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Clear cell renal cell carcinoma (ccRCC) is widely acknowledged to be extremely sensitive to
immunotherapy, emphasizing the tremendous impacts on which the tumor
microenvironment (TME) has shown. However, the molecular subgroups characterized
by the TME features scarcely serve as the risk stratification guides in clinical practice for
survival outcomes and immunotherapy response prediction. This study generated fresh
insights into a novel TME-related prognostic signature derived from The Cancer Genome
Atlas database using integrated bioinformatics analyses. Subsequently, Kaplan–Meier
survival analysis, receiver operating characteristic analysis, and univariate and multivariate
Cox regression analysis were performed to evaluate and validate the efficacy and the
accuracy of the signature in ccRCC prognosis. Furthermore, we discovered that the risk
score presented an increased likelihood of correlation with miscellaneous
clinicopathological characteristics, natural killer cell-mediated cytotoxicity, immune cell
infiltration levels, and immune checkpoint expression. These findings highlighted the notion
that the six-gene signature characterized by the TME featuresmay have implications on the
risk stratification for personalized and precise immunotherapeutic management.

Keywords: gene signature, tumor microenvironment, tumor-infiltrating immune cells, immunotherapy, clear cell
renal cell carcinoma

INTRODUCTION

Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cancer, making up
nearly 70% of the diagnosed individuals (Jonasch et al., 2021; Jonasch et al., 2014; American Cancer
Society, 2013). According to the latest guidelines, for patients in the early stage, partial nephrectomy
is widely accepted as a preferred approach for a good prognosis (Ljungberg et al., 2015). However,
there is no such comfort for patients with metastatic ccRCC, attributing to a striking 11.6% 5-year
survival rate compared to 92.5% in patients with early-stage ccRCC (Howlader et al., 2017). Several
targeted agents combined with immune checkpoint inhibitors are currently used as the optimal first-
line therapy for ccRCC patients (Atkins and Tannir, 2018; Gill et al., 2018; Grimm et al., 2020), which
show underestimated effects on distant metastasis control. To date, accumulating studies have
shifted their efforts to proposing novel gene signatures or biomarkers that might become the
potential tumor-specific targets of ccRCC (Sanchez and Simon, 2018; Ghatalia et al., 2019; Zhang
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et al., 2019). However, there are few predictive and robust
biomarker guides in the first-line therapy selection practically.
The challenge which urgently needs to be taken into account is
that the precise risk stratification of patients for selecting the
specific treatment strategies remains obscure.

The tumor microenvironment (TME) is a mixture that
encompasses a comprehensive set of elements such as tumor
cells, immune cells, stromal cells, etc., nourished by the
vasculature (Wu and Dai, 2017; Arneth, 2019). Concerning the
importance of TME in cancer development and progression,
some researchers have proposed their incisive perspectives that
the components infiltrating TME consume the crucial nutrients
essential for immune surveillance (Delage et al., 2010; Gross et al.,
2014; Klysz et al., 2015), which directly undermine the anti-tumor
immunity and indirectly proceed tumor progression. Meanwhile,
several studies have documented that the TME characteristics
may prevent cytotoxicity T lymphocyte (CTL) and natural killer
(NK) cells from recognizing and eliminating tumor cells (Cassetta
and Kitamura, 2018; Terry et al., 2019; Bonavita et al., 2020),
uncovering the underlying mechanism adopted by the TME in
tumor immunomodulation. Although many scientists have shed
light on identifying the robust biomarkers or gene signatures
characterized by TME features that are extensively associated
with the aggressive progression of ccRCC (Chevrier et al., 2017;
Mier, 2019; Vuong et al., 2019), few risk stratifications based on
TME patterns are available in clinical practice.

This study identified robust TME-related biomarkers
significantly associated with ccRCC prognosis and constructed
a six-gene signature for risk stratification, which discriminates
high- and low-risk groups entitled with different prognoses. In
addition, this study demonstrated that the prognostic signature
might show indispensable implications on modulating the tumor
microenvironment and directing immunotherapy intervention in
ccRCC.

