
R AD I A T I ON ONCO LOG Y PH Y S I C S

Nonrigid registration of medical image based on adaptive local
structure tensor and normalized mutual information

Tiejun Yang | Qi Tang | Lei Li | Jikun Song | Chunhua Zhu | Lu Tang

College of Informational Science and

Engineering, Henan University of

Technology, High‐Tech Zone, Zhengzhou

City, China

Author to whom correspondence should be

addressed. Qi Tang

E‐mail: 201792333@stu.haut.edu.cn.

Funding information

Natural Science Foundation of Henan

Province; National Science Foundation of

China, Grant/Award Number: 61871176

Abstract

Nonrigid registration of medical images is especially critical in clinical treatment.

Mutual information is a popular similarity measure for medical image registration;

however, only the intensity statistical characteristics of the global consistency of

image are considered in MI, and the spatial information is ignored. In this paper, a

novel intensity‐based similarity measure combining normalized mutual information

with spatial information for nonrigid medical image registration is proposed. The dif-

ferent parameters of Gaussian filtering are defined according to the regional vari-

ance, the adaptive Gaussian filtering is introduced into the local structure tensor.

Then, the obtained adaptive local structure tensor is used to extract the spatial

information and define the weighting function. Finally, normalized mutual informa-

tion is distributed to each pixel, and the discrete normalized mutual information is

multiplied with a weighting term to obtain a new measure. The novel measure fully

considers the spatial information of the image neighborhood, gives the location of

the strong spatial information a larger weight, and the registration of the strong gra-

dient regions has a priority over the small gradient regions. The simulated brain

image with single‐modality and multimodality are used for registration validation

experiments. The results show that the new similarity measure improves the regis-

tration accuracy and robustness compared with the classical registration algorithm,

reduces the risk of falling into local extremes during the registration process.

P A C S

87.57.nj

K E Y WORD S

local structure tensor, multimodality image, nonrigid registration, normalized mutual

information, spatial information

1 | INTRODUCTION

Image registration refers to the process of finding a spatial transfor-

mation to make corresponding points of different images reach the

same spatial position and anatomical position; these images are

obtained by different equipment, different time, or different

environments. With the rapid development of modern medical imag-

ing technology, images with various types of information have

emerged, such as computed tomography (CT), magnetic resonance

imaging (MRI), positron emission tomography (PET), etc. CT has a

clear image to the bone structure and can accurately locate the

lesion, but the image effect on the soft tissue is not good. MRI has
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significant advantages in reflecting soft tissue information, but is not

sensitive to calcified regions and subject to geometric distortion due

to magnetic interference. PET can clearly observe the metabolism of

various organs, but due to the low pixel resolution, the structure and

regional contour of the organs cannot be clearly found. Due to the

different imaging principles of various medical devices, the medical

image information is greatly different. The single‐modality image pro-

vides unilateral information for the doctor’s clinical diagnosis, but in

order to obtain more complete and complementary image informa-

tion, it is necessary to fuse various types of information so that doc-

tors can make more accurate and reliable diagnosis.

Currently, the similarity measures of nonrigid medical image reg-

istration are mainly divided into feature‐based method and intensity‐
based method1; the former usually uses some points, lines, area, and

edges of the image as feature information, the registration method

has advantages of small computational cost and high efficiency, but

is not easy to calculate automatically, the image registration effect is

also easily affected by factors such as the level of the operator and

the accuracy of feature point selection. The intensity‐based method

directly uses the intensity information of image, which avoids the

error in image registration caused by the feature extraction process.

For simplicity, intensity‐based similarity measures are typically used

instead of feature‐based similarity measures. In the field of intensity‐
based method, similarity measures can be divided into two cate-

gories: one method directly uses the intensity of the image pixel

which contains the sum of squared distances2 (SSD) and the gradient

difference3 (GD). Another method which based on information the-

ory mainly considers the intensity distribution of pixel points and

uses statistical entropy strategy. Mutual information4 (MI) and nor-

malized mutual information5 (NMI) belong to this category. Among

them, the method based on the mutual information is the most

widely used, but it only considers the intensity distribution of image,

ignoring the spatial and geometric information of image completely.

