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Abstract

Staphylococcus aureus is a leading cause of community-associated and nosocomial infections. Imperative to the success of S.
aureus is the ability to adapt and utilize nutrients that are readily available. Genomic sequencing suggests that S. aureus has
the genes required for synthesis of all twenty amino acids. However, in vitro experimentation demonstrates that
staphylococci have multiple amino acid auxotrophies, including arginine. Although S. aureus possesses the highly conserved
anabolic pathway that synthesizes arginine via glutamate, we demonstrate here that inactivation of ccpA facilitates the
synthesis of arginine via the urea cycle utilizing proline as a substrate. Mutations within putA, rocD, arcB1, argG and argH
abolished the ability of S. aureus JE2 ccpA::tetL to grow in the absence of arginine, whereas an interruption in argJBCF, arcB2,
or proC had no effect. Furthermore, nuclear magnetic resonance demonstrated that JE2 ccpA::ermB produced 13C5 labeled
arginine when grown with 13C5 proline. Taken together, these data support the conclusion that S. aureus synthesizes
arginine from proline during growth on secondary carbon sources. Furthermore, although highly conserved in all
sequenced S. aureus genomes, the arginine anabolic pathway (ArgJBCDFGH) is not functional under in vitro growth
conditions. Finally, a mutation in argH attenuated virulence in a mouse kidney abscess model in comparison to wild type
JE2 demonstrating the importance of arginine biosynthesis in vivo via the urea cycle. However, mutations in argB, argF, and
putA did not attenuate virulence suggesting both the glutamate and proline pathways are active and they, or their pathway
intermediates, can complement each other in vivo.
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Introduction

Staphylococcus aureus is a common cause of skin and soft tissue

infections; however more serious complications such as bacter-

emia, osteomyelitis, endocarditis, and necrotizing pneumonia can

occur [1]. During infection, S. aureus must catabolize diverse

carbon sources including carbohydrates, proteins and lipids;

therefore, multiple global regulators, including CcpA and CodY,

subsequently regulate carbon flow [2,3,4]. Thus, regulation of

carbon flow through central metabolism and other metabolic

pathways has a direct link to expression and synthesis of virulence

factors [5,6,7].

It has been known for over 70 years that S. aureus exhibits

multiple amino acid auxotrophies, including arginine, valine,

proline, cysteine, and leucine [8,9]. Complicating the picture, in

1937, Gladstone demonstrated that multiple strains of S. aureus

could be trained to grow in a chemically-defined broth lacking all

twenty amino acids through extended incubation [9]. These data

suggested that S. aureus was indeed a prototroph but repressed

biosynthesis of certain amino acids. In support of this, bioinfor-

matic analyses of the S. aureus genome revealed an apparently

complete repertoire of biosynthetic operons needed to synthesize

all 20 amino acids [10]. Included in these are the genes encoding

the arginine biosynthetic pathway argJBCDFGH where arginine is

synthesized from glutamate [11]. This pathway is highly conserved

among a wide array of bacteria, including Escherichia coli, Salmonella

enterica serotype Typhimurium, Proteus mirabilis, Bacillus subtilis, and

Streptomyces clavuligerus among others [12,13,14].

Although B. subtilis synthesizes proline from glutamate

[11,15,16], S. aureus preferentially utilizes arginine rather than

glutamate as a precursor for proline biosynthesis via arginase

(RocF), ornithine aminotransferase (RocD), and P5C reductase

(ProC) [17]. Furthermore, Li and colleagues recently reported that

proline biosynthesis is regulated through CcpA-mediated carbon

catabolite repression at both rocF and rocD [18]. Carbon catabolite

repression allows bacteria to preferentially utilize preferred carbon

sources and therefore increase the organism’s fitness [19]. The

trans-acting carbon catabolite protein CcpA in a complex with Hpr

binds to cis-acting DNA sequences known as catabolite responsive

elements (CRE) [20,21,22,23]. In the presence of a preferred

carbon source, HprK phosphorylates the Ser-46 position of Hpr

and once phosphorylated, Hpr binds to CcpA [23,24,25].

In this study, we utilized genetic and biochemical approaches to

examine arginine auxotrophy in S. aureus. bursa aurealis transposon
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mutagenesis identified CcpA as a regulator of arginine biosynthe-

sis. However, instead of de-repressing the conserved arginine

biosynthesis pathway (ArgJBCDFGH) via glutamate, S. aureus JE2

ccpA synthesized arginine from proline via the urea cycle. To the

best of our knowledge, this is the first report of bacteria utilizing

proline for arginine biosynthesis, which may indicate a predilec-

tion to degrade and utilize proteins rich in proline (i.e. collagen)

during an S. aureus infection for use in arginine biosynthesis.

Utilization of proline to synthesize arginine demonstrates the

resourcefulness of S. aureus and its ability to rapidly evolve to utilize

nutrients that are readily available in the environment.

