100, 150, 200, and 250 µM) for 1 h. Compared with the control group, cell viability was
60.24% (Figure S1) when the concentration of H2O2 reached 150 µM. In addition, the level
of intracellular ROS was significantly increased to 292.20% when the H2O2 concentration
was 150 µM. Compared with the control group, ROS levels were gradually decreased to
205.12% (Figure S2) when the concentration of H2O2 reached 250 µM. ROS levels were
gradually increased when the concentration of H2O2 was in the range of 0–150 µM. ROS
levels were gradually decreased when the concentration was above 150 µM (p < 0.05). The
concentration with the highest intracellular ROS level was used in subsequent experiments.
Cells were in a state of oxidative stress when the viability was 50–70%, which does not
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immediately cause death and can be recovered using antioxidants. Oxidation significantly
harms cells and does irreparable damage when cell viability falls below 40%. Therefore,
150 µM H2O2 was used to induce cellular oxidative damage in H9c2 cells.

3.3. Effects of LPSs on Cell Viability and Expression of Pro-Inflammatory Cytokine Proteins

The viability of H9c2 cells was unaffected by LPS concentrations of 5, 10, 15, 20, 25, 30,
35, and 40 µg/mL (Figure S3). Compared with the control group, when the concentration
of LPSs reached 10 µg/mL, the expression of VCAM and IL-6 pro-inflammatory cytokine
proteins was significantly increased to 150.76% and 181.05%, respectively (Figure S4).
The protein expression of VCAM and IL-6 was maximized when the concentrations of
LPSs reached 10 µg/mL. Therefore, 10 µg/mL LPSs were used to model the cellular
inflammatory damage.

3.4. Effects of Chrysin, Pinocembrin, Galangin, Pinobanksin, and Propolis Extract on Cell Viability

The CCK-8 assay was used to assess the potential cytotoxicity of chrysin, pinocembrin,
galangin, pinobanksin, and propolis extract in H9c2 cells. When the concentration of
chrysin was higher than 30 µM, that of galangin higher than 60 µM, and that of propolis
extract higher than 100 µg/mL, cell viability was below 95%. However, pinocembrin below
300 µM and pinobanksin below 300 µM did not inhibit the proliferation of H9c2 cells
(Figure S5). In order to avoid toxicity, the concentration of chrysin below 30 µM, that of
pinocembrin below 80 µM, that of galangin below 60 µM, that of pinobanksin below 80 µM,
and that of propolis extract below 100 µg /mL were chosen for further study.

3.5. Effects of Chrysin, Pinocembrin, Galangin, Pinobanksin, and Propolis Extract on Cell
Production of ROS

ROS are among the major intracellular oxidation products and important participants
in cell signaling. Their accumulation probably causes macrophages to undergo more apop-
tosis or autophagy [39]. Pretreatment with different sample concentrations dramatically
reduced H2O2-induced ROS generation (p < 0.05), and significant differences were found
among doses that showed a trend of first decreasing and then remaining constant or in-
creasing. On the one hand, after chrysin, pinocembrin, and propolis-extract pretreatment,
the antioxidant effects tended to first increase and subsequently decrease. On the other
hand, after galangin and pinobanksin pretreatment, the antioxidant effects tended to first
increase and subsequently stabilize.

