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Abstract: Prevention of preeclampsia (PE) remains one of the most significant problems in perinatal
medicine. Due to the possible unpredictable course of hypertension in pregnancy, primarily PE and
the high complication rate for the mother and fetus/newborn, it is urgent to offer pregnant women
in high-risk groups effective methods of preventing the PE development or delaying its appearance.
In addition, due to the association of PE with an increased risk of developing cardiovascular diseases
(CVD) in later life, effective preeclampsia prevention could also be important in reducing their
incidence. Ideal PE prophylaxis should target the pathogenetic changes leading to the development
of PE and be safe for the mother and fetus, inexpensive and freely available. Currently, the only
recognized method of PE prevention recommended by many institutions around the world is the use
of a small dose of acetylsalicylic acid in pregnant women with risk factors. Unfortunately, some cases
of PE are diagnosed in women without recognized risk factors and in those in whom prophylaxis with
acetylsalicylic acid is not adequate. Hence, new drugs which would target pathogenetic elements in
the development of preeclampsia are studied. Vitamin D (Vit D) seems to be a promising agent due
to its beneficial effect on placental implantation, the immune system, and angiogenic factors. Studies
published so far emphasize the relationship of its deficiency with the development of PE, but the data
on the benefits of its supplementation to reduce the risk of PE are inconclusive. In the light of current
research, the key issue is determining the protective concentration of Vit D in a pregnant woman.
The study aims to present the possibility of using Vit D to prevent PE, emphasizing its impact on the
pathogenetic elements of preeclampsia development.
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1. Introduction

Preeclampsia belongs to the group of hypertensive diseases in pregnancy, which affect
8–10% of pregnant women. Chronic hypertension is observed in 0.9–1.5% of pregnancies,
while gestational hypertension (GH) and preeclampsia (PE) could be diagnosed in 2–10% of
pregnant women [1,2]. The PE incidence is estimated at approximately 1% of all pregnant
women and 1.5% of primiparas [3]. Preeclampsia is one of the most important causes of
maternal morbidity and mortality, mainly in developing countries. It is estimated that 16%
of maternal deaths are PE-related. Preterm birth is the most common consequence of PE in
developed countries [4,5].

Preeclampsia is a set of clinical symptoms that appears after the 20th week of preg-
nancy. It is a multi-organ disease characterized by hypertension and proteinuria, and
in the absence of proteinuria—an impairment of the functions of the internal organs.
According to the American College of Obstetricians and Gynecologists (ACOG) PE is
defined by new-onset hypertension after the 20th week of gestation with systolic blood
pressure ≥ 140 mmHg or diastolic blood pressure ≥ 90 mmHg, measured on two occa-
sions at least 4 h apart, and proteinuria of ≥0.3 g per 24 h or ≥ 1+ proteinuria, detected by
urine dipstick. PE could also be diagnosed in the absence of proteinuria when new-onset
hypertension with new onset of any one of the following symptoms: thrombocytopenia
(platelet count < 100,000/µL), renal insufficiency (serum creatinine concentration > 1.1 mg/dL
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or a doubling of the serum creatinine concentration in the absence of other renal diseases),
impaired liver function (raised concentrations of liver transaminases to twice average
concentrations), pulmonary edema, or cerebral or visual problems occur [2]. Another
form of pregnancy-related hypertension is gestational hypertension or pregnancy-induced
hypertension (PIH). It is recognized with systolic blood pressure ≥ 140 mmHg or diastolic
blood pressure ≥ 90 mmHg appearing after the 20th week of pregnancy in previously
healthy women, without proteinuria and other symptoms of multi-organ impairment
typical of PE [2].

So far, the only causal treatment for PE is the delivery, and pharmacological man-
agement is symptomatic treatment only. Due to the possible unpredictable course of
hypertension in pregnancy, primarily PE and the high complication rate for the mother and
fetus/newborn, it is highly urgent to offer pregnant women from high-risk groups effective
methods of preventing the development of this disease or delaying its appearance. In
addition, due to the association of PE with an increased risk of developing cardiovascular
diseases (CVD) in later life, effective prevention of preeclampsia could also be important in
reducing their incidence [6].

Ideal PE prophylaxis should target the pathogenetic changes leading to the develop-
ment of PE and be safe for the mother and fetus, inexpensive and freely available.

Currently, the only recognized method of PE prevention recommended by many
institutions around the world is the use of a small dose of acetylsalicylic acid in pregnant
women with risk factors. These include, among others, the age of the pregnant woman
(<18 years and >40 years of age), first pregnancy, multiple pregnancy, pregnancy with
a new partner, obesity, chronic hypertension, diabetes, chronic kidney diseases and
autoimmune diseases (systemic lupus, antiphospholipid syndrome), and PE in the
past [2,7–9].

Unfortunately, some cases of PE are diagnosed in women without recognized risk
factors and in those in whom prophylaxis with acetylsalicylic acid is not adequate [10].

Hence the interest in other methods of preventing PE, which include antioxidants
(vitamins C and E), calcium supplements, fish oil, nitric oxide supplements, nitric oxide
donors, metformin, folic acid, statins, vitamins, weight loss, and physical activity, does not
wane [11–14].

In recent years, much attention has been paid to the pleiotropic role of vitamin D
(Vit D) in pregnancy as a substance with auto-, para-, and endocrine effects and the
possibility of its use in PE prevention. Many studies published so far have indicated the
importance of Vit D in fertilization, placental development, the course of pregnancy, and
offspring health. It is presumed that several pregnancy complications such as PE, preterm
birth, gestational diabetes could be the effect of Vit D deficiency as well as complications
manifesting in offspring later in life such as asthma, psychomotor development, and
cognitive disorders [15–17].

The paper aims to present the possibility of Vit D use in preventing PE, emphasizing
its impact on the pathogenetic elements of preeclampsia development.

2. Pathogenesis of Preeclampsia

Despite significant advances in research on PE pathophysiology, its cause has not been
definitively settled. It has been demonstrated that its development is associated with the
presence of the placenta, and the processes that initiate it begin at the time of abnormal
trophoblast invasion in early pregnancy. As a result, they lead to the development of
trophoblast/placental hypoxia and consequently to the development of oxidative stress
and endothelial dysfunction in the later phases of the disease, which are manifested by
clinical symptoms. The only effective way to treat PE is delivery which indicates its
relationship with the presence of the placenta.

A two-stage model for PE development has been proposed. The first stage involves
incomplete remodeling of spirals arteries in the uterus, which leads to hypoxia of the
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placenta. In the second stage, anti-angiogenic factors responsible for endothelial damage
are released from the hypoxic placenta into the maternal circulation.