METHODS AND MATERIALS

Data Acquisition From The Cancer Genome
Atlas
The gene expression profiles of 525 ccRCC samples were
extracted from The Cancer Genome Atlas (TCGA) database
(https://cancergenome.nih.gov). Samples that met the following
criteria were excluded: (1) patients with survival time less than
1 month and (2) patients with incomplete information of TNM,
stage, age, gender, and survival time. Then, 468 samples passed
the screening and were randomly assigned to the training and
validation cohorts by the ratio of 1:1 using random grouping
function “sample” in R software. Considering the lack of available
and public datasets in clear cell renal cell carcinoma, we hoped to
include more samples to validate our findings as much as
possible. Therefore, we reset our screening criteria to include
the other 51 samples with complete clinical information but with
survival time less than 1 month into the validation cohort. As a
result, there were 234 samples in the training cohort and 285
samples in the validation cohort. In addition, we included all of
the 519 samples into an entire set to further validate our findings.

Candidate Selection and Gene Signature
Construction
The ESTIMATE algorithm could quantify the assessment of the
TME characteristics by calculating the immune score, stromal
score, and ESTIMATE score (Yoshihara et al., 2013). Only
immune score and estimate score passed the preliminary
screening, accounting for their high correlations with ccRCC
prognosis. A p-value <0.05 was considered statistically significant
in the log-rank test.

The patients were divided into two groups using the mean
value of immune score as the cutoff. We did the same grouping
analysis according to the ESTIMATE score. With the help of the
“limma” package, the differentially expressed genes (DEGs) of the
above-mentioned groups that met the criteria of p-value <0.01
and |log2 fold change| >1 were subjected to Venn analysis, and
240 overlapping DEGs were filtered out. Kaplan–Meier survival
analysis was conducted in the training cohort to find the
prognostic DEGs. As a result, 149 prognostic DEGs extracted
from the intersection of differential expression analysis and
survival analysis were imported into the LASSO Cox
regression analysis to prevent data overfitting. The LASSO
method is a compression estimate applied for the linear
models. It could yield a more refined model by compressing
some coefficients, while some coefficients are set to zero. As a
result, the valuable variables are filtered out, while the
unimportant variables are removed. After conducting the
LASSO analysis, only six genes were filtered out with their
corresponding coefficients. The detected gene signature was
constructed after normalization of gene expression, and the
risk score equation weighted by LASSO coefficients was as
follows:

risk score � ∑
i
Coefficient(mRNAi) × Expression(mRNAi)

Validation of the Prognostic Signature
The risk score of each patient in the entire cohort was calculated
according to the above-mentioned formula. Based on the median
score, the patients were divided into high- and low-risk score
groups in the training and validation cohorts, respectively.
Survival analysis and receiver operating characteristics (ROC)
curve analysis (Hanley and McNeil, 1982) were performed to
evaluate and validate the prognostic value of the gene signature.
In addition, univariate and multivariate Cox regression analyses
were used to determine whether the risk score was an
independent factor from other clinical parameters in
predicting ccRCC clinical outcomes.

Construction and Validation of Nomogram
and Decision Tree
The nomogram is a common method widely used in prognostic
models. It could integrate diverse prognostic and determinant
parameters to predict the probability of an individual clinical
event. In this work, we constructed a nomogram based on the
clinical variables and risk score extracted from the univariate and
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multivariate Cox regression analyses to predict the overall
survival probability of 1, 3, and 5 years. Then, a calibration
curve was plotted to visualize the differences between the
nomogram and the actual observed outcomes, while the 45°

line represents the best predictability. We also constructed a
decision tree to further optimize the risk stratification by
removing the redundant elements and highlighting the
determinants. After all the decisions, each patient was assigned
to one of the branches, and then a more refined risk stratification
was generated for personalized decisions.

Functional Analysis and Consensus
Clustering Analysis
The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses were performed to
identify the enriched pathway DEGs between different risk
score groups using the “ggplot2” and “GSVA” packages. We
downloaded the latest version of the Hallmark (v7.4) and KEGG
(v7.4) gene set collections from the Molecular Signatures
Database v7.4 download page (https://www.gsea-msigdb.org/
gsea/downloads.jsp), based on which GSEA analysis was
implemented using GSEA software (v4.0.3, https://www.gsea-
msigdb.org/). Besides this, the Z-score of ssGSEA in the
enriched pathway was calculated using the ssGSEA algorithm
for normalization (Barbie et al., 2009). According to the
optimized k value, consensus clustering was used to assign the
entire samples into different clusters that might share similar
characteristics with the R package “ConsensusClusterPlus” based
on the six-gene signature expression profiles (Wilkerson and
Hayes, 2010). The clusters revealed significantly different
molecular characteristics and survival patterns.