Chrysin (Figure 3A), compared with the H2O2-induced group (373.35 ± 2.42%),
showed anti-oxidant effects in the concentration range from 5 µM (361.15± 1.57%) to 10 µM
(243.38± 1.22%), while it showed pro-oxidant effects in the concentration range from 15 µM
(331.01 ± 4.16%) to 25 µM (354.88 ± 1.58%). Pinocembrin (Figure 3B), compared with the
H2O2-induced group (373.64 ± 17.37%), showed anti-oxidant effects in the concentration
range from 5 µM (294.56 ± 7.6%) to 40 µM (179.94 ± 6.2%), while it showed pro-oxidant ef-
fects in the concentration range from 60 µM to 80 µM. Galangin (Figure 3C), compared with
the H2O2-induced group (430± 1%), showed anti-oxidant effects in the concentration range
from 10 µM (384.59± 0.87%) to 50 µM (232.27± 6.69%), while it showed pro-oxidant effects
in the concentration range from 50 µM to 60 µM (240.7 ± 2.33%). Pinobanksin (Figure 3D),
compared with the H2O2-induced group (461.88 ± 36.48%), showed anti-oxidant effects in
the concentration range from 5 µM (320.97 ± 14.04%) to 40 µM (179.94 ± 6.2%), while it
showed pro-oxidant effects in the concentration range from 40 µM to 80 µM (182.81± 4.3%).
Propolis extract (Figure 3E), compared with the H2O2-induced group (331.87 ± 4.56%),
showed anti-oxidant effects in the concentration range from 10 µg/mL (236.43 ± 3.16%) to
40 µg/mL (49.78 ± 2.6%), while it showed pro-oxidant effects in the concentration range
from 60 µg/mL (112.79 ± 1.58%) to 100 µg/mL (223.64 ± 3.17%).
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Figure 3. ROS levels induced by individual flavonoids (chrysin, pinocembrin, galangin, and 
pinobanksin) and propolis extract in 150 μM H2O2-induced H9c2 cells. H9c2 cells were stimulated with 
different concentrations of phytochemicals (chrysin, pinocembrin, galangin, pinobanksin, and propolis 
extract) for 12 h and then treated with 150 μM H2O2 for 1 h; finally, ROS levels were detected using a 
flow-cytometry assay. (A) ROS levels in chrysin-induced H9c2 cells. (B) ROS levels in pinocembrin-
induced H9c2 cells. (C) ROS levels in galangin-induced H9c2 cells. (D) ROS levels in pinobanksin-
induced H9c2 cells. (E) ROS levels in propolis-extract-induced H9c2 cells. Values are expressed as the 
mean ± SEM (n = 3). Values with different letters (a, b, c, d, e) in the figure showed significant differences 
at p < 0.05. 
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Figure 3. ROS levels induced by individual flavonoids (chrysin, pinocembrin, galangin, and
pinobanksin) and propolis extract in 150 µM H2O2-induced H9c2 cells. H9c2 cells were stimu-
lated with different concentrations of phytochemicals (chrysin, pinocembrin, galangin, pinobanksin,
and propolis extract) for 12 h and then treated with 150 µM H2O2 for 1 h; finally, ROS levels were
detected using a flow-cytometry assay. (A) ROS levels in chrysin-induced H9c2 cells. (B) ROS levels
in pinocembrin-induced H9c2 cells. (C) ROS levels in galangin-induced H9c2 cells. (D) ROS levels in
pinobanksin-induced H9c2 cells. (E) ROS levels in propolis-extract-induced H9c2 cells. Values are
expressed as the mean ± SEM (n = 3). Values with different letters (a, b, c, d, e, f, g, h) in the figure
showed significant differences at p < 0.05.
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3.6. SOD and CAT Activities

SOD plays an essential role in the conversion of superoxide to hydrogen peroxide,
while CAT converts hydrogen peroxide to water [40]. To explore the effect of the antioxi-
dant defense of chrysin, pinocembrin, galangin, pinobanksin, and propolis extract, SOD
(Figure 4) and CAT (Figure 5) activities were evaluated. Compared with the control group,
these enzyme activities were significantly decreased in the H2O2-induced group (p < 0.05).
Furthermore, after pretreatment with different sample concentrations, SOD and CAT lev-
els were increased in H9c2 cells induced by H2O2 (p < 0.05). For example, as shown in
Figures 4A and 5A, compared with the H2O2 group (SOD, 287.55 ± 1.07 U/mg protein;
CAT, 1.43 ± 0.12 U/mg protein), SOD activity (296.97 ± 2.23–298.56 ± 1.59 U/mg protein)
and CAT activity (2.06 ± 0.11–3.04 ± 0.05 U/mg protein) were increased after 5–25 µM
chrysin pretreatment.
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Figure 4. SOD levels induced by individual flavonoids (chrysin, pinocembrin, galangin, and
pinobanksin) and propolis extract in 150 µM H2O2-induced H9c2 cells. H9c2 cells were stimu-
lated with different concentrations of phytochemicals (chrysin, pinocembrin, galangin, pinobanksin,
and propolis extract) for 12 h and then treated with 150 µM H2O2 for 1 h; finally, SOD levels were
detected using Total Superoxide Dismutase Assay Kit with WST-8. (A) SOD levels in chrysin-induced
H9c2 cells. (B) SOD levels in pinocembrin-induced H9c2 cells. (C) SOD levels in galangin-induced
H9c2 cells. (D) SOD levels in pinobanksin -induced H9c2 cells. (E) SOD levels in propolis-extract-
induced H9c2 cells. Values are expressed as the mean ± SEM (n = 4). Values with different letters (a,
b, c, d, e, f) in the figure showed significant differences at p < 0.05.
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different concentrations of phytochemicals (chrysin, pinocembrin, galangin, and pinobanksin) and 
propolis extract for 12 h and then treated with 150 μM H2O2 for 1 h; finally, CAT levels were detected 
using Catalase Assay Kit. (A) CAT levels in chrysin-induced H9c2 cells. (B) CAT levels in pinocembrin-
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Figure 5. CAT levels induced by individual flavonoids (chrysin, pinocembrin, galangin, and
pinobanksin) and propolis extract in 150 µM H2O2-induced H9c2 cells. H9c2 cells were stimulated
with different concentrations of phytochemicals (chrysin, pinocembrin, galangin, and pinobanksin)
and propolis extract for 12 h and then treated with 150 µM H2O2 for 1 h; finally, CAT levels were
detected using Catalase Assay Kit. (A) CAT levels in chrysin-induced H9c2 cells. (B) CAT levels in
pinocembrin-induced H9c2 cells. (C) CAT levels in galangin-induced H9c2 cells. (D) CAT levels in
pinobanksin-induced H9c2 cells. (E) CAT levels in propolis-extract-induced H9c2 cells. Values are
expressed as the mean ± SEM (n = 4). Values with different letters (a, b, c, d, e) in the figure showed
significant differences at p < 0.05.

