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In view of the importance of cancer stem cells (CSCs) in chemoresistance, metastasis and
recurrence, the biology of CSCs were explored in detail. Based on that, several modalities
were proposed to target them. In spite of the several clinical trials, a successful CSC-
targeting drug is yet to be identified. The number of molecules screened and entered for
clinical trial for CSC-targeting is comparatively low, compared to other drugs. The bottle
neck is the lack of a high-throughput adaptable screening strategy for CSCs. This review
is aimed to identify suitable reporters for CSCs that can be used to identify the
heterogeneous CSC populations, including quiescent CSCs, proliferative CSCs, drug
resistant CSCs and metastatic CSCs. Analysis of the tumor microenvironment regulating
CSCs revealed that the factors in CSC-niche activates effector molecules that function as
CSC markers, including pluripotency markers, CD133, ABCG2 and ALDH1A1. Among
these factors OCT4, SOX2, NANOG, ABCG2 and ALDH1A1 are ideal for making
reporters for CSCs. The pluripotency molecules, like OCT4, SOX2 and NANOG,
regulate self-renewal, chemoresistance and metastasis. ABCG2 is a known regulator of
drug resistance while ALDH1A1 modulates self-renewal, chemoresistance and
metastasis. Considering the heterogeneity of CSCs, including a quiescent population
and a proliferative population with metastatic ability, we propose the use of a combination
of reporters. A dual reporter consisting of a pluripotency marker and a marker like
ALDH1A1 will be useful in screening drugs that target CSCs.

Keywords: cancer stem cells, drug resistant CSCs, metastasis initiating cells, fluorescent reporters, drug screening
and discovery
INTRODUCTION

Despite the advancement in drug development, chemoresistance and metastasis are the primary
reasons for high cancer mortality. Recent research has identified that cancer stem cells (CSCs), a rare
sub-population within cancer cells possessing self-renewal ability, drug resistance and high
metastatic ability, are the reason for the relapse of the disease. Even though CSCs were identified
in 1994 in AML (1), their relevance in solid cancer was widely explored after the identification of
CD133+ population in colorectal cancer in 2007 (2, 3). Research in this field for more than a decade
has reinforced the importance of this self-renewing population in cancer progression, metastasis,
chemo-resistance and recurrence. The classical chemotherapeutic agents induce apoptosis by
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damaging DNA and/or by inhibiting mitotic division. As this
therapeutic option is valid only for highly dividing cancer cells,
slow dividing CSCs escape the drugs, leading to relapse. In
addition, CSCs get a survival advantage by the high expression
of the ATP-binding cassette (ABC) transporters, aldehyde
dehydrogenases (ALDHs), and antiapoptotic molecules (4),
acquiring drug resistance. Metastasis is a dynamic multistep
process including the escape from the primary tumor,
intravasation to the systemic circulation, extravasation at
metastatic site, organ-seeding, and final metastatic colonization
with the tumor outgrowth. Importantly, only a minority of the
dispersed tumor cells expressing the stemness markers
characteristic of CSCs, known as metastasis initiating cells
(MICs), survives all these steps to initiate metastasis at a
distant site. Given the importance of CSCs in bad prognosis,
strategies for targeting them is gaining importance in cancer
drug discovery (5–13).
CLINICAL TRIALS FOR TARGETING CSCs

The clinical relevance of CSCs is largely attributed to their
resistance to chemotherapy and radiotherapy, which is mainly
Frontiers in Oncology | www.frontiersin.org 2
due to the quiescent nature of CSCs. The treatment-induced and
microenvironment-induced de-differentiation of cancer cells to
CSCs also poses a challenge in tumor eradication. CSC
properties, including self-renewal ability, therapy resistance
and metastasis, primarily depend on the aberrant expression of
CSC-specific molecules and their interaction with CSC-niche.
Thus, the current approaches for eradicating this population
include differentiation of CSCs, targeting drug efflux molecules
and other surface markers of CSCs, and inhibition of the
signaling pathways sustaining CSCs (5). Various studies have
been conducted to disrupt the CSC niche using inhibitors of
CXCR4 or FAK (Table 1). Inhibitors of drug resistant molecules,
MDR proteins including ABCG2 have been targeted to abolish
drug resistant CSCs (Table 1). As reviewed recently, a majority
of the attempts in clinical trials are for targeting the important
signaling pathways like Notch, WNT, Hedgehog and Hippo
along with immunotherapeutic approaches, both in solid
cancers and hematological malignancies (12, 29)

A comprehensive analysis of the reported clinical trials in
comparison to their preclinical analysis showed that the majority
of the drugs that were tried in trials were already in use for other
diseases or for cancer itself, but not specifically for CSCs
(Table 1). The CSC-targeting efficacy of Hedgehog inhibitor
TABLE 1 | The drugs targeting CSCs in clinical trials.