Results

Arginine Auxotrophy in Staphylococcus aureus
To examine arginine auxotrophy in S. aureus, eighty-two clinical

S. aureus isolates collected from positive blood cultures at the

University of Nebraska Medical Center were grown on Complete

Defined Medium (CDM) with and without arginine. Similar to

observations by Emmett and Kloos, only one S. aureus isolate

(SA2126) had the ability to grow on CDM lacking arginine (CDM-

R) following 48 h incubation, whereas all isolates grew on CDM

containing arginine further confirming the arginine auxotrophic

nature of S. aureus [8]. Furthermore, a community-associated S.

aureus USA300 strain JE2 (Table S1) was unable to grow on CDM-

R following 48 h incubation at 37uC. To extend these observa-

tions, JE2 was grown to stationary phase in CDM broth

(56109 CFU) and plated on CDM-R and CDM lacking proline

(CDM-P). Similar to the observations of Li and colleagues [18], S.

aureus JE2 reverted to proline prototrophy at a rate of 161026;

however, no colonies were isolated on CDM-R following five

experimental attempts. Nevertheless, similar to observations by

Gladstone, slight growth of JE2 was observed following five days of

incubation in CDM-R broth [9]. These observations suggest that

S. aureus has the inherent ability to synthesize arginine upon

extended selection; however, the phenotype is not easily selected

during growth in medium replete with amino acids.

Regulation of Arginine Biosynthesis by Carbon Catabolite
Repression

Based on our observations that growth in CDM-R could be

selected through extended incubation, we hypothesized that

arginine biosynthesis was under transcriptional repression. There-

fore, we screened a random bursa aurealis transposon library to

isolate JE2 mutants able to grow on CDM-R. Two mutants were

isolated that had the ability to grow on CDM-R; subsequent

sequencing of the bursa aurealis insertions found they had inserted

in hprK and ccpA. Both HprK and CcpA function to control carbon

catabolite repression (CCR) in gram-positive bacteria [26].

Therefore, to completely eliminate CCR, a ccpA allelic replace-

ment mutant was generated in JE2 through 80a transduction of

the ccpA::tetL allele from MST14 (kind gift of M. Bischoff). As

predicted, growth analysis in CDM-R demonstrated that JE2

ccpA::tetL enters exponential phase between 7–12 h and reaches a

maximum OD600 of 4.5 after 24 h, whereas no growth was

observed with wild type JE2 in CDM-R (Figure 1). Importantly,

introduction of the ccpA complementation plasmid pNF266

abrogated growth of JE2 ccpA::tetL.

To further support the hypothesis that CCR functions to repress

arginine biosynthesis, JE2 was grown in CDM-R lacking glucose

but containing other, non-preferred carbon sources (Figure 2).

Since CCR is alleviated when S. aureus is grown in media

containing a non-preferred carbon source, it was hypothesized that

JE2 would grow in CDM-R when glucose was replaced with a

secondary carbon source. These experiments demonstrated that

arabinose, sorbitol and pyruvate were able to support growth of

JE2 when added to CDM-R (Figure 2). In contrast, glucose,

fructose, glycerol, sucrose, mannitol, maltose, salicin, gluconic

acid, and ribose were unable to support growth in CDM-R

suggesting these carbohydrates do not derepress CcpA in JE2. In

agreement with our results, Li and colleagues also determined that

replacement of glucose with arabinose or sorbitol abrogated

CcpA-mediated repression in S. aureus Newman and functioned to

activate proline biosynthesis [18]. Overall, these data demonstrate

that CCR functions to repress arginine biosynthesis, suggesting

that arginine biosynthesis is linked to growth in niches where

preferred carbon sources are limited.

Northern Analysis of argJBCDFGH in JE2 ccpA::ermB
Our preliminary data suggested that CCR functioned to repress

an enzymatic step in the conserved arginine biosynthetic pathway

via glutamate [27] (Figure 3). To further address this possibility,

northern blot analysis was performed to address transcriptional

expression of argJBCDFGH in JE2 ccpA::ermB in comparison to

Figure 1. Interruption of ccpA facilitates growth in CDM-R.
Growth analysis of JE2, JE2 ccpA::tetL, and JE2 ccpA::tetL/pNF266 (ccpA
complement) in complete defined medium lacking arginine (CDM-R).
Isolates were grown aerobically using a 10:1 flask to volume ratio. S.
aureus strains containing a functional ccpA are unable to grow in CDM-
R. Data represent means 6 SEM of three independent experiments.
doi:10.1371/journal.ppat.1003033.g001

Author Summary

Although Staphylococcus aureus encodes the highly
conserved arginine biosynthesis pathway via glutamate,
arginine is an essential amino acid. We found that a
mutation in ccpA, a gene encoding a protein facilitating
carbon catabolite repression, mediates arginine biosyn-
thesis under in vitro growth conditions. However, both
genetic and biochemical evidence suggested that a S.
aureus ccpA mutant synthesizes arginine via proline and
the urea cycle, a pathway not demonstrated in bacteria
before. Furthermore, an animal model of S. aureus
infection demonstrated the importance of arginine bio-
synthesis in vivo. This new pathway sheds light on
important host-pathogen interactions and suggests S.
aureus has evolved to address arginine depletion in the
host by synthesizing arginine from a readily available
substrate such as proline.