3.7. Effects of Chrysin, Pinocembrin, Galangin, Pinobanksin, and Propolis Extract on the
Expression of Proteins Encoded by Antioxidant Genes Downstream of Nrf2

A number of antioxidant genes are activated by nuclear factor erythroid 2-related
factor 2 (Nrf2) to protect the body from ROS damage [41,42]. Upon exposure to ROS, Nrf2 is
translocated to the nucleus and conjugated to antioxidant response elements (ARE); thereby,
the transcription of cellular-defense-related genes is up-regulated, including antioxidant
proteins, antitoxic enzymes, and drug metabolism [42,43]. Therefore, the expression of
antioxidant proteins downstream of Nrf2, HO-1 and NQO-1, was assayed via Western
blot. Compared with the control group, the expression of HO-1 and NQO-1 proteins was
significantly decreased in H2O2-induced H9c2 cells (p < 0.05). In addition, the expression
of HO-1 and NQO-1 proteins was dramatically increased after pretreatment with different
sample concentrations in H2O2-induced H9c2 cells (p < 0.05; Figure 6).
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Figure 6. HO-1 and NQO1 expression induced by individual flavonoids (chrysin, pinocembrin,
galangin, and pinobanksin) and propolis extract in 150 µM H2O2-induced H9c2 cells. H9c2 cells
were stimulated with different concentrations of phytochemicals (chrysin, pinocembrin, galangin,
pinobanksin, and propolis extract) for 12 h and then treated with 150 µM H2O2 for 1 h; finally, protein
expression was detected via Western blot. β-actin was used as an internal control. (A) HO-1 and
NQO1 expression in chrysin-induced H9c2 cells. (B) HO-1 and NQO1 expression in pinocembrin-
induced H9c2 cells. (C) HO-1 and NQO1 expression in galangin-induced H9c2 cells. (D) HO-1 and
NQO1 expression in pinobanksin-induced H9c2 cells. (E) HO-1 and NQO1 expression in propolis-
extract-induced H9c2 cells. Values are expressed as the mean ± SEM (n = 3). Values with different (a,
b, c, d, e, f, g) letters in the figure showed significant differences at p < 0.05.

On the one hand, after pretreatment with chrysin, pinocembrin, and propolis ex-
tract, the expression of the HO-1 protein tended to first increase and subsequently de-
crease. For example, with chrysin (Figure 6A), compared with the H2O2-induced group
(80.73 ± 0.88%), the expression of HO-1 was significantly increased, and the antioxi-
dant effect increased in the concentration range from 5 µM (98.85 ± 3.22%) to 15 µM
(95.31 ± 1.02%), while the expression of HO-1 was gradually decreased and showed
pro-oxidant effects in the concentration range from 20 µM (78.69 ± 9.44%) to 25 µM
(62.59 ± 0.06%). On the other hand, after galangin and pinobanksin pretreatment, the ex-
pression of the HO-1 protein tended to first increase and subsequently stabilize. For exam-
ple, with pinobanksin (Figure 6D), compared with the H2O2-induced group (46.7 ± 0.74%),
the expression of HO-1 was significantly increased, and the antioxidant effect increased
in the concentration range from 5 µM (75.13 ± 0.83%) to 40 µM (96.85 ± 3.82%), while the
expression of HO-1 was no longer consistently elevated and showed pro-oxidant effects in
the concentration range from 40 µM to 80 µM (105.95 ± 4%).

Compared to the H2O2-induced group, there were no significant differences in the
expression of NQO1 after chrysin pretreatments (p > 0.05). However, after galangin,
pinobanksin, and propolis-extract pretreatments, the expression of the NQO1 protein
tended to first increase and then stabilize. For example, with propolis extract (Figure 6E),
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compared with the H2O2-induced group (60.36 ± 0.38%), the expression of NQO1 was
significantly increased, and the antioxidant effect increased in the concentration range from
5 µM (90.88 ± 4.4%) to 40 µM (106.87 ± 7.5%), while the expression of the NQO1 protein
was no longer consistently elevated and showed pro-oxidant effects in the concentration
range from 40 µM to 100 µM (114.55 ± 1.97%). In addition, with pinocembrin ((Figure 6B),
compared with H2O2-induced group (82.59 ± 0.84%), in the concentration range from
5 µM (90.50 ± 2.3%) to 80 µM (107.87 ± 0.37%), the expression of the NQO1 protein was
significantly increased.

3.8. Activation of Nrf2 by Chrysin, Pinocembrin, Galangin, Pinobanksin, and Propolis Extract

Nrf2 nuclear translocation in H9c2 cells was detected via Western blot. Compared
with the control group, the expression of nuclear Nrf2 was significantly decreased in the
H2O2-induced group (p < 0.05). After treatment with different concentrations of chrysin
(Figure 7A), pinocembrin (Figure 7B), galangin (Figure 7C), pinobanksin (Figure 7D), and
propolis extract (Figure 7E), the translocation of Nrf2 from the cytoplasm to the nucleus
was enhanced.