The trophoblast implantation involves its invasion into the uteroplacental arteries and
then their transformation into dilated, inelastic tubes, which provides increased blood flow
without maternal vasomotor control. The purpose of this process is to provide increased
perfusion of the intervillous space. In the case of inadequate trophoblast invasion and lack
of transformation of spiral arteries, relative hypoxia of the placenta with the development of
oxidative stress occurs [18]. Trophoblast hypoxia could explain the death of cells, mainly in
the mechanism of apoptosis [19,20]. These processes occur early in pregnancy; trophoblast
implantation is completed by the 16–17th week. The critical issue remains the cause of
abnormal trophoblast implantation. Many researchers suggest an impaired response of the
maternal immune system or abnormal development of maternal immune tolerance to the
development of the allogenic fetus [20,21].

Several studies have been conducted on immune changes within the preeclamptic
decidua. They have shown excessive activation of neutrophils and monocytes, which syn-
thesize large amounts of pro-inflammatory cytokines such as IL-1β, IL-6, and IL-8 [22,23].

In addition, CD4+ and CD8+ T cells together with natural killer cells (NKc) and
dendritic cells (DCs) show a different response in women with PE compared to healthy
pregnant women [24,25]. An animal model has shown that decidual natural killer cells
(dNKc) knockout mice did not develop spiral arteries [26]. It has been revealed that
dNKc, by releasing pro-apoptotic factors during normal pregnancy, can lead to apoptosis
in vascular smooth muscle cells (VSMC) and endothelial cells, which are essential in the
process of spiral arteries remodeling [27].

Abnormal remodeling of spiral arteries entails a disorder of placental function, which
is the source of many factors entering the maternal circulation responsible for increased
inflammatory response, oxidative stress, apoptosis, and generalized endothelial dysfunc-
tion, which is an essential pathophysiological change in PE, explaining the development of
clinical symptoms [28]. These include generalized vasoconstriction and restricted organ
perfusion. Factors that adversely affect endothelial function such as obesity, diabetes,
malnutrition intensify the maternal response to signals from the hypoxic placenta and thus
promote PE development [29]. It has been suggested that endothelial dysfunction could be
more pronounced in PE than in GH, which explains less severe clinical symptoms and a
better prognosis [30,31].

The endothelium has autocrine, paracrine, and endocrine properties. It is responsi-
ble for the synthesis of numerous vasodilators (nitric oxide (NO), prostacyclin I2 (PGI2),
endothelium-derived hyperpolarizing factor (EDHF), bradykinin, histamine, serotonin,
substance P), and vasoconstrictors (endothelin-1 (ET-1), angiotensin II (ANG-II), thrombox-
ane A2 (TX2), prostacyclin H2 and reactive oxygen species (ROS)). The imbalance between
them and the predominance of the synthesis of vasoconstrictive factors are responsible for
developing many pathological processes, including preeclampsia. Endothelial dysfunction
is connected with the presence of at least one of the following changes: the decrease in
the NO synthesis and bioavailability, higher adhesion molecules and inflammatory genes
expression, intensified ROS synthesis, impaired endothelium-dependent vasorelaxation,
decreased fibrinolysis and enhanced endothelial permeability [32]. Hypoxia and oxida-
tive stress have been thought to disrupt the placental synthesis of pro-angiogenic and
anti-angiogenic factors, which play a key role in the pathogenesis of PE [33]. It is char-
acterized by a reduced concentration of pro-angiogenic factors and a predominance of
anti-angiogenic factors [34]. The characteristic shift in balance favoring anti-angiogenic
factors is present from the beginning of pregnancy and impairs the trophoblast implanta-
tion [35,36].

The essential pro-angiogenic factors in pregnancy are vascular endothelial growth
(VEGF) and placental growth (PlGF). VEGF plays an important role by attaching and
activating the two-cell surface receptor tyrosine kinases, vascular endothelial growth factor
receptor-1 (VEGFR-1/Flt-1). Furthermore, vascular endothelial growth factor receptor
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2/kinase insert domain receptor (VEGFR-2/KDR), which is present on endothelial cells,
stimulates their proliferation and the release of the plasminogen activators [37]. Its pro-
angiogenic activity is expressed through these mechanisms [38]. VEGF has been postulated
to play an important role in maintaining endothelial integrity. A link between VEGF
and placental oxidative stress has been suggested. In patients with severe preeclampsia,
changes in VEGF concentration resulting from hypoxia may cause an increase in the
activity of 5’ adenosine monophosphate-activated protein kinase (AMPK) [39]. AMPK
plays an important role in many of the cellular energy and metabolic processes. It affects
angiogenesis within the placenta, and its activity increases under hypoxia conditions
observed in preeclampsia [40].

Another pro-angiogenic factor important for the proper development of pregnancy is
PlGF which regulates endothelial cell adhesion and chemotaxis. PlGF is thought to enhance
the pro-angiogenic effect of VEGF [41,42]. The transforming growth factor-β (TGF-β) family
has been shown to play an important role in endothelial cell growth and angiogenesis,
modulates the immune response and thus regulates many placental functions [43]. It has
been found that TGF-β enhances the expression of VEGF, and its concentration is significantly
reduced in PE [44]. The main anti-angiogenic agents whose role in the pathogenesis of
preeclampsia has been described are VEGF receptors (VEGFR1 and VEGFR2) and soluble
endoglin (sEng). VEGFR1 is also known as fms-like tyrosine kinase-1 (sFlt-1) [45]. It has
been shown that sFlt-1 by binding VEGF and PlGF reduces the formation of vessels within
the trophoblast [46,47]. It has been observed that an increase in its levels accompanied by a
decrease in PlGF concentration correlates with the PE severity [48].

With the limited perfusion and hypoxia that characterize PE, the placenta produces
large amounts of sFlt-1 and sEng, one of the potent anti-angiogenic factors, which
both are thought to be responsible for endothelial damage and PE symptoms [49,50].
It has been shown that sEng by disturbing TGF-β1 signaling in endothelium cells
reduces vasodilation and limits the pro-angiogenic effect [51]. On the pregnant rodents
model, Venkatesha et al. have shown that the administration of sEng significantly
increases blood pressure and develops mild proteinuria. In contrast, the administration
of sFlt-1 results in the development of severe hypertension and severe proteinuria and
the appearance of HELLP (hemolysis, elevated liver enzymes, low platelets count)
syndrome symptoms. sENG together with sFlt-1 can inhibit the action of both TGF-β1
and VEGF [52].

These observations confirm the results of studies by other authors recognizing sFlt-1
as the main anti-angiogenic factor involved in the PE development [46].

It has been reported that the activation of eNOS (endothelial nitric oxide synthase)
and the NO release, the potent vasodilator, is inhibited by sEng, which significantly limits
the proper growth and invasion of the trophoblast [53]. On the other hand, VEGF and PIGF
positively affect the synthesis and bioavailability of NO [54,55].

sFlt-1 by inhibiting PlGF and VEGF leads to a decrease in NO synthesis, which is
additionally disturbed by oxidative stress and ROS. These observations confirm that the
synthesis and release of NO are dependent on the balance between pro-angiogenic and
anti-angiogenic factors. Disturbance of this balance in favor of anti-angiogenic factors
adversely affects the release of NO [56].