Arginine Biosynthesis in Staphylococcus aureus
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wildtype JE2. In S. aureus, argDCJB is arranged in an operon

structure, whereas argF is transcribed as a monocistronic unit and

argGH are co-transcribed. JE2 and JE2 ccpA::ermB were grown in

CDM and CDM-R, respectively, to mid-exponential phase and

mRNA was isolated. Utilizing DNA probes specific for each gene

within the conserved pathway, argDCJB and argF expression was

not detected in either JE2 or JE2 ccpA::ermB (Figure 4). However,

although argG and argH transcripts were not detected in JE2, both

transcripts were detected in JE2 ccpA::ermB (Figure 4). Therefore,

although JE2 ccpA::ermB has the ability to grow on media lacking

arginine, this strain does not appear to utilize the conserved

arginine biosynthetic operon to synthesize arginine in CDM-R.

These results suggested the existence of a novel arginine

biosynthetic pathway in S. aureus.

S. aureus Utilizes a Novel Proline Catabolic Pathway to
Synthesize Arginine

Since our data indicated that glutamate was not the precursor

for arginine synthesis in JE2 ccpA::ermB, other potential pathways

were examined in silico. Based on the northern blot data

demonstrating the expression of argGH in JE2 ccpA::ermB, we

hypothesized that arginine may be synthesized via the urea cycle

(Figure 3). In silico analysis predicted that either glutamate or

proline have the potential to feed into the urea cycle to serve as

substrates for arginine biosynthesis. To address this hypothesis, we

examined amino acid consumption by JE2 and JE2 ccpA::ermB

grown in CDM and CDM-R, respectively (Figure S1). These

results demonstrated that both JE2 and JE2 ccpA::ermB consumed

similar amounts of glutamate from the culture media following

24 h of growth. In contrast, JE2 ccpA::ermB consumed all available

free proline from the culture medium, whereas only approximately

50% of the available free proline was consumed by JE2. Taken

together, these observations allowed us to speculate that JE2

ccpA::ermB utilized proline via the urea cycle for arginine synthesis.

To further investigate this hypothesis, Q11 transducing lysates

were prepared from defined JE2 bursa aurealis mutants with

insertions in the following genes: putA, proC, rocD, arcB1, arcB2,

argF, argG, argH, argC, argB and argJ. These bursa aurealis mutations

(conferring erythromycin resistance) were transduced into JE2

ccpA::tetL and subsequently grown in CDM-R (Figure 5). Muta-

tions in argG, argH, putA, rocD, and arcB1 abrogated growth of JE2

ccpA::tetL in CDM-R. However, mutations in argJ, argB, argC, argF,

arcB2, or proC had no effect on growth consistent with the

prediction that arginine is synthesized from proline and not

glutamate (Figure 5).

Two-dimensional (2D) 1H-13C heteronuclear single quantum

coherence (HSQC) nuclear magnetic resonance (NMR) experi-

ments were performed to confirm these data. JE2 and JE2

ccpA::ermB were grown in the presence of 13C5-glutamate or 13C5-

Figure 2. Growth of JE2 in CDM containing non-preferred
carbon sources. JE2 was grown in CDM or CDM-R with the indicated
carbon source at 37uC for 18 hours. Significant growth in CDM-R was
seen only when arabinose and sorbitol were used as carbon sources.
Data represent means 6 SEM of five independent experiments.
doi:10.1371/journal.ppat.1003033.g002

Figure 3. Arginine biosynthetic pathway via glutamate and
proline. Figure depicts highly conserved arginine biosynthetic
pathway via glutamate and the proposed pathway from proline via
PutA, RocD, ArcB1, ArgG and ArgH. Note the previously established
reverse pathway from arginine to proline via RocF, RocD and ProC.
doi:10.1371/journal.ppat.1003033.g003

Figure 4. Northern analysis of arginine biosynthetic pathway in
S. aureus JE2 and JE2 ccpA::ermB. JE2 and JE2 ccpA::ermB total RNA
was isolated in mid-exponential phase of growth in CDM and CDM-R,
respectively. DNA probes specific for argJ, argB, argC, argD, argF, argG,
and argH were labeled with digoxygenin and detected using anti-
digoxigenin-AP Fab fragments (Panel A). Panel B shows 16 s and 23 s
rRNA depicting equal RNA loading.
doi:10.1371/journal.ppat.1003033.g004

Arginine Biosynthesis in Staphylococcus aureus
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proline in CDM and CDM-R, respectively. Based on our genetic

studies, it was predicted that 13C-labeled arginine would only be

detected when JE2 ccpA::ermB was grown in CDM-R containing
13C5-proline. As expected, 13C-labeled arginine was detected when

JE2 ccpA::ermB was propagated in the presence of 13C5-proline but

not with 13C5-glutamate (Figure 6). Collectively, these results

provide strong evidence that proline is the substrate for arginine

biosynthesis in a ccpA genetic background. Furthermore, it is

demonstrated that the highly conserved arginine biosynthetic

pathway via glutamate is inactive under the growth conditions

utilized in the study.