On the one hand, after pretreatment with different concentrations of chrysin, pinocem-
brin, and propolis extract, the accumulation of Nrf2 in the nucleus tended to first increase
and subsequently decrease as the concentration was gradually increased. For example,
with chrysin (Figure 7A), compared with the H2O2-induced group, the translocation of
Nrf2 from the cytoplasm to the nucleus was gradually increased and showed anti-oxidant
effects in the concentration range from 5 to 10 µM, while the translocation of Nrf2 from
the cytoplasm to the nucleus was gradually decreased in a dose-dependent manner and
showed pro-oxidant effects in the concentration range from 15 µM to 25 µM.

On the other hand, after pretreatment with different concentrations of galangin and
pinobanksin, the accumulation of Nrf2 in the nucleus tended to first increase and subse-
quently stabilize as the concentration was gradually increased. For example, with galangin,
compared with the H2O2-induced group, the translocation of Nrf2 from the cytoplasm to
the nucleus was increased in a dose-dependent manner and showed anti-oxidant effects
in the concentration range from 10 µM to 50 µM, while the translocation of Nrf2 from
the cytoplasm to the nucleus reached saturation and showed pro-oxidant effects in the
concentration range from 50 µM to 60 µM.

It is worth noting that the increase in cytoplasmic Nrf2 was always accompanied by
the decrease in nuclear Nrf2. Additionally, the expression of the nuclear translocation of
Nrf2 followed a tendency similar to that of the expression of the HO-1 protein. According to
these results, the modification of Nrf2 nuclear translocation was the mechanism via which
chrysin, pinocembrin, galangin, pinobanksin, and propolis extract showed antioxidant
activity. It was found that Nrf2 translocation from the cytoplasm to the nucleus was
up-regulated (chrysin range of 5 µM–10 µM, pinocembrin range of 5 µM–40 µM, and
propolis-extract range of 5 µg/mL–40 µg/mL) and then down-regulated (chrysin range of
15 µM–25 µM, pinocembrin range of 40 µM–60 µM, and propolis-extract range of 40 µg/mL–
100 µg/mL) following treatments with chrysin, pinocembrin, and propolis extract. It was
also found that Nrf2 translocation from the cytoplasm to the nucleus was up-regulated and
then held relatively constant following treatments with 10–60 µM galangin and 5–80 µM
pinobanksin.

3.9. NO and NOS Levels

NO is catalyzed by NOS in cells, and it can trigger tissue damage and ultimately lead
to pain and inflammation [44,45]. The secretion of NO was significantly reduced by chrysin,
pinocembrin, galangin, pinobanksin, and propolis extract (p < 0.05; Figure 8). For example,
compared with the control group (2.95 ± 0.1 µM), the levels of NO (4.98 ± 0.13 µM) were
significantly increased in H9c2 cells in the LPS-induced group. Moreover, the levels of NO
were significantly reduced (1.866 ± 0.03 µM–4.69 ± 0.03 µM) by 5–25 µM chrysin.
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Figure 7. Expression of Nrf2 nuclear translocation induced by individual flavonoids (chrysin, pino‐
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Figure 7. Expression of Nrf2 nuclear translocation induced by individual flavonoids (chrysin,
pinocembrin, galangin, and pinobanksin) and propolis extract in 150 µM H2O2-induced H9c2 cells.
H9c2 cells were stimulated with different concentrations of phytochemicals (chrysin, pinocembrin,
galangin, pinobanksin, and propolis extract) for 12 h and then treated with 150 µM H2O2 for 1 h;
finally, protein expression was detected via Western blot. β-actin was used as an internal control.
(A) Expression of Nrf2 nuclear translocation in chrysin-induced H9c2 cells. (B) Expression of Nrf2
nuclear translocation in pinocembrin-induced H9c2 cells. (C) Expression of Nrf2 nuclear translocation
in galangin-induced H9c2 cells. (D) Expression of Nrf2 nuclear translocation in pinobanksin-induced
H9c2 cells. (E) Expression of Nrf2 nuclear translocation in propolis-extract-induced H9c2 cells. Values
are expressed as the mean ± SEM (n = 3). Values with different (a, b, c, d, e, f, g) letters in the figure
showed significant differences at p < 0.05.

In addition, NOS generates NO, which is an inflammatory mediator [46]. The levels
of NOS were considerably higher in the treatment group than that in the control group in
H9c2 cells induced with 10 µg/mL LPS, and the levels of NOS were significantly attenuated
by chrysin, pinocembrin, galangin, pinobanksin, and propolis extract in a dose-dependent
manner (p < 0.05; Figure 9). For example, compared with the control group (100%), the level
of NO (120 ± 14.65%) was significantly increased in H9c2 cells induced with 10 µg/mL
LPS. Moreover, the level of NO was significantly decreased (82.13 ± 2.7%–90.09 ± 0.6%)
after 5–25 µM chrysin pretreatment in H9c2 cells induced with 10 µg/mL LPS.