Pluim et al.6 proposed a similarity measure called gradient mutual

information (GMI) by combining MI with gradient, it improved

robustness of registration. It is not an extended measure of MI, but

just the addition of the multiplicative factor todescribe the neighbor-

hood information. Russakoff7 proposed the regional mutual informa-

tion (RMI), which calculates the MI of two images in the local range,

can reflect the intensity distribution of local image and obtain better

robustness than traditional MI similarity measures. However, it needs

to calculate the entropy of probability distribution with higher

dimensional. Loeckx8 proposed the conditional mutual information

similarity measures, which uses spatial information as an additional

channel to calculate the joint probability distribution. The algorithm

improves the registration accuracy, but the corresponding anatomical

structures are further spatially separated, some structural features

are ignored. Rivaz9 proposed α‐mutual information called self‐similar-

ity α‐MI (SeSaMI), which makes full use of the local feature structure

of the image to enhance the robustness of MI. Luan10 proposed the

qualitative measure of mutual information, which adds the utility

coefficient to the traditional calculation of MI, the calculation pro-

cess is complicated and difficult to practical application. Hossny11

proposed a local structural mutual information registration method

which divides the image space into multiple spaces to estimate MI

independently, and uses the weighted sum of MI as the similarity

measure, local structural similarity index is preserved. Wang Jun12

proposed a B‐spline and regional mutual information (BRMI) registra-

tion method. The image is regarded as the distribution of multidi-

mensional points, each point represents a pixel and its neighboring

point pixels, by calculating the information entropy of multidimen-

sional points, the local mutual information of the two images is

obtained. The method effectively improves the accuracy of registra-

tion but the efficiency is reduced.

Qu Jiahui13 proposed a hyperspectral image fusion algorithm

using structure tensor, which introduces structure tensor to extract

the spatial details of enhanced PAN images. Experiments show that

the spatial information extracted by the horizontal gradient and ver-

tical gradient only retains the edge information of the original image,

but the spatial information obtained by the structural tensor method

contains a large number of edges and structural information. James

M. Sloan14 describes a novel structural image descriptor for image

registration called the fractionally anisotropic structural tensor repre-

sentation (FASTR). It does not depend on voxel intensities abso-

lutely, and is insensitive to the image which has a slowly varying

intensity inhomogeneity. The results show that FASTR would pro-

duce more accurate results than MI towards the images with distinct

intensity inhomogeneity. However, the proposed similarity measure

can only be used for rigid medical image registration with simple

deformations such as translation, rotation or scaling. In fact, because

medical images have local correspondence missing and complex non-

linear deformations, as well as the irregular physiological movements

of the organs, nonrigid registration is necessary and can fully

describe the spatial relationship between images. In this paper, a

new similarity measure based on adaptive local structure tensor and

NMI is proposed, in which spatial information, geometric information

and mutual information are combined to improve the similarity mea-

sure. The nonrigid registration with large deformation is considered.

The contributions of this paper have following four aspects:

1. In order to reflect the local structure information, adaptive Gaus-

sian filtering is introduced into the local structure tensor, and the

parameters of Gaussian kernel function are defined according to

the regional variance of image, which can better protect the

image details.

2. Discrete NMI is defined according to the contribution of pixel

points to the total similarity measure, which is beneficial to the

combination with spatial information.

3. The spatial information extracted from the adaptive local struc-

ture tensor is used to customize the weighting function. It multi-

plies with the discrete NMI to obtain a new measure function

called adaptive local structure tensor‐normalized mutual informa-

tion (ALST‐NMI).

4. The algorithm in this paper is used to register the brain images

with single‐modality and multimodality, the accuracy and effec-

tiveness of registration are both improved.
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2 | METHODS

2.A | The registration framework

Medical image registration mainly includes four modules: transforma-

tion model, similarity measure, optimization algorithm, and interpola-

tion algorithm. First, the appropriate transformation model is

selected according to the specific application, and determines the

spatial transformation method of the floating image. Second, a simi-

larity measure is defined to measure the degree of similarity

between the reference image and floating image after transforma-

tion. In this way, it is judged whether two images have been cor-

rectly matched. Third, an interpolation algorithm is used to assign

the intensity value to pixels in the image, and the current similarity

measure is obtained by comparison with the reference image to

determine whether the next round of optimization is needed to

update the parameters. Finally, a specific optimization algorithm is

used to search for the best transformation result continuously until

the similarity of the two images is maximized.