Arginine Auxotrophy in Other Staphylococcus aureus
Strains

To determine whether our data regarding arginine biosynthesis

were specific to the JE2 background, Q11 transducing lysates were

prepared from JE2 bursa aurealis argF and argH mutants and

introduced into RN4220 and Newman ccpA backgrounds. As

previously noted with JE2 ccpA::tetL, an argH mutation abolished

the ability of both RN4220 ccpA::tetL and Newman ccpA::tetL to

grow in CDM-R, whereas a mutation in argF had no effect

(Figure 7). Interestingly, RN4220 has the ability to grow in CDM-

R broth. Subsequent studies demonstrated that RN4220 reverted

to arginine prototrophy at a frequency of 1.661025; however,

sequence analysis of these mutants indicated they did not have

mutations in ccpA, hprK or ptsH suggesting weak carbon catabolite

repression in the RN4220 strain background. In addition,

RN4220 argH::QNS was unable to grow in CDM-R broth

whereas a bursa aurealis mutation in argF had no effect on growth

suggesting RN4420 synthesizes arginine from proline but not from

glutamate. Collectively, these data suggest that as a species, S.

aureus has evolved to synthesize arginine via proline when growing

in conditions lacking a preferred carbon source.

Virulence in a mouse kidney abscess model. C57BL/6

mice were inoculated retro-orbitally with 106 CFU of JE2, JE2

argH::QNS, JE2 argC::QNS, JE2 putA::QNS, or JE2 argF::QNS.

The mice were harvested at 20 days and the kidneys were

homogenized and CFU/gram of tissue determined (Figure 8). No

statistical difference was determined between JE2 and JE2

argF::QNS, JE2 argC::QNS, or JE2 putA::QNS. However, a

significant difference was noted between JE2 (mean log10 CFU

of 5.31) and JE2 argH::QNS (mean log10 CFU of 4.21) indicating a

potential function of argH and arginine biosynthesis in abscess

development and persistence.

Discussion

The study of arginine biosynthesis has served as a paradigm for

the regulon concept, originally coined by Maas and Clark, where

the same transcriptional repressor regulates unlinked loci, ArgR

[28]. Based on these studies and over 60 years of research, there

are three established biochemical pathways, all utilizing glutamate

as a substrate, that synthesize arginine in bacteria [27]. These

three pathways primarily differ in the enzymes used to generate L-

citrulline from N-acetyl-L-ornithine [27,29]. All sequenced staph-

ylococcal species analyzed to date encode the highly conserved

ArgJBCDFGH on three separate unlinked transcriptional units;

two operons (argDCJB and argGH) and one monocistronic gene

(argF). Within the S. aureus USA300 FPR_3757 genome

Figure 5. Determination of arginine biosynthesis-dependent
genes in S. aureus JE2 ccpA::tetL. Defined bursa aurealis transposon
mutants in argJ, argB, argC, argF, argG, argH, proC, putA, rocD, arcB1,
and arcB2 were transduced into JE2 ccpA::tetL and assessed for growth
in CDM-R for 18 hours. Data represent means 6 SEM of three
independent experiments.
doi:10.1371/journal.ppat.1003033.g005

Figure 6. Two-dimensional (2D) 1H-13C heteronuclear single
quantum coherence (HSQC) nuclear magnetic resonance
(NMR) analysis of JE2 and JE2 ccpA::ermB. JE2 and JE2 ccpA::ermB
were grown in the presence of 13C5-glutamate or 13C5-proline in CDM
and CDM-R, respectively, and assayed using 2D 13C HSQC NMR. The
differences in 13C-arginine relative intensity were determined by
subtracting the average intensities between JE2 and JE2 ccpA::ermB,
and a student’s t-test was utilized to determine significance. A positive
relative intensity value is indicative of a greater intensity of 13C-arginine
in JE2 ccpA::ermB in comparison to JE2. JE2 ccpA::ermB accumulated
significantly greater amounts of 13C-arginine when grown in CDM
containing 13C5-proline in comparison to JE2. Note that there was no
significant difference in 13C-arginine accumulation between JE2 and JE2
ccpA::ermB when grown in CDM and CDM-R, respectively, containing
13C5-glutamate.
doi:10.1371/journal.ppat.1003033.g006

Arginine Biosynthesis in Staphylococcus aureus
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(NC_007793), the genes predicted to encode the arginine

biosynthetic pathway are as follows: argJ (bifunctional

ornithine acetyltransferase/glutamate N-acetyltransferase),

SAUSA300_0185, EC 2.3.1.35/2.3.1.1; argB (acetylglutamate

kinase), SAUSA300_0184, EC 2.7.2.8; argC (N-acetyl-gamma-

glutamyl-phosphate-reductase), SAUSA300_0186, EC 1.2.1.38;

argD (acetylornithine transaminase), SAUSA300_0187, EC

2.6.1.11; argF (ornithine carbamoyl transferase),

SAUSA300_1062, EC 2.1.3.3; argG (argininosuccinate synthase),

SAUSA300_0864, EC 6.3.4.5; and argH (argininosuccinate lyase),

SAUSA300_0863, EC 4.3.2.1. However, as previously reported

and confirmed in this study, S. aureus is a functional arginine

auxotroph when grown on complex laboratory media [8,9]. In

addition, no nonsense mutations or insertions were detected within

the argJBCDFGH genes of the USA300 FPR_3757 genome or any

other sequenced staphylococcal genome, suggesting that arginine

biosynthesis is not a decaying pathway in the staphylococci. As

discussed by Somerville and Proctor, in some cases, amino acid

auxotrophies in S. aureus may be linked to TCA cycle inactivity or

feedback inhibition due to growth in amino acid and glucose

replete media [30]. Our results are in agreement with this

hypothesis where inactivation of ccpA, which represses the TCA

cycle [31] and other genes that function to metabolize secondary

carbon sources, was linked to arginine biosynthesis in S. aureus. In

the presence of a preferred carbon source, the CcpA/Hpr

complex represses a multitude of genes linked to central

metabolism, amino acid metabolism and virulence [2,32,33,34].