3.10. Chrysin, Pinocembrin, Galangin, Pinobanksin, and Propolis Extract Down-Regulated the
Expression of Pro-Inflammatory Cytokines

To explore the effects of chrysin, pinocembrin, galangin, pinobanksin, and propolis
extract on the inflammatory response of LPS-induced H9c2 cells, the expression of pro-
inflammatory cytokines was measured. Compared with the control group, the expression of
IL-6 (109.63–230.75%) and VACM proteins (p < 0.05; 167.29–245.79%) was significantly up-
regulated in the LPS-induced group. After pretreatment with the samples, the expression
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of IL-6 and VCAM proteins was significantly inhibited in LPS-induced H9c2 cells in a
dose-dependent manner (p < 0.05; Figure 10).
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Figure 8. NO levels induced by individual flavonoids (chrysin, pinocembrin, galangin, and
pinobanksin) and propolis extract in 10 µg/mL LPS-induced H9c2 cells. H9c2 cells were stimu-
lated with different concentrations of phytochemicals (chrysin, pinocembrin, galangin, pinobanksin,
and propolis extract) for 12 h and then treated with 10 µg/mL LPS for 12 h; finally, NO levels
were detected with NO Assay Kit. (A) NO levels in chrysin-induced H9c2 cells. (B) NO levels in
pinocembrin-induced H9c2 cells. (C) NO levels in galangin-induced H9c2 cells. (D) NO levels in
pinobanksin-induced H9c2 cells. (E) NO levels in propolis-extract-induced H9c2 cells. Values are
expressed as the mean ± SEM (n = 3). Values with different letters (a, b, c, d, e) in the figure showed
significant differences at p < 0.05.
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Figure 9. iNOS levels induced by individual flavonoids (chrysin, pinocembrin, galangin, and
pinobanksin) and propolis extract in 10 µg/mL LPS-induced H9c2 cells. H9c2 cells were stimulated
with different concentrations of phytochemicals (chrysin, pinocembrin, galangin, pinobanksin, and
propolis extract) for 12 h and then treated with 10 µg/mL LPS for 12 h; finally, iNOS levels were
detected with iNOS Assay Kit. (A) iNOS levels in chrysin-induced H9c2 cells. (B) iNOS levels in
pinocembrin-induced H9c2 cells. (C) iNOS levels in galangin-induced H9c2 cells. (D) iNOS levels in
pinobanksin-induced H9c2 cells. (E) iNOS levels in propolis-extract-induced H9c2 cells. Values are
expressed as the mean ± SEM (n = 3). Values with different letters (a, b, c, d) in the figure showed
significant differences at p < 0.05.
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Figure 10. Expression of pro-inflammatory cytokine proteins (VCAM1 and IL-6) induced by individ-
ual flavonoids (chrysin, pinocembrin, galangin, and pinobanksin) and propolis extract in 10 µg/mL
LPS-induced H9c2 cells. H9c2 cells were stimulated with different concentrations of phytochemicals
(chrysin, pinocembrin, galangin, pinobanksin, and propolis extract) for 12 h and then treated with
10 µg/mL LPS for 12 h; finally, the expression of pro-inflammatory cytokine proteins (VCAM1 and IL-
6) was detected via Western blot. (A) Expression of pro-inflammatory cytokine proteins (VCAM1 and
IL-6) in chrysin-induced H9c2 cells. (B) Expression of pro-inflammatory cytokine proteins (VCAM1
and IL-6) in pinocembrin-induced H9c2 cells. (C) Expression of pro-inflammatory cytokine proteins
(VCAM1 and IL-6) in galangin-induced H9c2 cells. (D) Expression of pro-inflammatory cytokine
proteins (VCAM1 and IL-6) in pinobanksin-induced H9c2 cells. (E) Expression of pro-inflammatory
cytokine proteins (VCAM1 and IL-6) in propolis-extract-induced H9c2 cells. Values are expressed as
the mean ± SEM (n = 3). Values with different letters (a, b, c, d, e, f) in the figure showed significant
differences at p < 0.05.

3.11. Inhibition of NF-κB Signaling Pathway

The NF-κB signaling pathway can be activated by the up-regulation of pro-inflammatory
cytokines [47]. After pretreatment with different concentrations of chrysin, pinocembrin,
galangin, pinobanksin, and propolis extract, the expression of the phosphorylation of the
NF-κB p65 protein was examined to explore the possible mechanism of inhibition of the
expression of VCAM1 and IL-6 as well as to confirm the effects on the NF-κB signaling
pathway. Compared with the control group, the expression of the phosphorylation of NF-κB
p65 was increased in the LPS-induced group. However, after pretreatment with the samples,
the expression of the phosphorylation of NF-κB p65 was significantly attenuated in a dose-
dependent manner (p < 0.05; Figure 11). For example, with chrysin (Figure 11A), compared
with the LPS-induced group (138.49 ± 10.2%), the expression of the p65 protein was
decreased to 212.11 ± 27.49% when the concentration of chrysin was 5 µM. The expression
of the p65 protein gradually decreased to 121.05 ± 18.9% when the concentration of chrysin
was gradually increased to 25 µM.