Correlations Between the Risk Score and
Immune-Related Features
The 28 immune cell relevant markers were downloaded
from the TISIDB database (http://cis.hku.hk/TISIDB), a
user-friendly web portal integrating comprehensive
immune-relevant datasets (Ru et al., 2019). The relative
proportions of these tumor-infiltrating immune cells were
estimated based on the expression levels of these
representative markers with the ssGSEA algorithm. In addition,
ESTIMATE algorithm was used to quantify the assessment of TME
characteristics to investigate the correlations between the risk scores
and TME features. We also compared different distributions of the
immune checkpoints in the high-risk and the low-risk groups. The
correlation coefficients were calculated and graphically displayed in
the lollipop diagram and scatterplots.

Statistical Analysis
All the statistical calculations and visualizations of the results
were conducted with R software, version 4.0.3. The Wilcoxon
rank-sum test was used to check for the differences between the
two independent groups. The Kaplan–Meier plot was performed
to show the survival differences of various stratified analyses, and
the statistical differences were examined in the log-rank test.

Pearson analysis was used to verify the significant correlation
coefficients in our study. Unless noted particularly, p-value <0.05
was defined as the statistically significant criteria.

RESULTS

Identification of TME-Related DEGs
The present research was simplified to a flow chart as shown in
Supplementary Figure S1. In order to investigate the correlations
of the TME characteristics with clinical features in ccRCC
patients, we employed ESTIMATE analysis to calculate the
TME score using the “estimate” package for each sample in
the training cohort. The median value of the TME scores was
defined as the cutoff. Kaplan–Meier survival curves revealed that
patients with low immune scores or estimate scores encountered
a prolonged survival time compared with the others. However,
the stratification analysis based on the stromal score made no
statistical significance (Figures 1A–C).

Moreover, we observed that the TME scores were closely
related to some clinicopathological traits. Apart from the
stromal score, immune score, and estimate score, both owned
significantly different distributions among various prognosis-
related clinical features, such as stage, T classification, and
distant metastasis (Figures 1D–I, Supplementary Figures
S2A–C). In addition, among the three TME scores, only the
estimate score was significantly correlated to lymph node
metastasis (Supplementary Figures S2D–F). Unfortunately,
there were no significant differences in status stratification
among the three TME scores (Supplementary Figures S2G–I).
From the perspective of the above-mentioned results, we
concluded that immune score and estimate score played a
crucial role in ccRCC prognosis, especially in the prediction of
survival time and clinicopathological trait discrimination.

Construction of a Six-Gene-Based
Prognostic Signature
Based on the median value of immune score and estimate score as
cutoffs, we compared the gene expression profiles between
different immune and estimate score groups to further explore
the underlying mechanism of TME characteristics involved in
ccRCC progression. Differentially expressed genes were defined
as those that met the criteria of p-value <0.01 and | log2 fold
change| >1 using the R package “limma,” which screened out 479
(Figures 2A,C) and 255 DEGs (Figures 2B,D) from immune and
estimate score groups, respectively. As shown in Figure 2E, the
Venn diagram displayed 240 overlapping DEGs based on the
intersection analysis. Subsequently, Kaplan–Meier analysis was
performed to identify 149 common DEGs significantly correlated
to overall survival time, which were then imported into LASSO
Cox regression analysis in order to prevent overfitting gene
signatures (Figures 2F,G). We established a novel prognostic
gene signature according to the corresponding coefficients
calculated by the LASSO algorithm (Figure 2H). The risk
score formula for each sample was constructed as follows
based on the expression levels of these mRNAs: risk score �
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RNASET2*0.0026 + PNCK*0.0239 + FCGR1B*0.1792 +
CYP2J2*(−0.0251) + CD8B*(−0.0580) + C12orf59*(−0.0213).
After a rigorous calculation of gene expression combined with
risk coefficients, the ccRCC samples were then divided into the
high- and low-risk score groups using the median risk score value
as the cutoff.