Therefore, based on previous studies, bioinformatic analyses of the

S. aureus genome, and the work by Li and colleagues demonstrating

that proline biosynthesis was linked to ccpA regulation, it was not

unexpected to discover that arginine biosynthesis was linked to

carbon catabolite repression [5,18,30,35]. However, it was

remarkable to discover that S. aureus does not use the conserved

argJBCDFGH pathway to synthesize arginine via glutamate.

Rather, we provide both genetic and biochemical evidence in

support of a novel biosynthetic pathway, whereby S. aureus utilizes

proline as a substrate via the urea cycle. First, mutations within

putA, rocD, arcB1, argG, and argH, but not argJ, argB, argC, or argF,

abolished growth of a ccpA mutant on CDM-R, providing genetic

evidence that proline serves as a precursor for arginine synthesis

(Figure 5). It is important to note that inactivation of arcB1

abrogated growth of JE2 ccpA::tetL whereas a mutation in arcB2 did

not. arcB1 (SAUSA300_2569) encodes the native ornithine

carbamoyltransferase within the arginine deiminase operon

whereas arcB2 (SAUSA300_0062; ornithine carbamoyltransferase)

is within the ACME pathogenicity island encoded arginine

deiminase operon [36]. These data suggest that ArcB1 and ArcB2

are not functionally redundant or are not expressed under the

same growth conditions. arcB2 transcript is not detected using

northern analysis (data not shown) under in vitro growth conditions

used in this study (CDM or CDM-R broth), however, it is

unknown whether it is induced under other in vivo or in vitro growth

conditions. Second, 2D 1H-13C HSQC NMR experiments

provided compelling evidence that arginine is synthesized via

proline and the urea cycle in a S. aureus ccpA mutant. Although

there have been two reports demonstrating that proline is

synthesized from arginine in S. aureus [17,18], we are unaware of

any reports demonstrating that arginine can be synthesized from

proline. Li and colleagues demonstrated that CcpA binds to a cre

site just upstream of rocD. Using the cre site from pckA as a

consensus sequence [18], we identified potential cre sites upstream

of putA, arcB1, and argGH (Figure S2). However, the function of

these cre sites in regards to CcpA regulation has yet to be defined.

Previous studies have demonstrated that a S. aureus ccpA mutant

also synthesizes proline from arginine via RocF (arginase), RocD

(ornithine aminotransferase), and ProC (P5C reductase) [17,18].

Figure 7. Determination of arginine biosynthesis-dependent
genes in S. aureus Newman and RN4220. Defined bursa aurealis
transposon mutants in argF and argH were transduced into Newman
ccpA::tetL and RN4220 ccpA::tetL and assessed for growth in CDM-R for
18 hours. Data represent means 6 SEM of three independent
experiments.
doi:10.1371/journal.ppat.1003033.g007

Figure 8. Mouse kidney abscess model. C57BL/6 mice were
infected with 106 CFU of JE2 (n = 16 mice), JE2 argF::QNS (n = 14 mice),
JE2 argH::QNS (n = 15 mice), JE2 argC::QNS (n = 13 mice), or JE2
putA::QNS (n = 18 mice). Kidneys were homogenized after 20 days and
bacterial burden determined through viable count (CFU/gram tissue).
Horizontal line represents median log10 CFU/gram; significant differ-
ences in bacterial burden were noted between JE2 and JE2 argH::QNS
(**p,.01). Data were analyzed using two-way ANOVA.
doi:10.1371/journal.ppat.1003033.g008

Arginine Biosynthesis in Staphylococcus aureus
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Collectively, these data and our observations suggest that under

carbon-limiting conditions (in vivo environment), S. aureus can

synthesize proline from arginine and arginine from proline

depending on which amino acid is limited. Based on our findings

and the existing literature, we propose a hypothetical model

whereby free arginine is limited in the host during infection

causing competition between the host and bacteria for arginine. In

humans, L-arginine is a non-essential amino acid under homeo-

static conditions. However, arginine becomes a ‘‘conditionally

essential’’ [37] amino acid during sepsis or trauma due to its use as

a substrate for inducible nitric oxide synthase [38] and function in

cell-mediated immunity [39], protein synthesis [40] and wound

healing [41,42]. Indeed, recent studies have shown significant

iNOS and arginase expression during S. aureus infection [43]

(Figure 9), providing further support that a staphylococcal abscess

may be an arginine-depleted environment based on the require-

ment of arginine for these host enzymes to function. In addition,

low levels of L-arginine have been reported in plasma during sepsis

[37], causing some investigators to suggest the use of L-arginine as

a treatment modality [44]. Furthermore, arginine can serve as a

substrate for arginine deiminase and subsequent direct ATP

generation in the staphylococci [27].