The results indicated that chrysin, pinocembrin, galangin, pinobanksin, and propolis
extract markedly suppressed the phosphorylation of NF-κB p65 induced by LPS.
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Figure 11. Activation of NF-κB signaling pathway induced by individual flavonoids (chrysin, pino-
cembrin, galangin, and pinobanksin) and propolis extract in 10 μg/mL LPS-induced H9c2 cells. H9c2 
cells were stimulated with different concentrations of phytochemicals (chrysin, pinocembrin, 
galangin, pinobanksin, and propolis extract) for 12 h and then treated with 10 μg/mL LPS for 12 h; 
finally, the activation of the NF-κB signaling pathway was detected via Western blot. (A) Activation 
of NF-κB signaling pathway in chrysin-induced H9c2 cells. (B) Activation of NF-κB signaling path-
way in pinocembrin-induced H9c2 cells. (C) Activation of NF-κB signaling pathway in galangin-
induced H9c2 cells. (D) Activation of NF-κB signaling pathway in pinobanksin-induced H9c2 cells. 
(E) Activation of NF-κB signaling pathway in propolis-extract-induced H9c2 cells. Values are ex-
pressed as the mean ± SEM (n = 3). Values with different letters (a, b, c, d, e, f) in the figure showed 
significant differences at p < 0.05. 

4. Discussion 
4.1. Interpretation of Antioxidant and Pro-Oxidant Effects 

In terms of structure, flavonoid compounds provide hydrogen atoms to bind to oxy-
gen radicals and prevent the formation of free radicals. Additionally, the signaling path-
ways associated with antioxidant defense systems are regulated by flavonoid compounds. 
This could be how flavonoids interact to exert their antioxidant effects. 

Firstly, the structure of a flavonoid indicates whether it has pro- or antioxidant ef-
fects. The structures of chrysin, pinocembrin, galangin, and pinobanksin are shown in 
Figure 2. It can be observed that chrysin, pinocembrin, and pinobanksin are flavonoids, 
whereas galangin is a flavonol compound. Because of the C2-C3 double bond and the C-3 
hydroxyl group, flavonols (e.g., galangin) have a stronger oxidative activity, while flavo-
noids have a lower oxidative activity [48,49]. It is worth emphasizing that the C2=C3 dou-
ble bond plays an important role in the antioxidant activity of flavonoids. Chrysin and 
galangin both feature C2=C3 double bonds, but galangin differs in that it has a C-3 hy-
droxyl group that promotes the oxidation to benzoquinone intermediates. However, the 
oxidation of galangin requires the consumption of free radicals in the system. Due to the 
lack of a B-ring ortho-hydroxyl group, the pro-oxidation effect of galangin is weaker than 
that of chrysin [50]. Therefore, a higher concentration of galangin does not show pro-oxi-
dation effects. 

Figure 11. Activation of NF-κB signaling pathway induced by individual flavonoids (chrysin,
pinocembrin, galangin, and pinobanksin) and propolis extract in 10 µg/mL LPS-induced H9c2
cells. H9c2 cells were stimulated with different concentrations of phytochemicals (chrysin, pinocem-
brin, galangin, pinobanksin, and propolis extract) for 12 h and then treated with 10 µg/mL LPS
for 12 h; finally, the activation of the NF-κB signaling pathway was detected via Western blot.
(A) Activation of NF-κB signaling pathway in chrysin-induced H9c2 cells. (B) Activation of NF-κB
signaling pathway in pinocembrin-induced H9c2 cells. (C) Activation of NF-κB signaling pathway in
galangin-induced H9c2 cells. (D) Activation of NF-κB signaling pathway in pinobanksin-induced
H9c2 cells. (E) Activation of NF-κB signaling pathway in propolis-extract-induced H9c2 cells. Values
are expressed as the mean ± SEM (n = 3). Values with different letters (a, b, c, d, e, f) in the figure
showed significant differences at p < 0.05.

4. Discussion
4.1. Interpretation of Antioxidant and Pro-Oxidant Effects

In terms of structure, flavonoid compounds provide hydrogen atoms to bind to oxygen
radicals and prevent the formation of free radicals. Additionally, the signaling pathways
associated with antioxidant defense systems are regulated by flavonoid compounds. This
could be how flavonoids interact to exert their antioxidant effects.

Firstly, the structure of a flavonoid indicates whether it has pro- or antioxidant effects.
The structures of chrysin, pinocembrin, galangin, and pinobanksin are shown in Figure 2.
It can be observed that chrysin, pinocembrin, and pinobanksin are flavonoids, whereas
galangin is a flavonol compound. Because of the C2-C3 double bond and the C-3 hydroxyl
group, flavonols (e.g., galangin) have a stronger oxidative activity, while flavonoids have
a lower oxidative activity [48,49]. It is worth emphasizing that the C2=C3 double bond
plays an important role in the antioxidant activity of flavonoids. Chrysin and galangin both
feature C2=C3 double bonds, but galangin differs in that it has a C-3 hydroxyl group that
promotes the oxidation to benzoquinone intermediates. However, the oxidation of galangin
requires the consumption of free radicals in the system. Due to the lack of a B-ring ortho-
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hydroxyl group, the pro-oxidation effect of galangin is weaker than that of chrysin [50].
Therefore, a higher concentration of galangin does not show pro-oxidation effects.