The flow diagram is shown in Fig. 1. In this paper, B‐spline is

selected as the transformation model, ALST‐NMI is the similarity

measure, and the steepest gradient descent method is used as the

optimization algorithm for the registration experiment.

2.B | Registration model and optimization solution
strategy

2.B.1 | B‐spline transformation model

The nonrigid registration method based on B‐spline has been widely

used by scholars because of its universality, smoothness, and compu-

tational efficiency. First, we perform mesh refinement on the regis-

tration image, then the pixels become control points. Second, the

displacement of each control point in each direction is solved by the

optimization algorithm, so any nonlinear transformation on the image

can be simulated. Finally, the movement of each control point forms

a control grid with nonlinear deformation, the control grid is applied

to the floating image to obtain the B‐spline transformed registration

image.

In this paper, the cubic B‐spline is selected as the transformation

model. The two‐dimensional (2D) cubic B‐spline transformation can

be expressed as follows:

Tðx; yÞ ¼ ∑3
m¼0∑

3
n¼0BmðuÞBnðvÞΦiþm;jþn (1)

where Φ represents the control point

i ¼ x
Px

j k
� 1; j ¼ y

Py

j k
� 1; u ¼ x

Px � x
Px

j k
; v ¼ y

Py � y
Py

j k
, �b c represents

the next rounding, and Bm(u) represents the m‐th cubic B‐spline
basis function.

B0ðuÞ ¼ ð1� uÞ3
6

B1ðuÞ ¼ ð3u3 � 6u2 þ 4Þ
6

B2ðuÞ ¼ ð�3u3 þ 3u2 þ 3uþ 1Þ
6

B3ðuÞ ¼ ðuÞ3
6

8>>>>>>>>>>><
>>>>>>>>>>>:

(2)

2.B.2 | Optimization algorithm

The purpose of image registration is to find a spatial transformation

to make corresponding points of the different images reach the

same spatial position and anatomical position. The registration prob-

lem is transformed into the optimal solution of the cost function,

then the optimal transformation parameters are found to minimize

the cost function.

Reference image Floating image

Gaussian low pass filtering

Initialize transformation model parameters

Spatial geometric transformation

ALST-NM similarity measure

Is it optimal?

Update transformation parameters

Interpolation algorithm

Registration result image and control grid

N

Y
F I G . 1 . Diagram of the proposed
registration algorithm.
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μ ¼ arg min
μ

ΦðfR; fF � gð�jμÞÞ (3)

where the cost Φ function is a negative ALST‐NMI similarity mea-

sure function, g is a nonrigid transformation function, and the symbol

� represents a compound operation of fF and function g.

The optimization strategy refers to the search optimization pro-

cess in which the spatial transformation parameters are continuously

adjusted in the image registration, so that the similarity measure is

maximized and the images are aligned as much as possible. An appli-

cable optimization strategy can not only improve the computational

efficiency of the algorithm, but also obtain more accurate optimiza-

tion results. Therefore, the steepest gradient descent method is used

to iterative update the parameter value along the direction of the

gradient descent, as shown in the eq. (4).

μkþ1 ¼ μk � akrΦðμkÞ (4)

where ak is the search step size and rΦ(μk) is the gradient of the

cost function.