Although little information is available regarding the concen-

tration of free proline in a staphylococcal abscess, proline is the

predominant amino acid found in collagen. Collagen is the most

abundant protein in animals and type I collagen is a major

constituent of the fibrotic wall surrounding staphylococcal

abscesses [45] (Figure 9). Furthermore, S. aureus encodes two

proteases, SspB and ScpA, which possess the ability to degrade

collagen [46,47,48]. Therefore, our model predicts that S. aureus

utilizes specific proteases to degrade collagen, resulting in the

liberation of free proline or proline-containing peptides that are

utilized to synthesize arginine via the urea cycle. Strengthening

this argument, earlier work demonstrated that mutants lacking the

high affinity proline permease PutP are less virulent in animal

models of infection [49,50]. This proposed framework was initially

tested using a mouse kidney abscess model previously utilized by

Cheng and colleagues [51]. In this model, staphylococcal abscesses

within the kidney are contained within a pseudocapsule-like

structure; we hypothesized an argH and putA mutant would be

attenuated in abscess persistence in comparison to wild type JE2,

JE2 argC::QNS and JE2 argF::QNS due to the inability to utilize

proline from the pseudocapsule as a substrate for arginine

synthesis. Supporting our model, in those kidneys containing

staphylococcal abscesses, a significant 1 log10 difference was

observed between JE2 and JE2 argH::QNS demonstrating the

importance of arginine biosynthesis via the urea cycle in an in vivo

infection model. As predicted, based on our in vitro data, no

significant difference was observed between JE2, JE2 argC::QNS,

and JE2 argF::QNS in the mouse kidney abscess model. However,

in contrast to our predicted results, no significant difference in

bacterial persistence was detected between JE2 and JE2 putA::

QNS; PutA converts proline into pyrolline-5-carboxylate

(Figure 3). It is known that the addition of either citrulline or

ornithine to CDM-R can complement JE2 ccpA::tetL putA::QNS
allowing growth. Therefore, it is possible that generation of

citrulline or ornithine by arginine deiminase and ornithine

carbamoyltransferase [27], respectively, circumvents and comple-

ments the proline requirement and facilitates the synthesis of

arginine. In addition, since argGH is common to both the

glutamate and proline pathways leading to the synthesis of

arginine, an alternative interpretation of the data is that both

pathways are active in vivo and have the ability to complement

each other.

Finally, we have demonstrated that other S. aureus strains

synthesize arginine from proline when CcpA activity is abolished,

suggesting conservation of this pathway within the species.

However, based on the conserved sequence analysis of the

ArgJBCDFGH pathway within sequenced S. aureus isolates, we

predict that this arginine biosynthetic pathway is active under

growth conditions or niches that remain to be identified. Further

work is required to dissect the evolving dogma regarding arginine

metabolism and the relationship between the host and S. aureus in

the ‘‘war for arginine’’ during infection.

Materials and Methods

Ethics
The clinical S. aureus strains used in this study originated from

the University of Nebraska Medical Center. The Institutional

Review Board at the University of Nebraska Medical Center is

charged with reviewing all research involving human subjects. The

clinical S. aureus strains utilized in the study were de-identified and

analyzed anonymously and were therefore exempt from human

research committee approval.

Animal experimentation was performed under a University of

Nebraska Medical Center approved Institutional Animal Care and

Use Committee (IACUC) Protocol to TK. The University of

Nebraska Medical Center is accredited by the Association for

Assessment and Accreditation of Laboratory Animal Care

International (AALAC). In addition, all animals at the University

of Nebraska Medical Center are maintained in accordance with

Figure 9. Mouse subcutaneous abscess model. C57BL/6 flank
abscesses caused by subcutaneous injection of 56105 CFU of S. aureus
JE2. Tissues were processed for immunofluorescence staining for either
type I collagen (red), inducible nitric oxide synthase (iNOS, red), or
arginase (green). In addition to type I collagen, tissues were processed
with the DAPI nuclear stain (blue) to accentuate the abscess core.
Representative confocal microscopy images are presented for type I
collagen (106magnification) and iNOS/arginase (206magnification).
doi:10.1371/journal.ppat.1003033.g009
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the Animal Welfare Act and the DHHS ‘‘Guide for the Care and

Use of Laboratory Animals.’’

Bacterial Strains and Culture Conditions
For determination of arginine auxotrophy, eighty-two S. aureus

isolates were obtained from a previous collection testing the

prevalence of heterogeneous vancomycin intermediate suscepti-

bility [52]. Other bacterial strains used in the study are shown in

Table S1. Defined bursa aurealis transposon mutants were acquired

from the Nebraska transposon mutant library via the Network on

Antimicrobial Resistance in Staphylococcus aureus (NARSA; http://

www.narsa.net). Bacterial strains were grown in either Tryptic Soy

Broth (TSB; Becton Dickinson, Franklin Lakes, NJ) or Complete

Defined Medium (CDM) as previously described except contain-

ing 0.25% glucose [53]. Cultures were grown aerobically (1:10

volume to flask ratio) at 37uC, 250 rpm unless otherwise stated. To

train JE2 to grow on media lacking arginine, cultures were grown

in CDM-R broth for 6 days, at which point the bacteria were

inoculated to CDM-R agar. To study the reversion frequency of

JE2, Newman and RN4220, the bacteria were grown for 20 hours

in 3 mL of CDM. Cells were pelleted, resuspended in 0.9% NaCl,

and diluted onto CDM, CDM-R, or CDM-P. After 72 hours the

colonies were counted and reversion frequency was determined by

taking the number of prototrophic revertants divided by total

number of colonies plated on CDM.