Secondly, chrysin, pinocembrin, galangin, pinobanksin, and propolis extract exhibited
antioxidant and pro-oxidant effects in a dose-dependent manner. The occurrence of pro-
oxidant effects may be due to the auto-oxidation of flavonoid compounds, because as the
concentration of these flavonoids increases, so does the synthesis of lipid peroxidation
products and the development of superoxide anion radicals [51]. Moreover, once flavonoids
reach a higher concentration, they may be oxidized to intermediates with pro-oxidant effects
such as phenoxy radicals, semi-quinones, and quinone structures [52]. Therefore, high
concentrations of chrysin, pinocembrin, and propolis extract showed pro-oxidant effects.
Similarly, to confirm the pro-oxidant effect of high doses of genistein (200 µM) in primary
muscle cells, Chen et al. [53] analyzed cellular lipid peroxidation, redox homeostasis, and
ROS production. Furthermore, Galati et al. [54] indicated that 3 mM epigallocatechin and
2 mM epicatechin-3-gallate were found to have pro-oxidant effects on the mitochondrial-
membrane potential and ROS levels in hepatocytes.

4.2. Activation of Nrf2 Signaling Pathway and Inhibition of NF-κB Signaling Pathway

The individual flavonoids (chrysin, pinocembrin, galangin, and pinobanksin) and
propolis extract exerted strong antioxidant effects as inducers of the Nrf2/HO-1 axis, and
they were potent activators of Nrf2 nuclear translocation in H9c2 cells. The phytochemicals
showed antioxidant effects at low concentrations and showed pro-oxidant effects at high
concentrations, possibly by activating Nrf2. Once activated by oxidative stress, Nrf2 is
translocated to the nucleus and binds to antioxidant transcription elements in the promoter
region of phase 2 to increase the expression of certain antioxidant and detoxification genes,
ultimately leading to cellular resistance to oxidative stress [55]. HO-1 and NQO-1 are
well-characterized Nrf2-dependent antioxidant defense genes. It was speculated that
transcription factor Nrf2, which was associated with the degree of SOD and CAT activation
of cellular antioxidant responses, was enhanced or lowered by chrysin, pinocembrin, and
propolis extract in the nucleus of H9c2 cells. Intriguingly, the levels of antioxidant enzymes
were typically associated with amplification during the formation of ROS. SOD levels
represent a fundamental defense mechanism against excessive ROS [56]. Similar results
were observed in quercetin that pretreating with low concentrations of flavonoid stimulated
cell proliferation and enhanced the total antioxidant capacity of cells. Moreover, higher
concentrations of the flavonoid diminished cell viability and total antioxidant capacity, as
well as the activities of catalase, superoxide dismutase, and glutathione S-transferase [57].

Oxidative stress and inflammatory responses are important components in the patho-
genesis of cardiovascular stent disease. Accumulating evidence suggests that oxidative
stress is inseparable from the inflammatory response. Currently, exploring the relationship
between antioxidant and anti-inflammatory agents is a potential target for the prevention
or mitigation of cardiovascular disease. Therefore, our study focused on the changes in the
Nrf2 and NF-κB pathways involved in oxidative stress and inflammatory processes.

According to the datas of ROS, NOS, and the expression of pro-inflammatory protein,
chrysin showed anti-oxidant effects in the concentration range from 5 µM to 10 µM, while it
showed pro-oxidant effects in the concentration range from 15 µM to 25 µM, and it showed
anti-inflammatory effects in the concentration range from 5 µM to 25 µM. Pinocembrin
showed anti-oxidant effects in the concentration range from 5 µM to 40 µM, while it showed
pro-oxidant effects in the concentration range from 60 µM to 80 µM, and it showed anti-
inflammatory effects in the concentration range from 5 µM to 80 µM. Galangin showed
anti-oxidant effects in the concentration range from 10 µM to 50 µM, while it showed
pro-oxidant effects in the concentration range from 50 µM to 60 µM, and it showed anti-
inflammatory effects in the concentration range from 10 µM to 60 µM. Pinobanksin showed
anti-oxidant effects in the concentration range from 5 µM to 60 µM, while it showed
pro-oxidant effects in the concentration range from 60 µM to 80 µM, and it showed anti-
inflammatory effects in the concentration range from 5 µM to 80 µM. Propolis extract
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showed anti-oxidant effects in the concentration range from 5 µg/mL to 40 µg/mL, while
it showed pro-oxidant effects in the concentration range from 60 µg/mL to 100 µg/mL,
and it showed anti-inflammatory effects in the concentration range from 5 µg/mL to
100 µg/mL. Additionally, the higher the concentration of a compound was, the stronger
the anti-inflammatory effect was.