2.C | ALST‐NMI similarity measure

Normalized mutual information measure is a commonly used similar-

ity measure, which can accurately represent the similarity among

intensity images. It can also effectively solves the problem that

overlap region in the image affects the registration accuracy in MI

registration process, and ensure the effectiveness. However, the

registration algorithm based on the NMI does not consider the spa-

tial information of the image, resulting in low accuracy even mis-

leading registration. Gradient can effectively describe local structure

information and is used to estimate local geometry information of

image widely15. However, the gradient is sensitive to noise, and the

positive and negative gradients are similar on both sides of the

edge in the image, which will causes the gradient information to

counteract in the smoothing algorithm. The local structure tensor

does not produce the problem abovementioned, and can also still

be extracted under the condition of the local gradient loss. At the

same time, it16–18 directly uses the image intensity matrix to per-

form operations, which can effectively preserve the structural and

gradient information of the image pixel, provide a more meaningful

description than the gradient information. Therefore, this paper pro-

poses a new similarity measure which combines NMI and local

structure tensor.

2.C.1 | Discrete normalized mutual information

The NMI can be expressed as:

NMI ¼ HðRÞ þ HðFÞ
HðR; FÞ (5)

where R and F represent the reference image and floating image

namely, H(R) and H(F) denote the information entropy of R and F,

and H(R,F) is the joint information entropy of two images.

Normalized mutual information is distributed to each pixel, dis-

crete NMI can be defined by the contribution of pixel points to the

total similarity measure:

NMIðx; fR; fFÞ ¼
1
N1

log2ðPRðxÞÞ þ 1
N2

log2ðPFðxÞÞ
HðR; FÞ (6)

where N1 and N2 is the number of pixels accumulatively used in the

reference image and floating image, x represents the position of pixel

in fR and fF, and PR(x) and PF(x) are the marginal probabilities of the x.

2.C.2 | Adaptive local structure tensor

The local structure tensor of each point is shown in eq. (7):

LSTði; jÞ ¼ Gσ � ðrI � rIði; jÞTÞ ¼ I2x � Gσ IxIy � Gσ

IxIy � Gσ I2y � Gσ

" #
(7)

where Gσ ¼ σ
ffiffiffiffiffiffi
2π

p� ��1
exp � xj j2

.
2σ2

� �
is a 2D Gaussian kernel

function, σ2 represents the variance of Gaussian kernel function, *

represents a convolution operation, r represents the gradient opera-

tion, and the superscript T indicates the transpose of the matrix.

The traditional local structure tensor method selects fixed filter

parameters for entire image, but the size of Gaussian kernel function

variance has a great influence on the weight of the Gaussian tem-

plate. The smaller variance of Gaussian kernel function is, the smaller

the weight of the noncentral pixel is. Thus, the role of the neighbor-

hood in the filtering process is almost ignored, and it degenerates

into the point operation of the image, which does not achieve the

effect of denoising. When the variance of Gaussian kernel function

is larger, the Gaussian filtering degenerates into a mean template,

which is likely to cause loss of image detail. Therefore, only the

appropriate value of Gaussian kernel function variance is selected,

the details of the image can be retained, and noise can be reduced.

In order to protect the image details and denoise, the adaptive Gaus-

sian filtering is introduced into local structure tensor. First, the local

structure is judged as a consistent region or a region based on edge and

corner. If it belongs to the region based on edge and corner, the degree

of dispersion in the region is relatively large, the variance of the corre-

sponding pixel value tends to be large; if it belongs to the consistent

region, the degree of dispersion in the region is relatively small, and the

variance of the corresponding pixel value is small. Therefore, we calcu-

late the regional variance, first, then the variance of Gaussian kernel

function and the Gaussian template are adaptively selected according to

the regional variance. The larger the regional variance is, the Gaussian

kernel function with smaller variance and smaller Gaussian template is

selected; the smaller the regional variance is, the Gaussian kernel func-

tion with larger variance and larger Gaussian template is selected.

The formula for regional variance is:

D ¼ ∑ði;jÞ∈ Sðxij � xÞ2
i � j ;while x ¼ ∑ði;jÞ∈ Sxij

i � j (8)

where D is the regional variance and xij represents the point in the S

region
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2.C.3 | ALST‐NMI similarity measure

The singular value decomposition is performed on local structure

tensor to obtain non‐negative eigenvalues which is denoted as λ1, λ2
(λ1 ≥ λ2 ≥ 0); λ1 and λ2 reflect the value of energy change in the

direction of its corresponding feature vector. In the consistent region

of the image, the intensity value changes a little or almost

unchanges, that is, λ1 ≈ λ2 ≈ 0; in the boundary region, the intensity

value across the edge varies greatly, that is, λ1 ≥ λ2 ≈ 0; the inten-

sity value varies in all directions at the corners, that is, λ1 > λ2 ≥ 0.