Evaluation and Validation of Six-Gene
Signature
In order to explore the predictive values of the risk score in
ccRCC, we conducted several prognosis-related analyses to
compare the differences between the high and low groups in
the training and validation cohorts, respectively. The

FIGURE 1 | The TME characteristics were correlated with clinical features in ccRCC patients. (A–C) The Kaplan–Meier analysis was generated to display the
survival significances of different groups stratified by the median value of the immune score (A), stromal score (B), and estimate score (C). (D–F) Distribution of the
immune score (D), stromal score (E), and estimate score (F) in the different stages. (G–I) Distribution of the immune score (G), stromal score (H), estimate score (I) in the
different T classifications. TME, tumor microenvironment; ccRCC, clear cell renal cell carcinoma.

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 7224214

Zhang et al. Prognostic Signature Correlated to the Tumor Microenvironment

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Kaplan–Meier survival analysis indicated that the low-risk
score group had a prolonged survival time than the high-
risk score group (Figure 3A). Notably, the risk score curve and
status scatterplot revealed that the deaths mainly accumulated
within the high-risk score area in the training cohort
(Figure 3B). As shown in Figure 3C, the heat map showed
no significant differences between risk scores and the six gene
expression profiles, attributing to the limited quantities of the
samples. Moreover, time-dependent ROC curves indicated
that the area under the ROC curve (AUC) values of 1-, 3-,

and 5-year survival were all above 0.65 (Figure 3D), which
demonstrated the predictability and the accuracy of the six-
gene signature in ccRCC prognosis. To further validate the
predictive efficacy of the signature, we conducted the same
prognosis-related analyses in the internal validation cohort
(Figures 3E–H) and the entire cohort (Figure 3I–L), which
turned out to strikingly resemble those in the training
cohort. Therefore, we concluded that the six-gene pattern
correlated highly to ccRCC prognosis, exhibiting the
excellent potential in predicting survival outcomes. As a

FIGURE 2 | Identification of the overlapping tumor microenvironment-related DEGs and prognostic gene signature construction by LASSO regression analysis. (A)
Landscape of all DEGs between the high-immune-score group and low-immune-score group. (B) Landscape of all DEGs in the high-estimate-score group and low-
estimate-score group. (C) The volcano plot shows the distribution of DEGs between the high- and low-immune-score groups. (D) The volcano plot shows the
distribution of DEGs between the high- and low-estimate-score groups. (E) The overlapping DEGs were highlighted by the intersection analysis of the Venn
diagram. (F, G) The LASSO regression analysis was employed to identify the most robust prognostic markers for gene signature construction. (H) The six genes
screened out remained with their individual coefficients. DEGs, differential expressed genes; LASSO, least absolute shrinkage and selection operator.
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result, the high-risk score conferred relatively poor clinical
outcomes, while the low-risk score conferred a prolonged
survival time.

We also conducted univariate and multivariate Cox regression
analyses in the training and validation cohorts, which focused on
several clinicopathological parameters, such as age, gender, T

FIGURE 3 | Evaluation and validation of the six-gene signature. (A) The Kaplan–Meier analysis based on the risk stratification in the training cohort. (B, C) The
distribution of survival time, patient status (B), and six gene expression profiles (C) as the risk score increases in the training cohort. (D) Time-dependent ROC analysis
represented the accuracy and predictability of the signature in 1-, 3-, and 5-year survival outcome prediction in the training cohort. (E) The Kaplan–Meier analysis of the
internal validation cohort. (F, G) The distribution of survival time, patient status (F), and six-gene expression profiles (G) as the risk score increases. (H) Time-
dependent ROC analysis of the internal validation cohort. (I) The Kaplan–Meier analysis in the entire cohort. (J, K) The distribution of survival time, patient status (J), and
six-gene expression profiles (K) as the risk score increases. (L) Time-dependent ROC analysis in the entire cohort. ROC, receiver operating characteristic.
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classification, stage, and distant metastasis as well as risk score
(Figures 4A–C). From the perspectives of the intersection results,
we observed that the risk score stratification might hopefully
become a potential and independent factor beyond the other
variables concerning the capacity of the prediction in overall
survival time.