Signaling
Pathway

Drug Effective in preclinical studies Clinical trials

Cancer Reference NCT no. (cancer) Outcome

Notch MK-0752 Breast cancer (14) NCT00645333 (Breast cancer) Not reported
PF-03084014 Triple negative

breast cancer
(15) NCT01981551 (Desmoid tumors) PR in 29%; SD in 29%

Demcizumab Non-squamous
non-small cell lung
cancer (NSCLC)

(16) NCT02289898 (locally advanced solid
tumors)

Placebo vs demcizumab
ORR: 44.2% vs 33.1%
CBR: 70.6% vs 74.3%
Median PFS: 5.5 months in both arms

WNT PRI-724 Colorectal cancer (17) NCT01764477(pancreatic cancer) SD in 40.0%; Median PFS: 2 months (range 0.7-7.7)
DKN-01 Nil NA NCT02013154 (solid tumors) Encouraging early efficacy signals

Hedgehog Glasdegib Acute myeloid
leukemia

(18) NCT01546038 (acute myeloid leukemia) CRs in 17.0%
Median OS: 8.8 months

Vismodegib Breast cancer (19) NCT00833417 (basal cell carcinoma) ORR 48.5% in metastatic BCC group and 60.3% in
the locally advanced BCC group; Median DoR: 14.8
months and 26.2 months, respectively.

Hippo Pivonedistat Chronic myeloid
leukemia

(20) NCT01862328 (solid tumors) CR in 3.7%; PR in 18.5%; SD in 78.6% treated at
MTD; Median DoR: 5.9 months

JAK Ruxolitinib Gastric cancer (21) NCT01594216 (breast cancer) Not reported
PI3K BYL719 Medulloblastoma (22) NCT01613950 (gastric cancer) Not reported
EGFR Bevacizumab Melanoma (23) NCT01190345 (breast cancer) Not reported
CXCR4 BL-8040

Plerixafor
Nil
Colon cancer

NA
(24)

NCT02907099 (solid tumors)
NCT00512252 (acute myeloid leukemia)

Not reported
ORR 46%; median DoR 19.8 months. The median
OS was 8.2 months with RFS of 9.0 months. One-
year OS and RFS were 37% and 42.9%.

FAK Defactinib/VS-6063 Breast cancer (25) NCT04439331 (solid tumors) Not reported
BCL2 Venetoclax Acute myeloid

leukemia
(26) NCT03466294 (acute myeloid leukemia) Not reported

MDR Dofequidar/MS-209 Breast cancer (27) NCT00004886 (solid tumors) Not reported
ABCG2 Cyclosporin NCT00983424 (breast cancer) Not reported
EpCAM Catumaxomab Pancreatic

carcinoma
(28) NCT00836654 (malignant ascites) Increased OS
BCC, basal cell carcinoma; CBR, clinical benefit rate; CR, complete response; DLL, Delta-like ligand; DoR, duration of response; MTD, maximum tolerated dose; ORR, objective response
rate; OS, overall survival; PFS, progression-free survival; PR, partial response; PFA, prostate-specific antigen; SD, stable disease.
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Vismodegib is established in preclinical studies of breast cancer
(30). The Hedgehog inhibitors Vismodegib and Sonidegib are
FDA approved drugs for basal cell carcinoma, and their clinical
trials have shown some acceptable response, though CSC specific
activities were not evaluated in those trials (31, 32). When these
drugs were combined with conventional chemotherapeutic
agents, there was no advantage observed for Hedgehog
inhibitors (12, 33). The clinical trials for inhibitors of WNT
pathway and Notch pathway have shown some positive aspects
in early phase trials, but their therapeutic potential and efficacy
in targeting CSCs are yet to be proved (12, 33). Thus, most of the
inhibitors for the well-established self-renewal pathways, which
influence many cellular functions are not promising therapeutic
agents in clinics, as summarized in Table 1. The clinical trials for
targeting some other pathways, cell surface molecules, MDR
proteins, niche interactions, etc. are ongoing. Since CXCR4-
mediated interaction of CSCs to “CSC niche” is critical for
their maintenance, targeting this molecule using its antagonist
Plerixafor has shown a very promising result in acute myeloid
leukemia with 46% of complete remission (34). The phase II/III
trial of targeting the CSC marker, EpCAM using a monoclonal
antibody Catumaxomab in ascites secondary to epithelial cancer
has demonstrated a clear clinical benefit in patients, leading to its
approval in Europe (35). Currently, it is being used for
immunotherapy using CAR-T cells recognizing EpCAM for
advanced solid tumors, the results of which are awaited. To
conclude, several approaches are adopted to target CSCs, which
have shown some promise but their therapeutic efficacy in larger
clinical trials have to be proved. Irrespective of the strategy used,
the efficiency of the drug is evaluated in clinical as a well as
preclinical analysis using certain assays. Currently, CSCs are
evaluated by FACS-based detection of the surface markers,
sphere formation assay, soft agar colony formation assays, in
vitro and in vivo serial passaging as well as in vivo limiting-
dilution tumorigenicity assays using immunocompromised
mice. Hence, ultimately, the screening assays define the
efficiency of the drug. If the screening assay is inefficient in
representing all the heterogeneous CSCs, it will lead to the failure
of the drug in clinical trials.