To determine the growth characteristics in CDM-R containing

various alternative carbon sources, JE2 was grown in 3 mL of

CDM overnight, pelleted and resuspended in 0.9% NaCl. 3 mL of

CDM and CDM-R supplemented with either 0.25% of glucose,

fructose, glycerol, sucrose, mannitol, maltose, salicin, gluconic

acid, arabinose, sorbitol, or ribose (all purchased from Sigma-

Aldrich, St. Louis, MO) were inoculated in a 14 mL polypropyl-

ene round-bottom tube (Becton Dickinson) to an OD600 of 0.05.

Cultures were grown for 18 h at 37uC to stationary phase.

Screening of Random bursa aurealis Transposon Mutant
Library

Random bursa aurealis transposon mutants were generated using

plasmids pBursa and pFA545 and identified using inverse PCR as

previously described [54]. Mutants were grown and collected in a

96 well format and pelleted and resuspended in 50 uL of 0.9%

NaCl. 2 uL were plated on CDM and CDM-R and incubated at

37uC for 72 hours. Approximately 2700 mutants were screened;

colonies that grew on CDM-R plates were confirmed by growing

in CDM-R broth.

Transduction, ccpA Mutant Construction and
Complementation

bursa aurealis transposon mutations were moved to other strain

backgrounds through transduction using phage 80a or Q11 as

previously described [55]. All primers (Table S2) used for

construction and confirmation of the ccpA mutation were generated

based on the sequence of S. aureus strain Mu50 (NC_002758.2). The

ccpA mutant was constructed by replacing a 0.6 kb internal region of

the ccpA gene with an erythromycin resistance cassette (ermB) using

the gene splicing by overlap extension (gene SOEing) technique

[56]. ermB was amplified from pEC4 [57] using primers SAV1736-

ermB-f and SAV1736-ermB-r, which contain sequences homolo-

gous to the ccpA gene. Primers BamHI-SAV1737-f and ermB-

SAV1736-r were used for amplification of a 1.3 kb region upstream

of the ccpA gene. Primers ermB-SAV1736-f and SacI-acuC-f were

used to amplify a 1.7 kb region downstream of the ccpA gene. The

resulting 4.1-kb PCR product contained BamHI and SacI sites that

were used for cloning into pTS1-d [58] to generate plasmid

pMRS44. Plasmid pMRS44 was used to construct S. aureus SA564

ccpA::ermB using the temperature shift protocol as previously

described [59]. Allelic replacement of the internal region of the

ccpA gene by the ermB cassette was verified by PCR using primers

ermB-f, ermB-r, SAV1737-f and acuC-f. The ccpA::ermB mutation

was subsequently moved to JE2 through phage 80a transduction

and confirmed using primers noted above. For the ccpA comple-

mentation plasmid pNF266, ccpA was amplified from JE2 using

primers 2250 and 2251 (Table S2), digested with SphI and BamHI,

and cloned into pCN51 [60]. Note that two ccpA mutants were

constructed in this study, JE2 ccpA::ermB and JE2 ccpA::tetL. JE2

ccpA::tetL was generated by phage 80a transduction of the ccpA::tetL

allele from MST14 [2] so double mutants could be constructed

using ermB as the second selectable marker.

NMR Data Collection
JE2 and JE2 ccpA::ermB were grown in 50 mL CDM to stationary

phase. JE2 and JE2 ccpA::ermB were subsequently inoculated to an

OD600 of 0.05 in CDM containing 100 mM of either 13C5-

glutamate or 13C5-proline (Isotec) and grown to stationary phase.

Cultures were normalized to an OD600 of 2.0 and pelleted by

centrifugation (3000 rpm, 20 minutes, 4uC). Pellets were subse-

quently washed in 10 mL of cold sterile water and resuspended in

1 mL cold sterile water. The Pellet was lysed using a bead beater

(MP Biomedicals) and centrifuged for 15 minutes at 13,000 rpm at

4uC. This lysis step was repeated two more times and the pellet

frozen in an ethanol/dry ice bath. The samples were then

lyophilized, suspended in 600 uL of 50 mM phosphate buffer

(pH = 7.2, uncorrected) in 99.8% D2O (Isotec), and transferred to

5 mm NMR tubes for analysis. The NMR spectra were collected on

a Bruker 500 MHz Avance spectrometer equipped with a triple-

resonance, Z-axis gradient probe. A BACS-120 sample changer

with Bruker Icon software was used to automate the NMR data

collection. The 2D 1H-13C HSQC spectra were collected with a

standard Bruker pulse sequence (HSQCETGP), solvent presatura-

tion and a relaxation delay of 1.5s. Each 2D 1H-13C HSQC

spectrum was collected with a spectrum width of 4734.85 Hz and

2048 data points in the direct (1H) dimension; and a spectrum width

of 13834.26 Hz and 64 data points in the indirect (13C) dimension.