(a) (b) (c) (d)                 (e)

(f)                  (g) (h) (i)                  

(k)                  ( l) (m) (n)    (o)

(p)                  (q) (r) (s)                  (t)

(u)

(j)

F I G . 2 . Brain image single‐modality registration result. (a) Reference image; (b) floating image; (c) registration error (a) and (b); (d) gradient
difference (GD) deformed image; (e) GD deformation field; (f) registration errors (a) and (d); (g) sum of squared distances (SSD) deformed
image; (h) SSD deformation field; (i) registration error (a) and (g); (j) normalized mutual information (NMI) deformed image; (k) NMI deformation
field; (l) registration errors (a) and (j); (m) B‐spline and regional mutual information (BRMI) deformed image; (n) BRMI deformation field; (o)
registration error (a) and (m); (p) local structure tensor‐normalized mutual information (LST‐NMI) deformed image; (q) LST‐NMI deformation
field; (r) registration error (a) and (p); (s) adaptive local structure tensor‐normalized mutual information (ALST‐NMI) deformed image; (t) ALST‐
NMI deformation field; (u) registration error (a) and (p).
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In order to measure the role of each pixel in the image geometry,

the following local structure descriptors are extracted from the local

structure tensor, the trace C1 = λ1 + λ2 of the local structure tensor

is used to describe the strength of the local variation, C2 = (λ1 − λ2)2

is defined to characterize the consistency of the local structure, and

the scale vector C(x) =[C1 C2] is defined to represent the structural

information adjacent to the pixel, which has better image structure

expression ability. Then the weighting function is defined as follows:

Wðx; fR; fFÞ ¼ BðxÞ � expð� jCðx; fRÞ � Cðx; fFÞj jj2
.
θÞ (9)

where θ is a constant, BðxÞ ¼ 1þ ð rfRðxÞj j rfFðxÞj jÞ1=4, rfR(x) and

rfF(x), respectively, represent gradient vectors of the reference

image and the floating image at x pixel points.

The choice of B(x) mainly considers the balance between the

strong gradient region and the small gradient region, it has a large

value at the strong gradient position and a relatively small value at

the small gradient position. The final similarity measure can be

expressed as:

ALST � NMIðx; fR; fFÞ ¼ Wðx; fR; fFÞ � NMIðx; fR; fFÞ (10)

F I G . 3 . Displacement vector field (DVF) of single‐modality registration. (a) Gradient difference DVFs along Y direction are on the left column,
and DVFs along X direction are on the right column. (b) Sum of squared distances; (c) normalized mutual information; (d) B‐spline and regional
mutual information; (e) local structure tensor‐normalized mutual information; (f) adaptive local structure tensor‐normalized mutual information.

TAB L E 1 Evaluation of single‐modality brain image registration effect

Registration method MSE SSIM NMI CC NJ TIME（S）

Before registration 2732.739 0.361 1.124 0.578 — —

B‐spline + GD 1808.806 0.569 1.142 0.720 1.78% 35.94

B‐spline + SSD 431.708 0.823 1.221 0.934 0% 2.45

B‐spline + NMI 425.439 0.862 1.312 0.936 0% 517.54

B‐spline + BRMI 131.897 0.894 1.300 0.979 0% 1034.27

B‐spline + LST‐NMI 215.750 0.890 1.359 0.967 0% 738.83

B‐spline + ALST‐NMI 64.350 0.962 1.458 0.990 0% 677.51

MSE, mean‐square error; SSIM, structural similarity index; CC, correlation coefficient; NMI, normalized mutual information; NJ, negative Jacobian; GD,

gradient difference; SSD, sum of squared distances; BRMI, B‐spline and regional mutual information; ALST‐NMI, adaptive local structure tensor‐normal-

ized mutual information.
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3 | RESULTS AND DISCUSSION