In a classical drug discovery program, the majority of the
drugs that enter the screening program fails in the “Valley of
Death”, and a very few candidates emerge as drugs for clinical use.
Since the in vitro assays used to ascertain CSC properties are not
compatible with high-throughput screening platforms, it is very
difficult to have a screening strategy for CSC-targeting drugs.
Hence, the evolution of clinical trials for CSC targeting is by
exploiting “drug repositioning”, which can bypass the problem of
bioavailability and safety problems (13, 36). Yet, many of the
drugs that entered clinical trials did not improve therapeutic
efficacy (37). Hence, there is an increasing demand for new drugs
for CSC-targeted therapy. In this context, we propose that CSC-
targeting drug screening platforms can be developed using
reporters of CSCs, which have been recently published (38–45).
These fluorescent reporters can be easily adapted for large scale
screening. Considering the heterogeneity of CSCs, including a
quiescent population and a proliferative population with the
Frontiers in Oncology | www.frontiersin.org 3
metastatic ability (46), we propose the use of a combination of
reporters. A dual reporter for a pluripotency marker and a marker
like ALDH1A1 or ABCG2 will be useful in screening drugs that
target CSCs. These dual reporters will ensure the representation
of all the heterogeneous CSCs in the screening assay.
THE FACTORS CONTRIBUTING TO
CSC PROPERTIES

CSCs can be defined as a subpopulation that exhibits self-
renewal property, while there are accumulating evidences to
show that different pools of CSCs co-exist in a single tumor that
can have varied properties including quiescence, drug
resistance, epithelial to mesenchymal transition (EMT),
invasion and metastasis (47). But, it is not necessary that all
CSCs possess all the above characteristics. Recent reports
underscore the induction of stemness in cancer cells
according to the microenvironment in which the cancer cell
resides. According to this induction theory, CSC is a state with
high plasticity where all the CSC-associated properties are
regulated by the “CSC niche”, which in turn can be attributed
to the cytokine levels, hypoxia, acidic pH, cancer associated
fibroblasts (CAFs) and the signaling pathways initiated thereby
(33). Hypoxia, the low oxygen concentration in the tumor
microenvironment, can influence the tumor cells, infiltrating
blood cells and CAFs to alter the secreted cytokines and growth
factors in a HIF-1a-dependent manner, which results in the
acquisition of CSC properties (48). HIF-1a can impart drug
resistance through transcriptional up-regulation of MDR1,
ABCG2 and MRP2, while it induces stemness by regulating
CD133 and Notch pathway (48). Hypoxia regulates epithelial to
mesenchymal transition (EMT) which in turn, up-regulates
EMT/b-catenin/STT3 axis as well as PD-L1, thereby helping
in the immune evasion of CSCs (49). Hypoxia and other
secreted factors collectively up-regulate certain oncogenic
stemness molecules like Notch1, which is reported as a
marker for HNSCC stem cells (50). The role of hypoxia in
hematological malignancies is also studied in detail, and the
important findings are reviewed elsewhere (51). In multiple
myeloma cells, hypoxia activates EMT program and increases
the expression of stem cell transcription factors, ABCG2 and
ALDH1 to impart cancer stem cell phenotype and metastasis
(52, 53). Hypoxia is known to impart drug resistance through
the up-regulation of P-gp and FAK (54, 55). The developmental
pathway up-regulated in CSCs are WNT, Hedgehog and Hippo,
and the biological activities of CSCs are regulated by several
pluripotent transcription factors, such as OCT4, SOX2,
NANOG, KLF4, and MYC (5, 12). We have summarized how
the factors and signaling pathways existing in “CSC niche”
regulate properties associated with CSCs in Figure 1. The role
of these pathways in the regulation of CSCs is extensively
reviewed recently (5, 12).

The “CSC niche” provides an immunosuppressive environment
for the survival and growth of CSCs, which will enable tumor
growth, chemoresistance and metastasis. In the primary site, the
April 2021 | Volume 11 | Article 669250

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Mohan et al. CSC Reporters for Drug Discovery
tumor microenvironment is adapted to induce stemness, acquire
chemoresistance and induce metastatic ability for CSCs to convert
them to MICs. The “CSC niche” in the metastatic site is also
important in metastatic spread of the disease. Accumulating
evidences suggest the existence of pre-metastatic niches that are
permissive to the colonization of specific CSCs (56). These niches
allow the CSCs to remain dormant during chemo/radiotherapy, and
leads to recurrence after the withdrawal of the therapeutic agent.
Bone marrow microenvironment is an important CSC-niche for
both hematological malignancies as well as solid tumors. The
leukemia stem cells are shown to hijack the hematopoietic stem
cell niche to acquire and maintain CSC properties, including self-
renewal, drug resistance and metastasis (57, 58). Bone marrow is
also serving as survival place for breast cancer cells, where they
Frontiers in Oncology | www.frontiersin.org 4
metastasize to remain dormant till a favorable condition is regained
(59–62).

Currently, based on the available literature, it can be
summarized that the cancer cells acquire self-renewal property
and become CSCs, depending on the signaling network existing in
the “CSC niche”. They can further acquire drug resistance and
metastatic ability in response to the tumor microenvironment,
generating CSCs, exhibiting drug resistance and/or metastasis. This
drug resistant CSC or MIC will be responsible for the bad
prognosis, and thus should be targeted. Such reporters identifying
metastatic CSCs or drug resistant CSCs should be used for
screening drugs in preclinical models. The following sections will
briefly examine the pathways and the consistent intermediate
molecules andmarkers that regulate drug resistance andmetastasis.
FIGURE 1 | The role of “CSC niche” in regulating cancer stem cell properties. The Tumor associated macrophages (TAM) secretes cytokines initiating JAK/STAT
and TGF-b signaling pathways. The regions where blood supply reduces creates hypoxia, which activates Hedge Hog (HH) WNT, Notch and Hippo signaling
pathways. The regions where there is no oxygen and nutrient supply undergo necrosis, which creates an acidic pH that activates Notch and Hippo. Cancer
associated fibroblasts (CAFs) also secret factors that initiate different signaling pathways. As a result of the pathway activation, several CSC-associated molecules are
activated that results in the induction of CSCs.
April 2021 | Volume 11 | Article 669250
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CSCs AND DRUG RESISTANCE