Increased inflammation observed in PE, which is expressed for example by elevated
TNF-α (tumor necrosis factor α) concentrations, is associated with an increase in the
expression of adhesive molecules ICAM1 (intercellular adhesion molecule 1), VICAM1
(vascular cell adhesion molecule 1), and endothelin 1 (ET-1), the potent vasoconstrictor,
which are all markers of endothelial damage [57–59].

The mechanism of action of anti-angiogenic factors and the imbalance between pro-
and anti-angiogenic factors partly explain the stages of the pathogenetic pathway in the
development of PE. In addition, the assessment of the sFlt/PIGF ratio is of prognostic
importance to predict the severity of PE complications: the increased sFlt/PlGF ratio
anticipates the appearance of adverse outcomes within two weeks [60,61].
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Hypoxia-inducible factor α (HIF1α) is a molecular factor that combines placental
hypoxia with downstream mediators of PE. The synthesis of HIF1α has been shown to be
intensified in placental hypoxia. It has also been observed that HIF1α is a factor inducing
the synthesis and release of sFLT-1 in placental explants [62].

During a healthy pregnancy, there is an increase in metalloproteinases (MMs)
activity to ensure proper trophoblast implantation which requires the destruction of
the extracellular matrix. The invasive potential of extravillous trophoblast (EVT) cells
relates to MMP-2 and MMP-9 expression [63]. Reduced activity of metalloproteinases
is associated with PE development [64]. This observation is confirmed by the results
of studies indicating the relationship of vasoconstriction typical for PE with reduced
expression of MMP-2 and MMP-9. Chen et al. have reported a different effect of pro- and
anti-angiogenic factors on MMP-2 activity in placental tissues and vascular wall. sFlt-1
lowered the activity of these molecules, and VEGF reversed this process and improved
placentation [65].

During physiological pregnancy, the phenomenon of increased production of PGI2 as
a platelet inhibitor and vasodilator and a limitation of the synthesis of TX2 responsible for
platelet activation and vasoconstriction is observed. In PE, endothelial dysfunction results
in the peroxidation of endothelial lipids and the limitation of antioxidant processes. Lipid
peroxidation activates cyclooxygenase (COX—cyclooxygenase), which is responsible for
the synthesis of TX2 thromboxane, disturbing the TX2/PGI2 balance in favor of TX2 [66].
Although progesterone is the hormone responsible for the proper development of preg-
nancy, its excess can lead to a decrease in the synthesis of prostacyclin and an increase in
the production of thromboxane [67].

In a healthy pregnancy, activation of the renin-angiotensin-aldosterone system (RAAS)
is observed, which leads to an increase in the concentration of renin, angiotensinogen, and
angiotensin II [68]. Many authors have so far postulated that RAAS has a significant impact
on the development of preeclampsia. In PE, RAAS is inhibited, confirmed by a reduced
serum concentration of angiotensin I, angiotensin II, aldosterone, an increase in renin
plasma activity, and the concentration of antibodies to the angiotensin II type 1 receptor
(ATR1-AA). These antibodies are responsible for stimulating the signaling ATR1 and, as
a result, for increasing blood pressure [69–71]. However, it seems that the role of this
system in the pathogenesis of preeclampsia has not been definitively determined. Many
researchers believe that it has a significant impact on the development of PE. However,
there is a growing body of evidence that although RAAS plays an important role in the
development of pregnancy, its importance in the pathogenesis of PE is not significant
except ATR1-AA [72].

Current reports also emphasize the importance of disorders of the methionine-homocysteine
system and cellular mechanisms of oxygen sensing in the process of abnormal trophoblast
invasion and placental hypoxia [73,74]. Hyperhomocysteinemia is associated with PE
development, and it is thought to be responsible for endothelium dysfunction caused by
thrombosis [75]. One of the causes of hyperhomocysteinemia is MTHFR 677TT genotype,
whose relationship with the PE development is postulated. Micronutrients such as folic
acid and riboflavin have been shown to reduce homocysteine levels significantly [76].

Figure 1 shows the main stages in PE pathogenesis.
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Figure 1. Main stages in PE pathogenesis. sEnd—soluble endoglin, sFlt-1—fms-like tyrosine kinase-1, VICAM1—vascular
cell adhesion molecule 1, IL-6—interleukin 6, TNFα—tumor necrosis factor α, ET-1—endothelin-1, HELLP—hemolysis,
elevated liver enzymes, low platelets count.

3. Vitamin D
3.1. Metabolism

For many years, vitamin D has been classified along with other vitamins. It is currently
known to play the role of a prohormone—a precursor of the steroid hormone calcitriol
(1,25-dihydroxyvitamin D-1,25(OH)2D). Vitamin D is a group of fat-soluble sterols, the
most important of which are vitamin D2—ergocalciferol and vitamin D3—cholecalciferol.
Plants and fungi synthesize vitamin D2, and animals produce vitamin D3. The most
important source of vitamin D for humans is its production in the skin. The synthesis
of vitamin D3 is influenced by UVB intensity and skin pigmentation [77]. UVB intensity
varies depending on the season and latitude. Melanin contained in the skin blocks the
synthesis of vitamin D3 like sunscreens or clothing [78]. Food and supplements are also
the sources of vitamin D, although its dosage remains a matter of dispute. The sources
of vitamin D include fatty fish, fish liver oil, egg yolk. In fatty fish, vitamin D3 is present,
while vitamin D2 is in other enriched products. In most foods, except fortified products,
the vitamin D content is low [79].

Vitamin D3 is synthesized from the liver-derived precursor 7-dehydro-cholesterol (7-
DHC) under the influence of ultraviolet B radiation (UVB) with a wavelength of 290–315 nm
through a membrane-enhanced thermal-dependent isomerization reaction. Vitamin D3
enters the circulation through the capillaries and preferentially reversibly binds in vast
majority to vitamin D binding protein (VDBP)—a plasma glycoprotein produced by the
liver and, to a lesser extent, to plasma albumin [80].

As vitamin D3 and D2 share the same metabolism and exert the function of prohor-
mone, the presented review does not make (unless it is indicated in the text) a distinction
between vitamin D2 and D3 and the term vitamin D (Vit D) is used for both these forms.
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The first stage of transforming vitamin D2 and D3 is 25-hydroxylation, which occurs
mainly in the liver with the participation of the mitochondrial form of 25-hydroxylase
(CYP27A1), which appears to be a bifunctional cytochrome P450 enzyme [81]. At this
stage, 25-hydroxyvitamin D—calcidiol (25(OH)D), the main form of circulating Vit D is
synthesized. Its synthesis is also possible in other tissues in the auto- and paracrine way.
The measurement of serum 25(OH)D concentrations allows assessing the status of Vit
D because it best reflects the supply of Vit D from all sources [82]. Calcidiol levels are
influenced by several factors such as population factor, latitude, sun exposure, air pollution,
gender, eating habits, or religious recommendations (clothing in Muslim women), which
may be responsible for up to 50% in variations in serum 25(OH)D levels.