The Six-Gene Signature Correlated With the
Clinicopathological Traits of ccRCC
Patients
The correlations between the six-gene signature and clinical
characteristics were further explored in the entire cohorts. The
results supported that status, gender, metastasis, stage, and T
classification were significantly correlated with the risk scores,
while age was not (Figures 5A–F). The high-risk scores indicated
more deaths, males, and distant metastasis diseases. In addition,
patients divided into later stages and T classification tended to
manifest high-risk scores. Subsequently, all the patients were
separated into several groups according to clinicopathological
features. The Kaplan–Meier survival curves of these groups
revealed that the risk stratification represented a good
prediction ability in ccRCC prognosis among diverse
subgroups. Consistently, the patients with low-risk scores had
a better prognosis than those with high scores in female (p �
0.014), male (p < 0.001), M0 (p � 0.01), M1 (p � 0.0088), stage III
(p < 0.019), stage IV (p � 0.027), and T4 (p < 0.001) subgroups
(Figures 5G–J).

Functional Enrichment and Consensus
Clustering Analysis With the Risk Scores
Considering the positive correlations between the risk scores and
multiple clinical features, we performed GO functional
annotation and KEGG enrichment analyses based on the
ssGSEA algorithm to quantify the enriched pathway levels of
DEGs between high- and low-risk score groups. In view of the
results, we observed that acute-phase response was enriched in
the biological process term, while extracellular space, extracellular
region, and extracellular exosome were in the cellular component
term. For molecular function (MF) term, receptor binding was
significantly involved (Figure 6A). In addition, the KEGG
analysis supported that risk score was positively correlated
with immune-related pathways, such as NK cell-mediated
cytotoxicity, T cell receptor signaling pathway, leukocyte trans-
endothelial migration, etc. (Figure 6B).

In order to get deep insights into the correlations between risk
score and immune-related pathway, we also conducted GSEA
analysis based on the risk stratification, which tended to be
mutually consistent as previously illustrated. NK cell-mediated
cytotoxicity owned significances beyond others (Figure 6C).
Subsequently, a comparison of NK cell-mediated cytotoxicity
and risk score was established to determine whether the
combination could optimize the original model in ccRCC
prognosis. The results suggested that the Z-scores of NK cell-
mediated cytotoxicity gained in the ssGSEA algorithm were
obviously higher in deaths than those alive during follow-up
(Figure 6D). Besides this, we confirmed that the Z-scores of the

FIGURE 4 | Comparison of the risk score and other clinical parameters in clear cell renal cell carcinoma prognosis. (A–C) The univariate (upper) and multivariate
(lower) Cox regression analyses were carried out in the training set (A), internal validation set (B), and entire set (C).
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FIGURE 5 | The relationships between the risk score and clinicopathological characteristics. (A–F) Distribution of the risk score in the stratification analysis based
on status (A), age (B), stage (C), gender (D), distant metastasis (E), and T classification (F). (G–J) Survival analysis showed significant differences between female and
male (G), no distant metastasis and distant metastasis (H), stages Ⅲ and Ⅳ (I), and T3 and T4 (J).
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FIGURE 6 | Functional analysis and consensus clustering against the risk score. (A) GO annotation of the differentially expressed genes (DEGs) between the high-
risk-score group and low-risk-score group. (B)KEGG analysis was generated to show the enriched pathways of the DEGs above using the ssGSEA algorithm. (C)GSEA
indicated the pathway by which NK cell-mediated cytotoxicity was enriched in the high-risk-score group. (D, E) The Z-score of NK cell-mediated cytotoxicity was
positively correlated with the risk score. (F) The survival analysis represented the significant differences in the high and low Z-score of NK cell-mediated cytotoxicity
groups. (G) The combined survival analysis stratified by the risk score and Z-score of NK cell-mediated cytotoxicity. (I, J) The entire ccRCC samples were divided into
two clusters based on the six-gene signature. (K, L) The survival distribution of the two clusters. (M,N) The entire ccRCC samples were divided into three clusters based
on the six-gene signature. (O,P) The survival distribution of the three clusters. GO, GeneOntology; KEGG, Kyoto Encyclopedia of Genes andGenomes; ssGSEA, single-
simple Gene Set Enrichment Analysis; GSEA, Gene Set Enrichment Analysis; NK cell, natural killer cell.
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FIGURE 7 |Correlations of the risk scores with the tumor microenvironment characteristics. (A) The landscape of the tumor-infiltrating immune cells in the high- and
low-risk-score groups. (B) Correlation heat map of the risk scores and tumor-infiltrating immune cells. (C) The violin plot shows that the tumor-infiltrating immune cells
owned higher infiltration levels in the high-risk-score group. (D–G) The scatterplots combined with the density plots confirmed the positive correlations between the risk
scores and immune score (D), stromal score (E), and estimate score (F) while negatively correlated with tumor purity (G).
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NK cell-mediated cytotoxicity was positively corresponding to
the risk scores (Figures 6E,F), inspiring us to perform the survival
analysis based on the stratification of the above-mentioned
Z-scores. As expected, the high Z-score ones encountered a
shorter survival time than the low ones with p-value of 0.04
(Figure 6G). In addition, a survival analysis combined with the
above-mentioned two components was performed to clarify the