If we extrapolate the classical stem cell properties to cancer, a
CSC should be a cell that is G0-arrested, and divides
asymmetrically to give rise to a non-dividing cell and a
dividing differentiating cell. The G0-arrested, low cycling CSC
population in cancer will not be responsive to classical
chemotherapeutic agents that target dividing cells. These cells
that overcome therapy can re-establish the tumor since they
possess the tumor initiating property, showing the role of CSCs
in drug resistance and relapse. In another scenario, cancer cells
up-regulate drug resistant molecules in response to therapy to
overcome the effect of the drug. Though a sub-population of it
can acquire self-renewal ability and become CSCs, all these drug
resistant population may not have the self-renewal ability to re-
create the entire tumor to cause recurrence. Therefore, it is
Frontiers in Oncology | www.frontiersin.org 5
important to segregate general drug resistant population from
the drug resistant CSCs. Here, we postulate that molecules and
pathways that regulate both self-renewal and drug resistance are
important in sustaining the drug resistant CSCs. Even though
many CSC markers are shown to regulate chemoresistance, there
are two molecules, ABCG2 and ALDH that directly regulate drug
resistance. The other self-renewal molecules regulate drug
resistance by up-regulating either multidrug resistant proteins
or ALDH (Figure 2).

Over-expression of drug efflux molecules like ABC
transporter molecules is one of the strategies adopted by
cancer cells to overcome chemotherapy. Although all the
different ABC transporters can do drug efflux, ABCG2 is
usually associated with embryonic stem cells, adult stem cells
and CSCs, but not exclusive to them (63). These drug efflux
molecules transport substrates across the membrane to reduce
FIGURE 2 | The regulation of drug resistant CSCs. The niche factors activates several self-renewal pathways like HIF1a, WNT, Hedgehog or TGF-b that regulate
chemoresistance in a b-catenin dependent way. Other self-renewal markers like CD44 and CD133 can also regulate chemoresistance. CD133 regulates b-catenin,
while CD44 regulates Hippo signaling (YAP/TAZ) to induce chemoresistance. The transcription complexes indicated in the figure results in the up-regulation of
molecules like ALDH and MDR proteins including ABCG2.
April 2021 | Volume 11 | Article 669250
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their intracellular concentration, where the substrates can vary
from xenobiotics to a variety of chemotherapeutics (63). ALDH
is an enzyme catalyzing the conversion of cellular aldehydes to
their corresponding carboxylic acids, which helps in detoxifying
the chemotherapeutic agents by oxidizing the aldehyde groups of
the drug. Though all ALDH forms can do this enzymatic
detoxification, the self-renewal related isoforms like ALDH1A1
can regulate drug resistance by the up-regulation of drug efflux
molecules through retinoic acid (RA) signaling. Thus it is evident
that ABCG2 and ALDH1A1 are useful in identifying drug
resistant CSCs.

CSCs and Metastasis
In continuation to the report from Weinberg’s lab (64), several
reports reinforced the importance of EMT, a prerequisite for
metastasis, in the acquisition of CSC characteristics. At a closer
look, there is a considerable overlap in the signaling pathways and
the markers for CSCs and metastatic cells. Also, the similarity in
the hierarchical organization of metastatic lesions and primary
tumor led to the assumption that CSCs are the metastasis
initiating cells (MICs). But recent reports show that there are
distinct populations with tumor initiating capacity or metastasis
initiating capacity (65). Among breast cancer circulating tumor
cells, CD44+CD24+ALDH1+ subpopulation show an increased
tumorigenic potential, while EpCAM+CD44+CD47+MET+ subset
denotes cells with high metastatic ability (66). In a MMTV-
PyMT mammary tumor model, Lin−CD90−ALDHHi cells mark
the tumor-initiating population while Lin−CD90+CD24+ cells are
the high metastatic cells (65). It was also noted that a subset of
Lin−ALDHlow cells can replenish the Lin−ALDHHi fraction (65).

Recent advancement in the field suggests that epithelial-
mesenchymal plasticity (EMP) is the driving force of CSCs
during metastasis, as reviewed recently (67). They argue that
EMT has three stages, where cells can have more epithelial nature
or a hybrid epithelial and mesenchymal nature or extreme
mesenchymal characteristics. They have summarized the
evidences to show that the cells with the hybrid nature are the
actual metastasis initiating cells possessing CSC characteristics,
while the extreme mesenchymal cells are devoid of tumor
initiating properties (67). It is also postulated that the stemness
of circulating tumor cells resides in a window where it shows the
hybrid characteristics and express markers like ALDH (Figure 3).
With the progression of metastasis, these ALDHHi cells can
acquire markers like CD24-CD44+ with progressive loss of
ALDH. On the metastatic site, this loss of expression can be
reversed based on the niche to start colonization (68).

Identification of CSCs
Given the importance of CSCs in tumor progression and
prognosis, several attempts were made to identify and
characterize CSCs based on the markers they express, either
cell surface markers or other functional markers like
pluripotency markers (OCT4, SOX2 and NANOG) or high
ALDH activity. The CSC markers generally used to detect
different forms of malignancy are summarized in Table 2.
There are several markers that can identify CSCs with drug
resistance and metastatic potential, either alone or in
Frontiers in Oncology | www.frontiersin.org 6
combination with other markers (Table 3). The primary mode
of detection of CSCs is FACS using relevant antibodies, involving
several steps that make it difficult to use it for screening drugs.
The limiting factors are the cost of the antibody and the steps
involved in the process. So, there are some alternative
approaches, like reporter constructs of CSC markers, to
detect CSCs.