A total of 16 dummy scans and 128 scans were used to obtain each

2D 1H-13C HSQC spectra.

The spectra were processed using the NMRPipe software

package [61]. The spectra were Fourier transformed, manually

phased, and baseline corrected. The processed 2D 1H-13C HSQC

spectra were then analyzed using NMRView [62] to assign

chemical shifts and intensities to each peak. The chemical shift list

were assigned to specific metabolites using the Human Metaba-

lome Database [63], Madison Metabolomics Database [64], and

Platform for Riken Metabolomics [65] with a tolerance level of

0.05 ppm and 0.40 ppm in the 1H and 13C chemical shifts

respectively. The presence of metabolites and metabolomics

pathways was verified using the Kyoto Encyclopedia of Genes

and Genomes (KEGG) [66] and MetaCyc [67] databases. The

quantification of metabolomic peak intensities were performed in a

similar manner as previously described [68]. The relative percent

concentration difference was determined by subtracting averages

from the two cultures. A student T-test was performed to verify the

significance at a 95% confidence level, of the relative percent

concentration differences.

RNA Isolation and Northern Blot Analysis
Cultures of S. aureus JE2 and JE2 ccpA::ermB were grown

overnight in CDM, diluted to an OD600 of 0.05 into fresh CDM or
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CDM-R (1:10 volume to flask ratio, 250 rpm), and grown at 37uC
to an OD600 of 1.5 (mid-exponential growth). Cells were pelleted

at 30006g for 20 minutes at 4uC and resuspended in RLT buffer

with 1% b-mercaptoethanol. Next, they were transferred to lysing

matrix B tubes (MP Biomedicals) and processed in a FP120

FastPrep cell disrupter (MP Biomedicals) for 24 seconds at a

setting of 6.0. The cells were pelleted at 13000 rpm at 4uC for

15 minutes; top-phase was combined with 500 uL of ethanol. The

samples were then processed using an RNeasy mini kit, according

to manufactures instructions (Qiagen, Inc.). Primers listed in Table

S2 were used to make DNA probes that were subsequently labeled

with digoxigenin-labeled dUTP (Roche). 5 ug of RNA was used

for northern analysis that was performed using DIG buffers and

washes (Roche). Anti-Digoxigenin-AP Fab fragments (Roche) was

used with ECF substrate (GE Healthcare) for detection. Blots were

visualized using the Typhoon FLA 7000 imaging system (GE

Healthcare).

Amino Acid Analysis
JE2 and JE2 ccpA::ermB were grown overnight in 50 mL

(500 mL flask) of CDM. Cultures were inoculated to a starting

OD600 of 0.05 in CDM (100 mL in 1 L flask, 250 rpm, 37uC) and

grown for 5 hours. 500 uL of media was collected and pelleted for

5 minutes at maximum speed. Supernatant was collected and

filtered through 3,000 MWCO Amicon Ultra centrifugal filters

(Millipore) according to manufactures instructions. Amino acid

analysis was performed by the Protein Structure Core Facility,

UNMC, using a Hitachi L-8800.

Animal Models
Mouse subcutaneous abscess model. Subcutaneous ab-

scesses were established in C57BL/6 mice following the injection

of 56105 cfu of S. aureus JE2. Tissues were collected at day 7 post-

infection and processed for immunofluorescence staining for either

type I collagen (Millipore, Billerica, MA), inducible nitric oxide

synthase (Abcam, Cambridge, MA), or arginase (Santa Cruz, San

Diego, CA.) For type I collagen, tissues were incubated with the

nuclear stain DAPI to accentuate the abscess core. Mouse kidney

abscess model. C57BL/6 mice were anesthetized using ketamine and

xylazine and 100 ml containing 107 CFU of S. aureus JE2, JE2

argH::QNS, or JE2 argF::QNS were inoculated retro-orbitally. On

day 20 following inoculation, the animals were sacrificed and the

kidneys were excised, homogenized, and subsequently plated for

bacteriological analysis (CFU/g of tissue) on Trypticase soy agar

(TSA). Only those kidneys containing greater than 100 CFU/g of

tissue were statistically analyzed. Pairwise comparisons were

conducted and differences were adjusted for multiple comparisons

using the Tukey-Kramer method to maintain an overall

alpha = .05 across all comparisons.

Supporting Information

Figure S1 Amino acid analysis of JE2 and JE2
ccpA::ermB following growth in CDM. JE2 and JE2

ccpA::ermB were grown in CDM for 18 hours and supernatant

was collected and analyzed for amino acid content. Percent of

proline and arginine remaining is shown suggesting more efficient

utilization of proline by JE2 ccpA::ermB in comparison to JE2.

(TIF)

Figure S2 Putative cre sites in arginine biosynthesis-
dependent genes. Using the cre site from pckA as a consensus

sequence, putative cre sites were identified in rocD, arcB1, putA, and

argGH. cre site from pckA is the top sequence whereas the putative

cre site from the identified gene is the bottom sequence.

(TIF)

Table S1 Bacterial Strains and Plasmids used in study.

(DOCX)

Table S2 Oligonucleotides used in study.

(DOCX)
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