Free 25(OH)D accounts for less than 1% of the total 25(OH)D, while the bioavailability
fraction, which consists of free 25(OH)D and bound to albumin, is up to 15% of the total
25(OH)D [83]. Some authors believe that only free 25(OH)D is responsible for biological
effects; hence, assessing its concentrations would be more reliable concerning its activity.
It has been shown that the concentrations of 25(OH)D reflect satisfyingly the level of free
25(OH)D, but in states with significant changes in the concentrations of binding proteins
such as pregnancy, the total 25(OH)D level does not fully reflect its bioavailability [84].

25(OH)D binds to VDBP, and this complex is subject to endocytic internalization in the
kidney proximal tubule cells in which the transmembrane protein megalin participates [85].
Megalin-mediated endocytosis of 25(OH)D/VDBP also requires the receptor-associated
protein (RAP) and cubilin, a protein necessary for sequestering VDBP on the cell surface
before internalization by megalin. This mechanism is the most critical element allowing
the hydroxylation of Vit D in kidney cells [86].

The next stage of Vit D activation occurs in the kidneys under the influence of the
cytochrome P450 enzyme—25(OH)D-1α-hydroxylase (CYP27B1) [87]. It leads to the syn-
thesis of the active form of vitamin D—1,25-dihydroyxvitamin D (1,25(OH)2D)—calcitriol
which also binds to VDBP, and this form is found in plasma [88]. The affinity of 25(OH)D
and 1,25(OH)2D is significantly higher to VDBP than to albumin [89]. VDBP is a multi-
functional protein that, in addition to transporting Vit D, has several other functions. The
most important is the modulation of the inflammatory response and the control of bone
development. VDBP alleles and variants have been shown to be associated with different
susceptibility to diseases, including autoimmune diseases [90].

Bone and mineral metabolism control the synthesis of 1,25(OH)2D. To maintain ade-
quate calcium concentrations in the kidneys, intestines, and bones, parathyroid hormone
(PTH) stimulates the formation of 1,25(OH)2D through a mechanism dependent on cAMP
(cyclic adenosine monophosphate), while fibroblast growth factor 23 (FGF-23) inhibits
its synthesis. CYP27B1 activity is also controlled by calcitriol alone by the negative feed-
back regulatory loop [91]. The synthesis and release of PTH are suppressed by calcitriol
and FGF23, which block CYP27B1 activity in response to elevated phosphate levels [92].
In this way, calcitriol inhibits its synthesis by restraining the synthesis of PTH, direct
transcriptional repression of the CYP27B1 gene, and by activating FGF23 and 1,25-(OH)2D-
24-hydroxylase (CYP24A1), which is the enzyme responsible for the conversion of calcitriol
to biologically less-active metabolites [93].

Vitamin D2 is produced by fungi and plants under the influence of solar radiation
and is structurally different from vitamin D3, which explains the lower affinity of vitamin
D2 to VDBP. It results in faster clearance from the circulation and limited conversion
to 25(OH)D [94]. Hence, even daily supplementation with Vit D2 is not as effective in
preventing deficiency as the supply of vitamin D3 [95].

The activity of 25-hydroxyvitamin D-1α-hydroxylase (1α-hydroxylase) has been
demonstrated in many other tissues and organs besides the kidneys, including the circu-
latory system. It has been accredited that the local synthesis of 1,25(OH)2D is primarily
dependent on the availability of 25(OH)D, but there are many arguments for the fact that
its synthesis is also influenced by other factors such as cytokines [91].
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The biological effects of 1,25(OH)2D may be genomic and non-genomic mediated. All
genomic effects of 1,25(OH)2D are VDR (vitamin D receptor) mediated. VDR shows high
affinity and specificity to 1,25(OH)2D [96].

After activating the cytosolic VDR by ligand binding and transfer to the cell nucleus,
the activated VDR interacts with vitamin-D response elements (VDRE) in the promoter
region of vitamin D target genes and is responsible for stimulating co-activators or co-
repressors to induce or repress basal transcription processes that thus regulate gene tran-
scription [97]. In this way, the activity of about 3% of the genome is regulated by vitamin
D [98]. VDRs are present in many cardiovascular system cells, such as endothelial cells, car-
diomyocytes, blood vessels, smooth muscle cells, most immune cells, and platelets [99–101].
Active VDR has an inhibitory effect on several genes, including the gene responsible for
the synthesis of PTH and CYP27B1 [99]. The primary function of Vit D, in which VDR
participates, is to control calcium and phosphorus metabolism [102].

It has also been demonstrated that Vit D is responsible for the expression of many
genes influencing activation, proliferation, and differentiation of several cells, including
cells of the immune system. This explains its potential impact on the pathogenesis of many
cardiovascular and autoimmune diseases, infections, and cancer [103,104].

VDR mutation, a rare autosomal recessive disorder, is responsible for the heredi-
tary Vit D-resistant rickets (HVDRR), which is characterized by a lack of response to
vitamin D [105].

The action of calcitriol on the non-genomic pathway within cells takes place through
second messengers generated by membrane-initiated signaling pathways. VDR and the
membrane-associated rapid response steroid-binding protein (MARRS), which are present
in the cell membrane after the attachment of calcitriol, activate protein pathways such
as kinase C (PKC) mitogen-activated protein kinase (MAPK), protein kinase A (PKA),
phosphatidylinositol phosphate, and Ca2+ and chloride channels [106,107].

The activation of such several second messengers explains the diversity of biological
effects of Vit D, which include not only the effects on bones and mineral balance known
for many years but also the impact on the cell cycle (growth, division, apoptosis), the
immunomodulatory effect, and activation of cathelicidins [108].

Results from previous studies have suggested the expression of CYP27B11 in non-renal
cells which explains the local synthesis of 1,25(OH)2D3 and its effect on the transcriptional
regulation of genes. The activity of the extrarenal form of CYP27B11 is regulated in a tissue-
specific manner. Within immune cells (monocytes, macrophages), CYP27B1 is activated by
pro-inflammatory cytokines such as interferon-γ (INF-γ) and TNF-α, and the concentration
of calcitriol does not affect its activity [109,110].

It has been suggested that the most important factor regulating the extrarenal synthesis
of calcitriol is the availability of 25(OH)D [111].

3.2. Mechanism of Action

Vitamin D 3 deficiency is common worldwide, and even in countries with appropriate
insolation, its incidence is high and estimated at 30–50% [112,113]. It may result from the
insufficient synthesis in the skin or deficiencies in the diet. The first cause is common in
people with low sun exposure (living in the north, spending much time indoors, the elderly,
dark-skinned, wearing covering clothes or using sun blockers). In women and children
in northern European countries, an increase in the prevalence of vitamin D deficiency
is observed due to concern for the development of skin cancer and the widespread use
of sunscreens [114]. Vitamin D deficiency caused by diet is the effect of a type of diet
(vegan) or malabsorption from the gastrointestinal tract resulting from various diseases
(e.g., coeliac disease, pancreatic insufficiency, cystic fibrosis) [16]. Impaired kidney and
liver function are also responsible for decreased Vit D levels [115]. Vitamin D catabolism
is accelerated by some drugs such as glucocorticosteroids, calcium channel blockers, and
anticonvulsants, leading to its deficit [116].
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The degree of vitamin D deficiency in the general population was presented by the
Australian and New Zealand Bone and Mineral Society and Osteoporosis (Table 1) [117].