intricate relationships among them. The results revealed that the
patients with low Z-scores and low-risk scores had a prolonged
survival compared to those with low Z-scores and high-risk
scores, and patients with high-risk scores were associated with
a poorer prognosis than those with low-risk scores based on the
same high-Z-score subgroups (Figure 6H). Generally, the risk
score could reflect the Z-scores of the NK cell-mediated

FIGURE 8 | A nomogram and a decision tree were established to improve the risk stratification and predictability of survival outcomes. (A) The nomogramwas constructed
to evaluate the survival probability. (B)Calibration analysis indicated the superior predictive probability of 1 year to others. (C)Decision curve analysis was generated to display the
priority of the nomogram than the variables individually. (D,E)TheC index and area under the receiver operating characteristics (ROC) curve value of theROCanalysis showed that
the nomogram owned the best stability and accuracy for survival probability prediction. (F) Patients with complete annotation were used to build a decision tree to optimize
the risk stratification. (G) The Kaplan–Meier analysis confirmed the efficacy and predictability of the optimal subdivisions.
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cytotoxicity. The combined model of the above-mentioned two
variables might optimize the original risk stratification for ccRCC
prognosis.

Consensus clustering analysis divided the entire samples into
different clusters according to the optimal k value based on the
six-gene signature expression pattern (Figure 6I,M,
Supplementary Figure S3). When the k value was 2, we
observed the particular significances of Z-scores of the NK
cell-mediated cytotoxicity and the status distribution between
the two clusters (Figures 6J,K). However, as shown in Figure 6L,
the survival analysis did not exhibit significant differences.
Differently from what was previously explained, when the k
value was 3, the Z-scores of the NK cell-mediated cytotoxicity
of the patients in cluster 1 was significantly different from those in
cluster 2 (Figure 6N). The distinct distribution of status stratified
by these three clusters is displayed in Figure 6O, and we observed
that patients involved in cluster 3 had a superior prognosis to the
others (Figure 6P). Given the above-mentioned results, we
deduced that the k value of 3 manifested pronounced
performances in risk stratification beyond the k value of 2.

Correlations of Risk Scores With the
Proportion of Tumor-Infiltrating Immune
Cells and Immune Checkpoints
As previously explained, risk scores did correlate with immune-
related pathways. Therefore, to further investigate the latent
impacts risk scores had on immunity, we extended the
ssGSEA algorithm to estimate the proportion of tumor-
infiltrating immune cells in ccRCC patients. As shown in
Figure 7A, the heat maps represented the landscape wherein
most of the immune cells gained higher ssGSEA scores in the
high-risk score group, which meant that risk score was positively
correlated to immunity activation (Figure 7B). Moreover, the
violin plots graphically displayed that high-risk score conferred
high immune cell infiltration levels (Figure 7C). We also
portrayed the correlations between risk scores and TME
characteristics in scatterplots combined with density plots. The
results demonstrated that stromal score, immune score, and
estimate score were highly and positively associated with risk
score, while tumor purity was negatively associated with it
(Figures 7D–G).

Interestingly, we compared the expression of immune
checkpoints between the high- and low-risk score groups and
concluded that the risk stratification might play a crucial role as
an indicator of immune checkpoint efficacy, accounting for the
positive and significant correlations among them
(Supplementary Figure S4).