3.A | Single‐modality experiment and results

In order to validate the robustness and accuracy of ALST‐NMI mea-

sure, the method is applied for nonrigid medical image registration and

compared with SSD, NMI, BRMI and LST‐NMI measure. All the experi-

ments are conducted on a set of real brain images from the brain web

with size of 353 × 354. The reference image is shown in Fig. 2(a), the

floating image is shown in Fig. 2(b) and 2(b) is obtained by forming the

Fig. 2(a) artificially, the grid interval of the transformation model is set

as [32 32], and the iterations of the LBFGS optimization algorithm is

set as 80. The experimental results are shown in the following figure.

3.A.1 | Registration performance evaluation

In order to objectively evaluate the results of registration, this paper

uses mean square error, structural similarity index, NMI, and

correlation coefficient to quantitatively evaluate the performance of

registration.

1. Mean square error

MSE ¼ 1
mn

∑n
i¼1∑

m
j¼1 Rði; jÞ � Fði; jÞj j2 (11)

where R(i, j) and F(i, j) represents pixel in the reference image and

the floating image, respectively, m × n represent the resolution of

the image.

2. Structural similarity index

SSIMðR; FÞ ¼ ð2μRμF þ C1Þð2σRF þ C2Þ
ðμ2R þ μ2F þ C1Þðσ2R þ σ2F þ C2Þ

(12)

where μR, μF, σR, σF, and σRF represents the mean, variance, and

covariance of the images R and F, respectively. C1 = (k1L)
2 and

(a) (d)

(e)

(f)

(b)

(c)

F I G . 4 . Histogram of the displacement error distribution of the single‐modality registration. (a) gradient difference (b) sum of squared
distances; (c) normalized mutual information; (d) B‐spline and regional mutual information; (e) local structure tensor‐normalized mutual
information; (f) adaptive local structure tensor‐normalized mutual information.
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C2 = (k2L)
2 are constants used to maintain stability, and L is the

dynamic range of the pixel value, k1 = 0.01, k2 = 0.03.

3. Mutual information

MIðR; FÞ ¼ HðRÞ þ HðFÞ � HðR; FÞ (13)

where H(R) and H(F), respectively, denote the information entropy

of reference image R and float image F, and H(R,F) is the joint

entropy of two images.

4. Normalized mutual information

NMIðR; FÞ ¼ HðRÞ þ HðFÞ
HðR; FÞ (14)

5. Correlation coefficient

CC ¼
∑m

i¼0∑
n
j¼0 Rði; jÞ � Rði; jÞ

h i
Fði; jÞ � Fði; jÞ
h i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑m

i¼0∑
n
j¼0 Rði; jÞ � Rði; jÞ

h i2r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑m

i¼0∑
n
j¼0 Fði; jÞ � Fði; jÞ

h i2r (15)

where Rði; jÞ and Fði; jÞ represents the mean of pixel in the reference

image and the floating image, namely.

6. Jacobian determinant

Whether the displacement vector field (DVF) has the ability to

keep the image topology unchanged can be measured by Jacobian

determinant of the DVF. The value of the Jacobian determinant is

larger than zero, indicating that the DVF has the ability to maintain

the topology unchanged, the percentage of pixels with negative

Jacobian determinant values is expressed as NJ (negative Jacobian).

Equation (15) gives the definition of the Jacobian determinant.

T = (X, Y) represent the vector of DVF, X and Y respectively

(a) (b) (c)

(f)                  (g) (h)

(d) (e)

(i) ( j)

(k)                  (l) (m ) (n)     (o)

F I G . 5 . Brain image multimodality registration result. (a) MRI reference image; (b) CT floating image; (c) registration error (a) and (b); (d)
gradient difference (GD) deformed image; (e) GD deformation field; (f) registration error (a) and (d); (g) normalized mutual information (NMI)
deformed image; (h) NMI deformation field; (i) registration error (a) and (g); (j) local structure tensor‐normalized mutual information (LST‐NMI)
deformed image; (k) LST‐NMI deformation field; (l) registration error (a) and (j); (m) adaptive local structure tensor‐normalized mutual
information (ALST‐NMI) deformed image; (n) ALST‐NMI deformation field; (o) registration error (a) and (m).