Table 1. Vitamin D deficiency in the general population—definitions.

Appropriate Vit D Level ≥50 nmol/L

Vit D deficiency—mild 30–49 nmol/L

Vit D deficiency—moderate 12.5–29 nmol/L

Vit D deficiency—severe <12.5 nmol/L

According to the Institute of Medicine (IOM) recommendations, the daily dose of Vit
D is 600 IU/day for people aged 1–70 years and 800 IU/day for people over 70 years of
age. Such doses should provide a level of 25(OH)D of at least 50 nmol/L [118]. Vitamin
D toxic effects can manifest with its long-term use in doses above 4000 IU/day and at a
50–150 ng/mL concentration. Acute symptoms of intoxication are usually caused by Vit D
intake above 10,000 IU/day with expected concentrations of 25(OH)D > 150ng/mL [119].
The Endocrine Society has proposed to include Vit D levels in the risk of intoxication
assessment. Concentrations of 25(OH)D > 100 ng/mL (250 nmol/L) was defined as
hypervitaminosis, while a concentration of > 150 ng/mL (375 nmol/L) was defined as
intoxication [120]. Vitamin D intoxication is characterized by hypercalcemia and the associ-
ated symptoms. These include manifestations from the central nervous system (confusion,
psychosis, stupor, or coma), renal (hypercalciuria, acute kidney injury, dehydration, and
nephrocalcinosis), gastrointestinal (abdominal pain, vomiting, polydipsia, anorexia, consti-
pation, pancreatitis), and cardiovascular circulatory system (hypertension, shortened QT
interval, ST-segment elevation, bradyarrhythmias, first-degree heart block) [121].

3.2.1. Calcium and Phosphorus Metabolism

The complex of 1,25(OH)2D and VDR as transcription factor enhances the expression
of the gene encoding calcium-binding protein, which intensifies the absorption of calcium
and phosphorus. Calcitriol is also involved in bone metabolism: formation, resorption,
mineralization, and the maintenance of neuromuscular function. Vitamin D, by influencing
the increase in calcium concentrations and the mechanism of negative feedback, inhibits
the synthesis of parathyroid hormone [122].

3.2.2. Immune System

1,25(OH)2D exerts anti-inflammatory activity demonstrated in several experimental
models through multiple mechanisms. The importance and participation of 1,25(OH)2D
in immune processes is confirmed by the presence of CYP27B1 in immune cells such as
inactivated CD4+ and CD8+ T cells, B cells, macrophages, and DCs and their ability to
local calcitriol synthesis [123,124].

The Vit D influence on the immune system involves an innate and adaptive response.
The innate immune response is realized by activating Toll-like receptors (TLRs), which
are present on many immune system cells and endothelial cells. Activation of TLRs
results in synthesizing antimicrobial peptides (AMPs) such as cathelicidin and ROS, whose
prominent role is to fight the pathogenic microorganism. 1,25(OH)2D has been observed to
enhance cathelicidin expression in endothelial cells and myeloid cells [125]. The adaptive
response involves cells presenting the antigen, mainly DCs and macrophages and cells
recognizing the antigen: T and B lymphocytes. It has been observed that Vit D may inhibit
the adaptive immune system. The maturation of DCs and the ability to present antigen
and activate T cells are significantly limited by 25(OH)2D [126].

It is supposed that Vit D is responsible for increasing the number of regulatory T
cells [127]. In activated leukocytes, NF-κB (nuclear factor kappa B) expression is directly
inhibited by the 1,25(OH)2D-VDR complex [128], which results in a reduction in the synthe-
sis of the pro-inflammatory cytokines such as IL-1, IL-2, IL-6, IL-8, IL-23, TNF-α, and INF-γ
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(Interferon-γ) [129]. Additionally, it has been reported that 1,25(OH)2D intensifies the
release of anti-inflammatory cytokines such as IL-4 and IL-10 [130]. The results presented
by Noyola-Martinez et al. have suggested that cytokines regulate calcitriol metabolism
in the human placenta; specifically, INF-γ may contribute to calcitriol production while
TNF-α favors its catabolism [131].

It has been shown that the reduction in TNF-α and IL-6 synthesis by 1,25(OH)2D
and 25(OH)D is the result of their effect on monocyte/macrophage mitogen-activated
protein kinase phosphatase-1 [132]. Wu et al. have found that 1,25(OH)2D downregulates
pro-inflammatory microRNA-155 production in macrophages, leading to the stimulation
of the suppressor of cytokine signaling 1. An effect of 1,25(OH)2D on the reduction of
Toll-like receptor-mediated inflammatory response has also been observed [133].

Despite the beneficial Vit D effect on reducing inflammation demonstrated in many
observational and experimental studies, the results of randomized controlled trials (RCTs)
are inconclusive. The selected inflammatory parameters such as TNF-a and C reactive
protein concentrations have been shown to be reduced after Vit D supplementation, but
some studies have not confirmed this effect [134–136].

It is thought that the regulation of adaptive response by 1,25(OH)2D and its analogues
reduce the risk of developing autoimmune diseases such as lupus and rheumatoid arthritis,
diabetes mellitus type 1, and multiple sclerosis [137], and they may serve as adjuncts to
immunosuppressants following transplantation procedures [138].

The anti-inflammatory effect of 1,25(OH)2D is also expressed by inhibiting the syn-
thesis of prostaglandins (PGs) [139]. Studies conducted on cancer cell lines have shown
that under the influence of 1,25(OH)2D, the expression of cyclooxygenase (COX-2), re-
sponsible for the synthesis of PGs, is inhibited. In addition, the PGs-degrading enzyme
15-hydroxyprostaglandin dehydrogenase activity is intensified by 1,25(OH)2D [140].

Calcitriol has protective effect on normal cells by limiting apoptosis caused by many
factors [141–144].

3.2.3. Cardiovascular System

Vitamin D deficiency is now recognized as one of the risk factors for developing
cardiovascular diseases [145,146]. It has been shown that Vit D deficiency through increased
vascular resistance and vasoconstriction leads to hypertension [147].

It has also been found as one of the risk factors for death in course of cardiovascular
diseases (CVD) and death from cancer [145,148]. Many studies have shown an increased
risk of heart attack, stroke, circulatory failure, and peripheral vascular disease with limited
sun exposure and thus lower serum concentrations of 25(OH)D [149,150].