In spite of the wide use of the surface molecules like CD133,
CD44, ABCG2, CD49f etc. for the identification of CSCs,
reporters for these molecules except ABCG2 are not available.
For many of these molecules, the stem cell activity is correlated to
post-transcriptional regulations (specificity of the isoforms,
glycosylation or surface localization). CD133, for example, is a
marker for stem cells when it is glycosylated and expressed on
cell surface as AC133 epitope (111). In the case of CD44, the
splice variants as well as the choice of the ligand are the
determinants of cell fate. It has been shown that only
hyaluronic acid or osteopontin can initiate signaling pathways
downstream of CD44v variant, supporting self-renewal and
EMT, while the standard isoform CD44s responds to only
hyaluronic acid to induce EMT alone (112). Collectively, many
of the surface molecules are not suitable candidates for making
reporters depending on their promoter activity. On the other
hand, the pluripotency molecules and other molecules like
ALDH1A1 impart stemness depending on their level of
expression, and thus are ideal candidates for making reporters.
So far, there are reports for preclinical studies using reporters for
OCT4, SOX2, NANOG, ALDH1A1 and ABCG2, which will be
discussed in detail.
REPORTERS OF CSCs IN PRECLINICAL
ANALYSIS

OCT4 Reporter
OCT4 (Octamer binding Transcriptional Factor 4, OCT3, OCT3/4),
encoded by POU5F1 gene is the master regulator of pluripotency in
embryonic stem cells. High OCT4 expression is a marker for poor
prognosis; aggressiveness, short over-all survival and chemo-
resistance, in a variety of malignancies and thus is considered as a
CSC marker (Table 3) (113). The functional POU5F1 gene is
located on chromosome 6 in humans, while 6 different
pseudogenes of it are located at different chromosomes. The
expression of OCT4 observed in cancers as mRNA or protein can
be misleading since there is high similarity between three OCT4
isoforms and one of the pseudogenes, OCT4-PG1 (113). Different
isoforms of OCT4 (OCT4A, B and B1) are coming under the
regulation of the same promoter, and are regulated by alternative
splicing of exons. While OCT4A regulates self-renewal property,
OCT4B and OCT4B1 control stress response in stem cells (114).
While some studies report that human OCT4 promoter is
hypermethylated in certain forms of cancer, there are other
reports showing that epigenetic mechanisms operate to reactivate
the gene in cancer (115, 116). Although the expression of OCT4A is
shown in some cancers using immunohistochemistry, a data to
support its dimerization with SOX2 in cancer cells to induce self-
April 2021 | Volume 11 | Article 669250
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renewal genes is yet to come (117, 118). At the same time, the over-
expression of OCT4B and B1 forms consistent with their anti-
proliferative effect, anti-apoptotic function and aggressiveness of the
tumor are also reported in various malignancies (117–119).
Irrespective of the isoform expressed, OCT4 is considered to be a
marker for CSCs and is associated with stemness, chemoresistance
and metastatic property of cancer cells (Table 3). The different
modes of regulation of these properties by OCT4 are summarized in
Figure 4.

The widely used OCT4 reporter is phOCT4-EGFP generated by
Wei Cui, where GFP is under the control of human OCT4
promoter. In human breast cancer, the high expression of this
promoter (OCT4hi) is shown to mark highly immature cell
population possessing self-renewal ability, quiescence, asymmetric
division, long doubling time and high metastatic and invasive
Frontiers in Oncology | www.frontiersin.org 7
capacity (61). The same group has shown that this reporter cells
can be used to trace dormant breast cancer cells residing in bone
marrow, which are responsible for metastasis and tumor recurrence
(38). The use of this reporter in tracking metastatic cells was proven
in osteosarcoma and colorectal cancer (120, 121). In liver cancer
cells, the reporter marks tumor propagating cells showing resistance
to Sorafenib (122). Thus this OCT4-EGFP reporter system is useful
in real time monitoring drug resistant and metastatic CSCs in
animal models. Recently, another reporter system based on OCT4
promoter is reported, where the puromycin expression is driven by
OCT4 promoter, and the cells can be selected using puromycin
(123). This could be a very useful system to translate to high-
throughput platforms for drug screening as the number of cells
surviving can be easily measured by different means in
automated systems.
FIGURE 3 | The regulation of Metastatic CSCs. Different signaling pathways activate ALDH1A1, OCT4 and SOX2, which activates b-catenin to induce EMT. At the
same time OCT4/SOX2 regulates EMT in a b-catenin independent way also. NANOG inhibits b-catenin, but activates EMT through other pathway. When there is
induction of EMT, epithelial cells might acquire stemness and metastatic ability, and gradually lose the stemness. The hybrid cells showing stemness property and
metastatic property together are the metastasis initiating cells (MICs).
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SOX2 Reporter
SOX2 is a transcriptional factor involved in the embryonic
development and the generation of iPSCs, which controls the
expression of genes required for the maintenance of pluripotency
and self-renewal (124). Increased SOX2 expression marks poor
prognosis in almost all the cancers, since SOX2 regulates
proliferation, EMT, metastasis, tumor initiation, CSC
maintenance, resistance to therapy and apoptosis (9).
Consistent with that, SOX2 is considered as a CSC marker for
a variety of cancers (Table 2). The increased expression of SOX2
is attributed more to the gene amplification of chromosome 3q26
than the increased promoter activity (125), except in a few cases
like skin squamous cell carcinoma (SCC) (126). The protein
product of PRKCI, which is amplified along with SOX2 in the
same chromosome location, is shown to activate SOX2 that leads
to the activation of target genes like HHAT (127) or PTEN (128).
The major role of SOX2 in the regulation of CSCs is reviewed
recently (9) and summarized in Figure 4.