TAB L E 2 Evaluation of multimodality brain image registration
effect

Registration
method MSE SSIM MI CC NJ

TIME
(S)

Before

registration

4806.17 0.536 0.567 0.554 — —

B‐spline + GD 4203.41 0.55 0.644 0.601 0% 16.65

B‐spline +

NMI

10059.58 0.109 0.159 0.041 33.78% 170.14

B‐spline +

LST‐NMI

3497.85 0.580 0.682 0.657 0% 188.91

B‐spline +

ALST‐NMI

2695.14 0.621 0.748 0.713 0% 217.14
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represent the position of the point p(x, y) after deformation, then

the Jacobian determinant of the DVF at point p is:

JTðpÞ ¼ det @X=@x @X=@y; @Y=@x @Y=@y½ � (16)

7. Computation time

All experiments are performed on the MATLAB 2016a, with the

Intel Core i7‐4790CPU 3.60GHZ processor and memory is 8G. We

provide the values of the computation time under the same comput-

ing power for each metrics used.

The results of ALST‐NMI and GD, SSD, NMI, BRMI, LST‐NMI are

shown in Fig. 2(d), 2(g), 2(j), 2(m), 2(p), 2(s), 2(e), 2(h), 2(k), 2(n), 2(q),

and 2(t) is the transformation image obtained by the corresponding

method, and the registration error image shows the distribution of

registration errors between the result image and reference image

using different methods. It can be seen from Fig. 2(f), 2(i), and 2(l)

that, the GD,SSD and NMI measures do not have a good registration

result which are calculated by using gradient or intensity information

alone, especially perform worse at the edge of the image and the

large deformation area of the occipital lobe. It can be seen from

Fig. 2(o) and 2(u) that, after combining the spatial information with

the ALST‐NMI and BRMI measures, the registration accuracy is sig-

nificantly improved, and the global contour of the image is basically

successfully registered, the large deformation region such as the

occipital lobe has also achieved a good result. However, as shown in

Fig. 2(m) and 2(s), the registration image obtained by BRMI measure

shows a distinct sunken at the edge of the brain, the ALST‐NMI

measures can obtain a smooth registration image that is closer to

the reference image, and the difference is also minimal compared

with the reference image. It can be seen from Fig. 2(r) and 2(u) that,

the LST‐NMI measure uses Gaussian filtering with fixed variance and

template globally, whether small or large filtering parameters are

used, a good registration effect cannot be achieved for the large

deformation region of the occipital lobe (Fig. 3). After adding adap-

tive Gaussian filtering with adaptive variance and template, the large

deformation region is successfully registered. Table 1 gives the quan-

titative metrics of the registration results, it is shown from table that

ALST‐NMI measures has improved registration results in all metrics

compared to other methods. Compared with the B‐spline + LST‐
NMI, the mean square error decreases by 70.17%, the structural sim-

ilarity increases by 8.09%, the NMI increased by 7.28%, and the cor-

relation coefficient increased by 2.38%, the effectiveness of adding

adaptive Gaussian filtering to local structure tensors is demonstrated.

Compared with the B‐spline + NMI, the mean square error

decreases by 84.87%, the structural similarity increased by 11.6%,

the NMI increased by 11.13%, and the correlation coefficient

increased by 5.77%, the accuracy of image registration is improved,

and the effectiveness of the ALST‐NMI measure is proved.

Figure 4 shows the histogram of the displacement error distribu-

tion of the single‐modality registration. Compared with other meth-

ods, the registration accuracy of the proposed method is significantly

improved, 94.7% of the pixels have been effectively registered, and

the percentage of displacement errors of each length in the pixel

points has decreased. There is no excessive displacement error, and

the maximum error is only 0.6 cm, the error larger than 0.2 cm is

less than 0.4% of the total pixels.