Combination of the Gene Signature and
Clinical Parameters Improved Risk
Stratification and Survival Outcome
Prediction
The nomogram was established to quantify the survival
probability of an individual clinical event with a risk score,
along with other clinical parameters as illustrated previously

(Figure 8A). In order to evaluate the efficacy of the
nomogram in survival time prediction, we conducted several
validation analyses from four distinct perspectives. The
prediction line of the 1-year survival ability was practically
coincident with the ideal performance compared to 2- or 3-
year survival ability in the calibration analysis (Figure 8B),
indicating the accuracy of the nomogram in the early period
for practical application. As displayed in Figure 8C, the decision
curve analysis corroborated that the nomogram, as well as the
clinical parameters, obtained much more net benefit of survival
probability than the risk score alone. In addition, the C index and
AUC value synergistically confirmed that the nomogram
provided a superior prognostic value beyond the other
variables (Figures 8D,E).

The entire samples with informative clinical annotation and
risk score assessment were subjected to establish a decision tree in
order to optimize the risk subdivision of overall survival. As
shown in Figure 8F, only risk score, gender, and distant
metastasis were still retained in the decision tree, and three
subgroups were defined according to the above-mentioned
three parameters. In the optimized stratification, gender was
identified as the cutoff in the high-risk score branch, while
distant metastasis replaced gender in the female branch.
Interestingly, the survival analysis showed significant
differences based on the latest risk subdivision, which was
consistent with the survival time prediction (Figure 8G). In
summary, both the nomogram system and the decision tree
obtained remarkable achievements in optimizing risk
stratification and survival outcome prediction, attributing to
taking risk score synergistically with clinical parameters into
consideration.

DISCUSSION

To our best knowledge, few studies commit to adopting the risk
discrimination of ccRCC related to TME characteristics as a
direction in clinical practice, which is exactly the blank our
study spares no pain to fill. Based on the high-throughput
data and clinical information obtained from the TCGA
database, we established a six-gene prognostic signature of
pronounced correlations with the TME characteristics with the
help of integrated statistical methods. In the training cohort,
Kaplan–Meier survival analysis, ROC analysis, and univariate
and multivariate Cox analyses were performed to evaluate the
predictive capability of the signature in ccRCC prognosis.
Subsequently, the dominant findings were confirmed to be
repeatable in the validation cohorts using the same statistical
methods. In addition, we observed that the signature was
distinctly correlated to the infiltration levels of tumor-
infiltrating cells and immune checkpoint expression, indicating
that the risk stratification might serve as a novel criterion of the
management of immunotherapy and patient selection.

After the construction of the prognostic signature, we
evaluated the predictability of clinical outcomes based on the
stratification of risk scores. We observed that the high-risk zone
owned more deaths as well as a shorter survival time. These
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findings were reproducible in the validation cohorts. Given the
above-mentioned results, we concluded that the risk score
was negatively correlated to ccRCC prognosis. In addition,
the time-dependent ROC analysis confirmed the accuracy
and predictability of the signature in long-term prognosis.
The univariate and multivariate Cox analysis suggested that
the risk score was a pronounced and independent factor
of predicting ccRCC outcomes. The corresponding ROC
analysis confirmed that the risk score was superior to other
clinical parameters. To further investigate the relationships
between the risk score and clinical characteristics, we
extended the risk score distribution and survival analysis
based on different groups stratified by clinical characteristics.
The results turned out that the high-risk scores gave rise to
more deaths, high-level of clinical-pathological features, and
shorter survival time, further verified the findings as previously
illustrated.