Since the over-expression of SOX2 in skin SCC is regulated
transcriptionally, a GFP knock-in at the SOX2 chromosomal
location can be used to study the role of SOX2 expressing
invasive SCC in a mouse model. Using this SOX2–GFP knock-in
mouse, it was shown that SOX2-expressing cells in invasive skin
SCC are CSCs (126). When gene amplification is involved, instead
of the knock-in reporter, another system was used that measure the
transcriptional activity of SOX2 (SOX2 SRR2 pGreenFire Response
Reporter). Here, SOX2 regulatory region 2 (SRR2), a consensus
DNA sequence seen on SOX2 target genes is used to drive GFP.
Using this reporter, CSCs were identified in breast cancer and
anaplastic large cell lymphoma (129–131), and in breast cancer it is
shown to mark CSCs with cisplatin resistance (132).
SORE6–GFP
In 2014, Tang et al. generated a lentiviral based reporter system
depending on the transcriptional activity of both OCT4 and
SOX2 where they could functionally denote CSCs. They took six
tandem repeats of composite OCT4/SOX2 response element,
TABLE 2 | Markers of CSCs for different malignancies.

Types of Cancer Marker Signature of CSCs

Hematological
malignancy
Acute lymphoid
leukemia

CD34+/CD38−/CD19+ (69)

Acute myeloid leukemia CD34+/CD38− (70)
NANOG (71)
OCT4 (72)
ALDHA1 (73)

Chronic myeloid leukemia ALDHA1 (73)
CD34+/CD38−/CD26+ (74)
ALDHA1/SOX2/NANOG (32)

Hodgkin lymphoma CD27+/ALDH+/(CD19+/CD20+) (75)
Solid tumors
Breast cancer OCT4/NANOG/(CD)44+/CD20 (76)

LGR5 (77)
CD44/OCT4/NANOG/SOX2 (29)
ALDH1A1 (78)

Colorectal cancer OCT4/NANOG (79)
AGR2/LGR5 (80)
CD133+ (2)
CD133/CD44 (81)

Glioblastoma CD133+ (82)
Hepatocellular cancer CD133+/EpCAM+ (83)

CD90+/CD44 (84)
Lung cancer CD133+ (85)

CD117+ (86)
ALDH+ (87)
OCT4A/CD133/ALDH (88)
CD44+ (89)
SOX2 (90)

Medulloblastoma,
melanoma

CD133+ (91)

Ovarian cancer CD44/CD105/CD106 (92)
CD133+ (93)
ALDH+/CD133+ (94)
CD44+/CD117+ (95)

Pancreatic cancer CD44+/CD24+ (96)
CD133+/ALDHA1 (97)
CD44/OCT4/NANOG/SOX2 (98)

Prostate cancer CD133/CD44/OCT4/NANOG/SOX2/ABCB1/ABCG2/
ABCC1 (99)
TABLE 3 | Markers of heterogenic CSCs.

Marker Tumour Initiating Capacity Drug Resistance Metastasis Initiating Capacity

CD44 Prostate cancer (100) Prostate cancer (100)
Ovarian cancer (92)

Prostate cancer (100)
Ovarian cancer (92)

CD133+ Pancreatic cancer (101) Colorectal cancer (102) Pancreatic cancer (101)
ABCG2 Colon cancer (103) Colon cancer (103)

Esophageal squamous cancer cells (104)
Esophageal squamous cancer cells (104)

CD49f Triple negative breast cancer (105) Triple negative breast cancer (105) Human cervical cancer (106)
CD66 Human cervical cancer (106) (107),
OCT4 Gastric cancer (108)

Breast cancer (76)
Gastric cancer (108)
Breast cancer (76)

Gastric cancer (108)

SOX2 Gastric cancer (108) Gastric cancer (108) Gastric cancer (108)
NANOG Breast cancer (76) Breast cancer (76) Urinary bladder cancer (109)
ALDH1A1 Oral cancer (45) Ovarian cancer (110) Breast cancer (78)
Different markers are reported to denote tumor initiating cells, drug-resistant CSCs or metastasis-initiating cells.
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derived from NANOG promoter and cloned it upstream to EGFP
fluorescent protein (SORE6-GFP) (133). This system is advanced
than the individual OCT4 reporter and SOX2 reporter because
the transcriptional activity is regulated by both the factors, which
will be a more reliable system to mark CSCs. This reporter
identifies CSCs with metastatic potential and chemoresistance in
breast cancer (133) gastric cancer (44) and prostate cancer (134).
The use of SORE6-GFP in screening drugs to target CSCs was
employed in sarcoma models, and they identified EC-8042 as an
effective drug to abolish CSCs (43). Recently, a modified version
of this reporter is introduced where they have added a FLAG
sequence along with GFP, which can be membrane localized,
helping in magnetic separation of the cells using antibodies to
FLAG (135).