It has been observed that the incidence of the above complications and mortality from
CVD increases during the winter months when Vit D levels are at their lowest. It suggests
its protective role in CVD prevention [151]. It has been shown that the potential role of Vit
D in CVD prophylaxis consists in a favorable effect on the vascular endothelium, regulation
of blood vessels tone and blood pressure [99,150,152]. Vitamin D also reduces inflammatory
processes, insulin resistance, improves fat metabolism, and reduces the calcification of
blood vessels [150,153,154].

Studies evaluating the relationship of Vit D concentration with CVD have shown that
in the case of low Vit D concentration < 15 ng/mL, the risk of developing hypertension
is three times higher than levels > 30 ng/mL [155]. Such a low Vit D concentration was
also associated with a 60% risk of other cardiovascular diseases [149]. Similar conclusions
have been presented by Giovannucci et al., who observed a two-fold increase in the rate
of heart attacks at low Vit D concentrations compared to level > 30 ng/mL [156]. Based
on the conducted studies, it appears that the 25(OH)D level of about 36 ng/mL is the con-
centration above which no further reduction in mortality or cardiovascular complications
is observed [157]. Similarly, the incidence of hypertension has been found to be inversely
correlated to Vit D levels [155]. It has been postulated that a high concentration of 25(OH)D
may be responsible for an increase in the concentration of adiponectin, which has a protec-



Nutrients 2021, 13, 3854 11 of 32

tive effect on the cardiovascular system [158]. Unfortunately, the results of observational
studies were not confirmed by meta-analyses, which assessed the effectiveness of Vit D
supplementation in preventing CVD [150,159]. Differences in the results of observational
studies and RCTs are likely due to the failure to consider the Vit D concentration in study
participants before starting its supplementation and different doses and administration
regimens used [160]. This is confirmed by the observations of Amrein et al. who have
shown that among patients in an intensive care unit, Vit D supplementation reduced the
risk of death only in those with a concentration of 25(OH)D < 30 nmol/L (12 ng/mL) [161].

Hence, many researchers recognize that Vit D concentration represents general health.
It is also confirmed by the fact that its deficiency is associated not only with diseases of the
cardiovascular system, but also with inflammation, glucose metabolism disorders, weight
gain, infectious diseases, multiple sclerosis, mood disorders, declining cognitive function,
impaired physical functioning, and all-cause mortality [162].

The results of many studies have indicated that Vit D has a significant, beneficial
effect on the endothelium and angiogenesis. The enzyme CYP27B1 is present and active in
endothelial cells, suggesting local synthesis of 1,25(OH)2D. Its presence has been demon-
strated in isolated human umbilical vein endothelial cells (HUVECs) and endothelial cells
from human renal arteries, postcapillary venules from lymphoid tissue [163]. According to
many researchers, the effect of 1,25(OH)2D varies significantly depending on the type of
tissue. Studies conducted on healthy endothelial cells have suggested that within them, it
expresses a pro-angiogenic effect. In contrast, in endothelial cells derived from cancerous
tumors, it behaves as an anti-angiogenic factor. The pro-angiogenic effect of 1,25(OH)2D
results in the intensification of VEGF expression and pro-MMP2 activation. It leads to the
enhanced formation of capillary-like structures and cell proliferation of endothelial colony-
forming cells (ECFCs). This effect has been demonstrated within HUVECs [164]. Similarly,
the increased VEGF expression and blood vessel formation were demonstrated in an ani-
mal model under the influence of 1,25(OH)2D analogue [165]. It has been observed that
1,25(OH)2D enhances VEGF expression and has a positive effect on vascularization [166].

On the other hand, there are reports of adverse effects of 1,25(OH)2D on the en-
dothelium and its anti-angiogenic effects. Interestingly, they concern observations made
in cancerous tissues. Mantell et al. have shown that 1,25(OH2D inhibits VEGF- and
VEGF-dependent cell sprouting, elongation, and proliferation processes. In addition, it is
supposed to be responsible for sprouting endothelial cells in vitro. Based on the results
of their research, these authors have concluded that 1,25(OH)2D could be useful in the
prevention and treatment of conditions with pathological angiogenesis [167].

1,25(OH)2D also affects other mechanisms that regulate endothelial function and
angiogenesis. The 1,25(OH)2D-VDR complex has been shown to enhance the activity of
cystathionine b-synthase, the enzyme responsible for the metabolic elimination of homo-
cysteine. It has been revealed that vitamin D level < 30 ng/mL is an independent risk factor
for hyperhomocysteinemia (RR 1.89, 95% CI 1.41–2.52) [168]. Hyperhomocysteinemia is
postulated to be one of the important risk factors for developing CVD and neurogenerative
diseases. The observed protective effect of Vit D supplementation on endothelial cells
consists in reducing oxidative stress by increasing glutathione levels and limiting lipid
peroxidation [169,170].

In the light of the results of several studies, the beneficial impact of vitamin D on the
cardiovascular system is based on its inhibitory effect on RAAS [171–174]. The mechanism
of favorable action of vitamin D consists in suppressing the renin gene transcription by
blocking the activity of the cAMP response element in the promoter of the renin gene, for
which active VDR is responsible [175]. It has also been reported that activated VDR by
limiting the expression of the angiotensin II receptor reduces the synthesis of ROS and thus
improves the endothelial condition [176].

Another mechanism explaining the beneficial effect of Vit D on hypertension is the
inhibition of PTH synthesis [98,177]. It has been observed that PTH intensifies oxidative
stress, which is responsible for endothelial dysfunction and aldosterone release, and intra-
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cellular calcium overloading of cardiomyocytes with myocardium hypertrophy [178,179].
On the other hand, however, in people with VDR mutation, which leads to the development
of resistance to 1,25(OH)2D, no significant differences in RAAS activity, blood pressure
values or echocardiographic results were observed compared to healthy people [180].

4. Vitamin D in Pregnancy

Calcitriol and VDR are present within the tissues of the female reproductive organ,
and their presence has been shown in the uterus, fallopian tube, ovary, placenta, and
the pituitary, hypothalamus, and mammary glands. Pregnancy significantly affects the
metabolism of Vit D. Its concentration increases 2–3 times in the first weeks of pregnancy,
and maternal kidneys are its primary source [181,182]. However, there are also reports
indicating that its levels remain constant during pregnancy, similar to those of non-pregnant
women [183] or even decrease [184]. The placenta not only enables the transfer of 25(OH)D
from the mother to the fetus but is also the place of its production, which is confirmed by
the presence of CYP27B1 in the decidua and placenta [109].

The postulated progressive increase in the concentration of 1,25(OH)2D in the early
first trimester results from enhanced CYP27B1 activity in the maternal kidneys and the
activation of an additional source of its synthesis within trophoblast and decidua [185]. This
rise is observed in pregnancy before the fetus manifests an increased need for calcium [184].