The inhibition of the production of NOS induced by flavonoids is caused by their
antioxidant properties, and these compounds can exert anti-inflammatory effects by scav-
enging ROS [58]. Furthermore, flavonoids are used as inhibitors of lipopolysaccharide-
signaling molecules to decrease inflammation.

NF-κB is a classical inflammatory signaling pathway that regulates the expression of
immune genes encoding cytokines, such as IL-1β, TNF-α, and IL-6 [47]. Previous reports
showed that propolis inhibited cytokine production in various cardiovascular injuries [59].
Likewise, it was also observed that propolis inhibited the expression of VCAM1 and IL-6
in our findings. It was documented that NOS, VCAM, and IL-6 were pivotal for NF-κB
signaling [60]. The anti-inflammatory effects were enhanced by chrysin, pinocembrin,
galangin, pinobanksin, and propolis-extract pretreatment with the increase in concentra-
tion. Moreover, the inhibition of the NF-kB signaling pathway was also enhanced. It was
speculated that the pro-oxidant effects were produced by high concentrations of phyto-
chemicals triggering a series of inflammatory responses and exerting anti-inflammatory
effects by subsequently inhibiting the NF-κB signaling pathway. It was in accordance with
the trend of progressively lower expression of inflammatory proteins VCAM and IL-6
downstream of the NF-κB signaling pathway in the results.

Research demonstrates that a functional interaction and crosstalk between Nrf2 and
NF-κB pathways exists to maintain balance or regulate oxidative stress and inflamma-
tion [15]. Even though many phytochemicals are reported to modulate NF-κB and Nrf2
activities [61], the mechanism of crosstalk remains unclear. Therefore, it is possible that the
activation of the Nrf2 pathway dominates at low phytochemical concentrations and that
the inhibition of the NF-κB pathway dominates at high phytochemical concentrations.

4.3. Bioavailability Issue of Chrysin, Pinocembrin, Galangin, Pinobanksin, and Propolis Extract

A total of 18 substances were identified in the ethanolic extract of propolis, including
flavonoids and their derivatives, and phenolic acids and their esters. According to previous
data, the main flavonoids of propolis extract were identical to chrysin (30.56 ± 0.60 mg/g
DW), pinocembrin (30.96 ± 0.34 mg/g DW), galangin (16.69 ± 0.45 mg/g DW), and
pinobanksin (9.36 ± 0.28 mg/g DW).

The bioavailability values of galangin and chrysin in propolis extracts were deter-
mined in a study, and they were at 7.8% and 7.5%, respectively [62]. Moreover, propolis
extract has a higher bioavailability than single-flavonoid standards [32]. In addition, galan-
gin is frequently used with popular pharmaceuticals. So, it has the potential to improve the
bioavailability and chemoprevention of oral drugs and to reverse multidrug resistance [63].
Furthermore, there are numerous ways to improve bioavailability, which sparked renewed
interest in propolis research. The above findings make propolis extract a promising antioxi-
dant for use as a food supplement.

5. Conclusions

The major flavonoids in propolis were identified as chrysin, pinocembrin, galangin,
and pinobanksin. It was revealed that flavonoids from propolis mainly presented an-
tioxidant effects at lower concentrations and presented pro-oxidant as well as stronger
anti-inflammatory effects at higher concentrations. We observed anti-oxidant effects of
chrysin in the concentration range from 5 µM to 10 µM, of pinocembrin in the concentration
range from 5 µM to 40 µM, of galangin in the concentration range from 10 µM to 50 µM,
of pinobanksin in the concentration range from 5 µM to 60 µM, and of propolis extract
in the concentration range from 5 µg/mL to 40 µg/mL, while we observed pro-oxidant
effects of chrysin in the concentration range from 15 µM to 25 µM, of pinocembrin in the
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concentration range from 60 µM to 80 µM, of galangin in the concentration range from
50 µM to 60 µM, of pinobanksin in the concentration range from 60 µM to 80 µM, and
of propolis extract in the concentration range from 60 µg/mL to 100 µg/mL. In addition,
we observed anti-inflammatory effects of chrysin in the concentration range from 5 µM
to 25 µM, of pinocembrin in the concentration range from 5 µM to 80 µM, of galangin in
the concentration range from 10 µM to 60 µM, of pinobanksin in the concentration range
from 5 µM to 80 µM, and of propolis extract in the concentration range from 5 µg/mL to
100 µg/mL. Additionally, the higher the concentration of the compound was, the stronger
the anti-inflammatory activity was. Flavonoids from propolis could probably activate the
Nrf2 pathway and inhibit the NF-κB pathway to maintain the balance of antioxidant and
anti-inflammatory effects. In the future, it is important to focus on the link between the
Nrf2 and NF-κB pathways to explore the anti-oxidative mechanism of low-concentration
flavonoids and the anti-inflammatory mechanism of high-concentration flavonoids.
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