NANOG-GFP
NANOG is a homeo-box binding transcriptional factor essential
for maintenance of pluripotency and self-renewal of embryonic
stem cells, being one of the downstream targets of OCT3/4. Even
Frontiers in Oncology | www.frontiersin.org 9
though NANOG is silenced in normal somatic cells, aberrant
expression is reported in a wide variety of cancers, and it’s up-
regulation is correlated to poor survival (5). Consistent with its
role in self-renewal and cell reprogramming, it is used as a
marker for CSCs in different cancers (Table 2) (5). The different
modes of regulation of CSC properties by NANOG are
represented in Figure 4. A reporter for CSCs using human
NANOG promoter-driven GFP was developed to isolate and
characterize triple negative breast cancer stem cells (136). They
also used the same reporter to identify CSCs in ovarian cancer,
which show resistance to cisplatin (137). Followed by that,
different groups started using similar NANOG reporters (39,
138). A lentiviral NANOG-GFP reporter that also expresses
luciferase was useful in evaluating drugs that targets colorectal
cancer CSCs, both in vitro and in mouse xenograft models (138).

ABCG2 Reporter
ABCG2 is a member of the ATP binding cassette (ABC)
transporters, which pumps a wide variety of endogenous and
FIGURE 4 | Endogenous markers regulating properties of CSCs. Different signaling pathways regulate the expression of OCT4, SOX2 and NANOG which in turn
up-regulates different molecules required for self-renewal, metastasis and chemoresistance.
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exogenous compounds out of cells (139). ABCG2 is considered
as a universal marker of stem cells since it confers side
population phenotype associated with stem cells. They can
function as membrane transporters, ion channels or receptors
(139). The high expression of ABCG2 is observed in a wide
variety of cancers, and usually is associated with poor prognosis
(63). As mentioned before, ABCG2 is considered as a stem cell
marker for CSCs (Table 2). There are evidences suggesting that
the substrates of ABCG2 may include stem cell differentiation
factors thereby retaining the stemness of the cells expressing high
ABCG2 (140). Promoter demethylation, histone modification
and transcriptional up-regulation by different self-renewal
pathways play a major role in the increased activity of ABCG2
in cancer cells (63, 141). Another factor important in clinical
relevance is the single nucleotide polymorphism of ABCG2,
which critically regulates the pharmacokinetics of different
drugs (142).

One of the widely used reporter construct for ABCG2 is
ABCG2-Luc, which is used to mark ABCG2 expression and
CSCs in different cancers including solid tumors and large B-
cell lymphoma (143–145). To study the effect of methylation
in the transcriptional regulation of ABCG2, luciferase
constructs driven by ABCG2 promoter (pGL3-abcg2-Luc)
and in vitro methylated ABCG2 promoter was used. The
results showed that epigenetic silencing of ABCG2 by
methylation is reversed by several chemotherapeutic drugs,
resulting in the up-regulation of ABCG2 and acquisition of
multidrug resistant phenotype (146). Since transcriptional
regulation, at least in part, is driven by epigenetic
mechanisms, the stable expression of a reporter driven by
unmethylated ABCG2 promoter will not be useful for
identification of drug resistant CSCs. Hence, a reporter cell
line is recently made using CRISPR-Cas9 gene editing coupled
with homology-directed repair. They targeted the EGFP
coding sequence to the translational start site of ABCG2,
generating ABCG2 knock-out and in situ tagged ABCG2
reporter cells (42). This fluorescent reporter system allowed
the detection of endogenous regulation of ABCG2 expression
by different stress responses and offers a method to screen
molecules that can inhibit drug resistant CSCs.

ALDH1A1 Reporter
Aldehyde dehydrogenase (ALDH) is a family of enzymes that
oxidize aldehydes to their corresponding carboxylic acids to
prevent oxidative stress in cells. Among the different isoforms,
the cytoplasmic variants are responsible for the retinoic acid
(RA) biosynthesis, a critical molecule involved in retinoic acid
receptor (RAR) signaling, and regulating stemness. RA signaling
not only up-regulates cyclin-D1 and c-myc to control cell
proliferation, but also protects CSCs from ROS generated
under oxidative stress caused by hypoxia. When chemotherapy
or radiotherapy is given, the number of ALDHhi cells increases
that helps in the oxidization of drug molecules to change its
molecular structure. Clinically, ALDHhi expression corresponds
to poor prognosis and malignancy in a variety of cancers (147).

Retinol is oxidized by all the cytosolic ALDHs to
retinaldehyde, while its irreversible conversion to RA is
Frontiers in Oncology | www.frontiersin.org 10
catalyzed by specific ALDH isozymes ALDH1A1, ALDH1A2,
ALDH1A3, or ALDH8A1 (148–150). Consistent with that, these
isoforms are associated with stemness in various contexts.
ALDH1A1 was first identified as a stemness marker in
hematopoietic stem cells (151). Later, when the hypothesis of
CSCs emerged, it was recognized as a CSC marker in different
cancers (Table 4). While ALDH1A2 is shown to regulate stem
cell properties in neuroblastoma (159), ALDH1A3 over-
expression is observed in glioblastoma stem cells (158).
Although the specific isotype of ALDH regulating RA signaling
in CSCs might vary according to the type of cancer, ALDH1A1 is
reported in a wide variety of cancers (Tables 3, 4). ALDH1A1
comes under the regulation of different oncogenic signaling
including TGF-b, Notch and WNT pathways and feedback
activation by RA signaling (147). Apart from the RAR
signaling, ALDH1A1 promotes self-renewing population
through tumor growth, self-protection by anti-oxidant activity
and development of drug resistance by its catalytic potential
(Figure 5) (147).