3.B | Multimodality experiment and results

In order to validate the registration results of ALST‐NMI measure on

multimodality images, MRI and CT brain images were selected for

image registration experiments. The experimental image size is

256 × 256. MRI reference image is shown in Fig. 5(a), MRI floating

image is shown in Fig. 5(b), the grid interval of the transformation

model is set as [22 22], and iterations of the LBFGS optimization

algorithm is set as 30. In the single‐modality medical image

F I G . 6 . Displacement vector field (DVF) of multimodality
registration. (a) gradient difference DVFs along Y direction are on
the left column, and DVFs along X direction are on the right column.
(b) normalized mutual information (c) local structure tensor‐
normalized mutual information; (d) adaptive local structure tensor‐
normalized mutual information.
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registration experiment, the SSD measure was applied for registra-

tion and compared with the method proposed in this paper. but SSD

measure is not suitable for multi‐modality image registration,so The

ALST‐NMI measure is compared with GD, NMI and LST‐NMI mea-

sure for multi‐modality image registration, the experimental results

are shown in the following figure

F I G . 7 . Histogram of the displacement
error distribution of the multimodality
registration. (a) gradient difference (b)
normalized mutual information (c) local
structure tensor‐normalized mutual
information; (d) adaptive local structure
tensor‐normalized mutual information.
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The (d), (g), (j), and (m) of Fig. 5 is the registration result of the

ALST‐NMI, GD, NMI, and LST‐NMI measure, the (e), (h), (k), and (n)

of Fig. 5 is the transformation image obtained by the corresponding

method, and the third column is the registration error image

between the registration result image and reference image. It can be

seen from Fig. 5(d), 5(j), and 5(m) that the GD, LST‐NMI, and ALST‐
NMI measure can successfully register based on the multimodality

images, but original nonexistent organization appears on the result

image produced by NMI. It can be seen from Fig. 5(h) that the trans-

form mesh grid of the NMI measure appears overlap and the regis-

tration fails. The main reason is that multimodality images are

obtained by using different imaging principles and devices, the inten-

sity difference of different tissues in different imaging modes is very

large, while the NMI measure only uses intensity information for

registration, which causes the search optimization algorithm to fall

into local extremes and lead to misregistration. Figure 5(m) shows

that the ALST‐NMI measure can obtain a smooth image that is clo-

ser to the reference image; it reduces the risk of falling into the local

extremes and enhances the robustness of the registration compared

with the NMI measure. Table. 2 shows the quantitative metrics of

various measure registration results. It can be seen that result pro-

duced by B‐spline + ALST‐NMI has been improved observably com-

pared with the B‐spline + LST‐NMI, which proves that the

combination of local Gaussian filtering and local structure tensor is

effective for multimodality images as well. Compared with the B‐
spline + LST‐NMI, the mean square error decreases by 35.88%, the

structural similarity increases by 12.91%, the NMI increases by

16.15%, and the correlation coefficient increases by 18.64%. The

experimental results show that the ALST‐NMI measure can improve

the registration accuracy, and can achieve satisfactory results for the

nonrigid registration of large deformation multimodality medical

images (Fig. 6).

Figure 7 shows the histogram of the displacement error distribu-

tion of the multimodality registration. Compared with the GD

method, the ALST‐NMI measure has obvious improvement for large

displacement error, the pixels with error of 1 cm decreases from

2.88% to 0.22%. Compared with the LST‐NMI method, the mean

error is significantly reduced, which proves the validity of adaptive

local structure tensor. 66.75% of the pixels have been effectively

registered, and the error larger than 0.5 cm is less than 2% of the

total pixels.

4 | CONCLUSION

In this paper, a similarity measure based on adaptive local structure

tensor and NMI is proposed for nonrigid medical image registration

with large deformation, in which intensity information and spatial

information are both considered. ALST‐NMI similarity measure uses

a weighting function to balance the registration of strong gradient

regions and small gradient regions, the experiments show that the B‐
spline + ALST‐NMI can effectively improve the image registration

accuracy. However, since the NMI and the local structure tensor of

the discrete points need to traverse each pixel, the registration effi-

ciency is reduced to a certain extent. It is necessary that how to

achieve higher registration precision and computational efficiency

simultaneously.
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