The activity of CYP27B1 in the kidneys during pregnancy is similar to its extrarenal
activity. A relative lack of sensitivity to the high concentration of PTH has been observed.
In pregnancy, PTH does not inhibit calcitriol synthesis, just as it is not inhibited by a high
level of 1,25(OH)2D. Hence, it seems that the increase in 1,25(OH)2D in pregnancy is
independent of the PTH levels [186]. The CYP27B1 activity is controlled by hormones
related to pregnancy, including estradiol, prolactin, and placental lactogen [184].

1,25(OH)2D, when combined with VDR, stimulates organogenesis in a genomic and
nongenomic-mediated manner. Genes containing VDRE are responsible for several pro-
cesses essential for the development of pregnancy, such as bone and mineral metabolism,
cell life and death (comprising proliferation, differentiation and apoptosis), and immune
function—both innate and adaptive immunity [187].

The role of Vit D in the controlling of immune processes in the maternal-fetal unit is
considered by some authors to be crucial for proper pregnancy development [188].

The increase in VDBP concentrations affects the availability of a functionally active,
accessible form of Vit D. In pregnancy, it reflects better the status of vitamin D than a total
25(OH)D. It is thought that in pregnancy it reflects better the status of vitamin D than a total
25(OH)D. Indeed, despite the increase in the concentration of VDBP and total 25(OH)D, it
has been shown that between the 15th–36th week the levels of the free biologically active
form 25(OH)D are significantly reduced [189]. Hence, even normal 25(OH)D levels may
not reflect the actual 25(OH)D bioavailability, and in some pregnant women, the Vit D
deficiency could be challenging to recognize [190,191].

There is a growing body of evidence that VDBP could be a good predictor of the
development of pregnancy complications such as PE, gestational diabetes mellitus (GDM)
or preterm birth, although the literature on this issue is so far scarce [192,193].

In the early pregnancy, characterized by intensive cell division and growth, maternal
25(OH)D and fetal 1,25(OH)2D produced from about the 6–10th week can interact with
different signaling systems to control organ development. VDR expression in many fetal
and trophoblastic cell types has been confirmed [194].

Studies in an animal model have shown that Vit D deficiency affects the inhibition or
intensification of the expression of specific genes within the placenta [195].

It is thought that Vit D has a beneficial effect on the development and function of
the trophoblast by regulating calcium transport and modulating immune processes [196].
It has been observed that its deficiency affected changes in T-cell phenotype, which is
associated with preterm birth [197]. A link between vitamin D deficiency and recurrent
miscarriages has also been reported [198].
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There is a lot of available data to support the observation that adequate levels of Vit D
increase the fertilization ratio, and it is dependent on BMI (body mass index). It has shown
to decrease proportionally to the increase in BMI (4% decrease per 1 kg/m2 weight gain,
with a BMI above 29 kg/m2). The reduced concentration of Vit D bioavailability in women
with obesity through inadequate modulation of immune processes at the fetal-maternal
interface may partly explain the higher incidence of pregnancy complications in this group
of women. Observations have indicated that this is a group of women significantly exposed
to Vit D deficiency due to reduced exposure to sunlight and a high-calorie diet with a low
vitamin D content [199].

In animal and human models, it has been shown that 25(OH)D easily crosses the pla-
centa and its levels are 70–100% of the maternal concentration in umbilical blood [181,200].
It has been reported that the synthesis of 1,25(OH)2D in the fetus may be limited by
high levels of calcium, phosphorus, and low concentrations of PTH demonstrated in the
umbilical blood [201].

Recommendations on Supplementation of Vitamin D

Vitamin D deficiency is commonly found among pregnant women in various ethnic
populations [202,203]. Clothing with minimal skin exposure, increased urbanization, skin
pigmentation, and vegetarian diets all are supposed to have contributed to Vit D deficiency
epidemic worldwide [204,205]. In women with lower levels Vit D, i.e., in dark-skinned and
Muslim women, there is a higher incidence of preeclampsia [206–208].

Vitamin D deficiency is also observed in breastfeeding women without supplementa-
tion [16].

Currently, there is no clear definition of Vit D deficiency in pregnancy based on the
assessment of 25(OH)D concentrations as well as one prophylactic recommended dose of
vitamin D (Table 2) [209,210].

Table 2. Recommendations on vitamin D prophylaxis during pregnancy.

Recommended Daily Dose
of Vitamin D (IU)

Minimal Vit D (25(OH)D)
Level (nmol/L)

WHO 200 >50

Institute of Medicine (USA) 600–1000 ≥30

Endocrine Society (USA) 1500–2000 ≥75

ACOG (USA) 600 ≥50

NICE (UK) 400–800 >30

RANZCOG 400–2000 >50

PTGiP 1500–2000
BMI > 30 kg/m2–up to 4000 No data

WHO—World Health Organization. ACOG—American College of Obstetricians and Gynecologists.
NICE—National Institute of Health and Care Excellence. RANZCOG—Royal Australian and New Zealand
College of Obstetricians and Gynecologists. PTGiP—Polish Society of Gynecologists and Obstetricians.

Since obesity adversely affects the status of Vit D, its higher dose is proposed for
pregnant women with obesity. There were no differences in the synthesis of vitamin
D in the skin in women with obesity and women with average body weight, while it
is estimated that the level of vitamin D in obesity is lower by as much as 57%. This
phenomenon is explained by releasing vitamin D into the circulation hindered by excessive
adipose tissue [211].

Currently, no organization proposes the use of vitamin D in PE prevention. So far,
there is no data in the literature on whether vitamin D supplementation commonly recom-
mended in many countries affects the incidence of preeclampsia.

It has been shown that Vit D deficiency increases during pregnancy, which is the result
of an increase in demand. Statistics suggest that it may affect up to 50–100% of all pregnant



Nutrients 2021, 13, 3854 14 of 32

women if the lower limit of the norm is the level of 50 nmol/L and 15–84% if the lower
limit is 25 nmol/L [212]. According to Hollis et al. only the level of 25(OH)D of about
100 nmol/L (40 ng/mL) ensures the synthesis of 1,25(OH)2D appropriate for normal preg-
nancy development [213]. McDonnell et al. have shown that maternal 25(OH)D concentra-
tions ≥ 100 nmol/L reduce the risk of preterm birth by 59% compared to <50 nmol/L [214].

Results of research conducted by Mumford et al. have revealed that Vit D levels
above 75 nmol/L are associated with a higher probability of conception, a reduced risk
of pregnancy loss, and a higher rate of live birth [215]. There are opinions that this level
of 25(OH)D should be achieved at the beginning of pregnancy because only then its
modulating effect on immunity function, necessary for the proper development of the fetus
and the course of pregnancy, could be significant [216,217].

Unfortunately, despite the potential beneficial effect of Vit D on several pathophysio-
logical processes leading to the development of pregnancy complications and promising
results of observational studies, most RCTs and meta-analyses have not demonstrated
in a definite and unambiguous way the effect of Vit D supplementation on reducing the
incidence of pregnancy complications, including preeclampsia [218–220].