Since majority of the solid tumors express ALDH1A1 in the
CSC population, reporter constructs for CSCs based on
ALDH1A1 promoter have been reported (40, 45). A reporter
construct where tdTomato is driven by ALDH1A1 promoter
was used to evaluate drug sensitivity in breast cancer and colon
cancer cell lines (40). Further they applied nanotechnology to
this reporter system to generate a CSC model to evaluate drug
efficiency to target CSCs as a co-culture system with polymer
micelles loaded with chemotherapeutic drugs (40). Recently we
reported a construct, ALDH1A1-DsRed2, marking CSCs in
oral cancer cells to screen inhibitors for their efficacy in
targeting CSCs (45). The biochemical analysis coupled with
the cytotoxicity evaluation revealed the existence of a signaling
cross-talk of several pathways that counteract the effect of one
particular pathway inhibitor (45). Thus, it is evident that the
outcome of pathway inhibitors predicted by RNAi and over-
expression systems may not translate well in therapeutic
targeting, suggesting the need to develop in vitro an in vivo
drug screening plat forms to target CSCs prior to
clinical evaluation.
TABLE 4 | ALDH isoforms as markers of CSCs.

ALDH isoform Cancer References

ALDH1A1 Esophageal squamous cell carcinoma (152)
Breast cancer (40)
Oral cancer (45)
Non-small cell lung cancer (153)
Ovarian cancer (110)
Metastatic melanoma (154)
Colon cancer (40)

ALDH3A1 Melanoma (155)
Non-small-cell lung carcinoma (NSCLC) (155)
Pancreatic cancer (156)

ALDH1A3 Breast cancer (157)
Glioblastoma (158)

ALDH1A2 Neuroblastoma (159)
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CSC HETEROGENEITY AND THE
RELEVANCE OF REPORTERS

Similar to the hierarchical clustering of stem cells, progenitors
and differentiated cells observed during development, distinct
states CSCs with different stages of self-renewal and
differentiation are predicted for cancer also. There are
functionally heterogenic CSCs exhibiting quiescence or
dormancy as well as CSCs with a proliferative capacity (66,
160–162). This heterogeneous is considered to be resulting
from the CSC plasticity, which is the result of a reprograming
initiated by stemness signals in “CSC niche”. The presence of
dormant CSCs was noted in several cancers and they are
Frontiers in Oncology | www.frontiersin.org 11
responsible for the relapse of the disease as these cells evade
therapy and cause metastasis (163). These dormant CSCs
responsible for metastasis in breast cancer can be marked
with OCT4GFP reporter (38, 61). At the same time, the CSCs
marked with ALDH1A1 are more proliferative in nature (164).
ABCG2 is also implicated in the proliferation of stem cells (63).
These proliferative CSCs also show multidrug resistance since
they express high ALDH and drug efflux molecules.
Additionally, CSCs with the hybrid EMT phenotype, marking
MICs, express high ALDH (65). In a therapeutic approach, the
dormant CSCs and the proliferative, drug resistant, and
metastatic CSCs are critical because all these heterogeneous
populations can lead to metastasis and recurrence. Considering
FIGURE 5 | ALDH1A1 in the regulation of CSC properties Both classical and non-classical pathways initiated by Retinol regulate stemness. Retinoic acid (RA) binds
to its nuclear receptor RARa and activates their target genes for differentiation. When RA binds to PPARb/d/RXR or RARa/ERa, genes related to survival and
stemness are up-regulated. The balance of these pathways maintain CSC self-renewal and differentiation. The enzyme activity of ALDH1A1, results in the
detoxification of chemotherapeutic drugs to impart chemoresistance.
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all these factors, we advocate the use of two reporters, marking
OCT4 and ALDH1A1, to identify all the CSCs populations.
PERSPECTIVE

For a high-throughput screening, we need to have reporters
compatible with automated systems. Fluorescent and luciferase
reporters are useful in quantifying the expression level in high-
throughput platforms. But when analysis of the expansion or
reduction of CSCs as a subpopulation is required, fluorescent
reporters may be preferred over luciferase reporters. When we
need to take this to preclinical animal models, luciferase reporters
and fluorescent reporters of near infrared region, compatible with
small animal imaging system, are extremely useful in tracing
dormant drug resistant CSCs and metastatic CSCs.

As we discussed in the introduction, the success of a drug in
the preclinical screening depends on the screening assay we use.
A screening based on the dual reporter will ensure that we
consider all the heterogenic CSC populations relevant for
recurrence. Using this simple and high-throughput adaptable
strategy, we can screen a large number of molecules for CSC-
targeting efficiency. The most efficient drugs we obtain after
screening has to go through the classical in vivo self-renewal
assays, because some of the non-CSCs escaping the drug may
Frontiers in Oncology | www.frontiersin.org 12
become CSCs with the influence of a “CSC niche” persisting in
vivo. The effect of this plasticity has to be taken in to account in
drug screening. The introduction of dual reporters for drug
screening can tremendously help to increase the number of
molecules that enter the drug trial, so that the chance of
getting a successful CSC-targeting drug is enhanced.
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