In order to explore the underlying mechanism that the
signature adopted to modulate cancer development and
progression, we performed functional analysis to compare
the enriched pathways of DEGs derived from high- and low-
risk score groups and observed that immune-related and
carcinogenetic pathways stand out due to their pronounced
performances. Natural killer (NK) cell is generally
acknowledged to commit to induce immunosurveillance and
hamper tumor aggressive progression through apoptosis
activation (Yang et al., 2017; Prager and Watzl, 2019; Sordo-
Bahamonde et al., 2020). A previous study agreed that a
combined strategy of re-active NK cells and other
conventional therapies might give rise to an ideal curative
effect for lung cancer patients (Pockley et al., 2020). In the
past few decades, several immune-targeted agents for breast
cancer that trigger NK cell mediated cytotoxicity have been
tested in clinical trials or cell lines (Collins et al., 2012; Juliá
et al., 2018). Therefore, we constructed correlation analysis,
and survival analysis against NK cell mediated cytotoxicity
and observed that it was positively correlated with the risk
score. The high Z-score of NK cell mediated cytotoxicity
conferred to poor prognosis. Besides, the combination
survival analysis of risk score and NK cell mediated
cytotoxicity revealed that patients with low levels of these two
characters encountered the shortest survival time compared to
the others. Taking these findings into account, we supposed that
patients assigned to high-risk score groups synergistically with
high Z-scores might show greater response on the corresponding
NK cell-targeted agents, indicating a novel immunotherapy
prospect of ccRCC. Based on the widespread of consensus
clustering used in genetic researches recently (Cancer Genome
Atlas Resea, 2011; Cancer Genome Atlas Resea, 2012; Cancer
Genome Atlas Research Network et al., 2013), we also conducted
consensus clustering analysis to optimize the subdivisions for
better class discovery (Monti et al., 2003), whose efficacy in
prognosis prediction was substantiated in the follow-up
survival analysis. Liu et al. considered that tumor-infiltrating
immune cells play crucial roles in clinical outcomes prediction
and immunotherapy efficacy of lung cancer (Liu et al., 2017).
According to another study, kidney cancer expressing high levels

of TIM3 separate into two groups in regard to CD8 T-cell
infiltration, which may show different implications on
immunotherapy targeted TIM3 (Li et al., 2016). The last
decades have witnessed great advances taken in tumor-
targeted therapy, especially targeting dendric cells (DCs),
known as the dominants in the TME that hinder tumor
progression (Banchereau and Steinman, 1998; Steinman and
Banchereau, 2007; Tran Janco et al., 2015). The correlation
analysis in our study revealed that high-risk score conferred to
high levels of the majority of tumor-infiltrating immune cells,
indicating that high-risk score groups might exhibit activated
immune cells-targeted therapy response. Several studies have
demonstrated that tumors exhausted DCs through inducing
PD-1 expression in order for immune evasion, which can be
reversed unless blockade of PD-1 (Krempski et al., 2011;
Karyampudi et al., 2014; Dammeijer et al., 2020). In addition,
the mechanism that the interaction of tumor-infiltrating
lymphocytes expressing PD-1 and PD-L1 undermine
antitumor immunity is generally adopted by cancer
immunotherapy (Wang et al., 2014; Kurozumi et al., 2017). Tu
et al. observed that PD-1 expression was significantly related to
several immune cells in many malignancies (Tu et al., 2020).
Considering the positively pairwise correlations between tumor-
infiltrating immune cells and risk score, PD-1 expression and
tumor-infiltrating immune cells, it was reasonable to assume that
risk score might share unknown correlations with PD-1.
Therefore, the corresponding results supported that many
common immune checkpoints gained high expression levels in
the high-risk score group, as well as the positive correlation
coefficients against the risk score. In the view of the above, we
concluded that this risk stratification owned the potential to
broaden a new landscape of evaluating immune checkpoint
inhibitors response and implementing immunotherapy
intervention. Benefited from the nomogram and decision tree,
the current six-gene signature was optimized and merged with
clinical parameters in order to improve the predictability of
ccRCC outcomes. The assessment from four different aspects
confirmed the superiority of the combined model compared
with the original signature and clinical parameters alone
(Xiong et al., 2018; Wang et al., 2020). Besides this, the
decision tree made the subdivision based on the specific
clinical parameters, which separated the entire cohorts into
three subgroups: high-risk group, median-risk group, and low-
risk group (Sun et al., 2020; Shi et al., 2021). The subsequent
survival analysis revealed the significant differences among the
three subgroups, substantiating the necessity of the improved risk
stratification.

Generally, in this study, we constructed a six-gene signature,
comprehensively evaluated its prognostic values, and correlated this
signature with TME-related characteristics among 519 ccRCC
samples using an ensemble of integrated analyses. The dominant
findings lay the important foundation for optimizing the risk
stratification in ccRCC prognosis and understanding the complex
intersection relationships with TME modulation. Hopefully, this
signature might broaden our cognitions of TME characteristics
entitled with tumor progression and propose a new direction in
immunotherapy surveillance. Pertaining to the limited data obtained
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from the TCGA database, these findings need to be further
corroborated in a larger cohort or in cytological experiments.
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