The lack of clear criteria for diagnosing Vit D deficiency in pregnancy seems to be
the main problem. At the same time, there are no recommendations to determine its level
in the periconception period or the first trimester, even in patients at risk of developing
pregnancy complications [209].

Regardless of the potential benefits of vitamin D supplementation for the pregnant
woman, it should be emphasized that the fetus is fully dependent on maternal 25(OH)D.

It has been widely accepted that the minimum level of 25(OH)D in cord blood, which
ensures the proper development of the skeletal system in the fetus, is >25–30 nmol/L [221,222].
The results of the RCTs study conducted by O’Callaghan et al. have suggested that this
level of 25(OH)D in umbilical blood corresponds to a concentration of 25(OH)D in the
mother > 50 nmol/L. These concentrations can be achieved by Vit D supplementation at
a daily dose of 1200 IU (30 µg/day) [223]. It has been shown that although the supply of
400 IU (10 µg) of vitamin D per day should prevent a decrease in the concentrations of
25(OH)D < 30 nmol/L, higher doses of 1000 IU (25 µg) may be necessary to ensure the
concentration of 25(OH)D in umbilical blood > 30 nmol/L [224].

So far, no dose of this vitamin has been established to achieve effects except the
skeletal system. A daily dose of 200–400 IU is widely recommended, but it may be highly
insufficient. The results of many studies have indicated that only 4000 IU per day used
for 2–3 months allows achieving a 25(OH)D concentration > 75 nmol/L in the mother.
The daily dose of 400–600 IU of Vit D, which is contained in the prenatal vitamin sets
recommended by the IOM, is insufficient for pregnant women with Vit D deficiency
and/or limited sun exposure [225].

There are a few studies on Vit D safety in pregnant women. It has been reported that its
dose of up to 4000 IU provided to pregnant women from the 12th to 16th week of pregnancy
until delivery seemed to be safe, with no reported cases of hypercalcemia or hypercalci-
uria [226]. Current evidence supports the concept that circulating 25-hydroxyvitamin D
levels during pregnancy should rather be 100–150 nmol/L (40–60 ng/mL), suggesting
either a high-dose daily intake of 4000 IU or high-dosage interval bolus (35,000 IU/week
or more) to attain this serum levels [227,228].

However, so far, no safe level of Vit D in pregnancy and a safe daily dose have been
determined [121]. Its excessive supply in pregnancy can be potentially dangerous for
the fetus. This issue was studied in an animal model, which showed that exposure to
excessive doses of vitamin D is associated with a high risk of developing supravalvular
aortic stenosis [229].

5. Vitamin D and Preeclampsia—Experimental Research

With regard to the multiple mechanisms of action of Vit D, its deficiency seems
to be one of the possible factors conducive to PE development, which is confirmed by
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many reports [230]. Studies conducted by Baca et al. have shown associations between
allelic variation in Vit D metabolism genes and PE [231]. It has been suggested that the
consequence of low Vit D levels may be the appearance of an early, severe form of PE,
and its supplementation may be a protective factor against its recurrence in subsequent
pregnancies [232].

The relationship between Vit D and PE development may explain its impact on
implantation, angiogenesis, and endothelial status, regulation of the immune response,
effect on RAAS, and calcium metabolism.

The main theoretical basis for the use of Vit D in the prevention of preeclampsia is
presented in Figure 2.

Figure 2. Theoretical basis for the use of Vit D in the prevention of preeclampsia. 1,25(OH)2D - 1,25-dihydroyxvitamin
D, PTH – parathyroid hormone, RAAS - renin-angiotensin-aldosterone system, EVT – extravillous trophoblast, MMPs -
metalloproteinases, hCG – human chorionic gonadotropin, ROS - reactive oxygen species, PGs - prostaglandins.

5.1. Trophoblast

The potential Vit D contribution in placentation has been suggested [233]. However,
the exact role of vitamin D in this process has still not been settled.

It has been shown that 1,25(OH)2D affects the expression of the HOXA10 gene which
is responsible for the implantation and trophoblast invasion into the decidua [234]. A bene-
ficial effect of Vit D on pregnancy development could be observed only if supplementation
is initiated during placental implantation [235]. Studies by Barrer D et al. have revealed
that Vit D indirectly by intensifying the synthesis of progesterone and human chorionic
gonadotrophin (hCG) may improve trophoblast implantation [236]. Although human
decidual cells at the fetal-maternal interface synthesize 1,25(OH)2D via CYP72B1 [237],
however it has been observed that cultured syncytiotrophoblast cells from preeclamptic
placentas have only one-tenth activity of this enzyme compared to the normal cells [238].

The molecular mechanisms explaining the Vit D effect on EVT cells’ migratory and
invasive properties are not fully understood. Vitamin D has been shown to regulate the
actin cytoskeleton in trophoblast cells. Results of in vitro studies conducted by Chan et al.
have suggested that under the influence of 1,25(OH)2D or 25(OH) there is a significant
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improvement in the invasion of human EVT. They have confirmed the role of Vit D and
indicated that its appropriate level could improve this process, and thus, it may constitute
one of the protective elements against the PE development [239]. CYP27B1, VDR, VDBP,
25-hydroxylase, and 24-hydroxylase expression has been found in syncytial trophoblasts
responsible for invasion [238]. The balance between these enzymes is significantly dis-
turbed in the placental tissue from patients with PE. In preeclamptic placentas, increased
expression of CYP27B1, CYP24A1 and reduced CYP2R1 and VDR 25-hydroxylase have
been demonstrated compared to healthy placentas, indicating impaired Vit D metabolism
in preeclampsia. In addition, the presence of a hypoxic-inducing agent responsible for the
development of oxidative stress was found in preeclamptic placental tissue. It has been
shown that in placentas derived from healthy women under its influence, changes similar
to those observed in preeclamptic placentas occur [240].

Zabul et al. have pointed to the potential significance of an adequate placental con-
centration of 1,25(OH)2D in PE prevention. They believe that calcitriol by competitive
inhibition of placental cytochrome P450scc restrains the excessive synthesis of lipid perox-
ides and progesterone promoting PE development [241].

The process of trophoblast implantation requires the destruction of the extracellular
matrix, for which metalloproteinases are responsible. It has been shown that the reduced
levels of vascular MMP-2 and MMP-9 are responsible for vasoconstriction and, as a result,
lead to the development of GH and PE [63]. Results of research conducted by Ganguly et al.
have indicated that Vit D by enhancing the expression of MMP-2 and MMP-9 promotes the
migration and invasion of human EVT in the 1st trimester of pregnancy [234].

5.2. Angiogenic Factors and Endothelium

Vitamin D significantly affects blood vessels and angiogenesis. It is postulated that it
may play a beneficial role in preventing endothelial damage and controlling blood pressure
in pregnant women with preeclampsia [242]. Under the Vit D influence, the activation of
endothelium cells caused by cytokines is limited as well as TNF-α-induced expression of
adhesive molecules [243,244]. The results of the Shulz et al. study have shown that gene
expression for anti-angiogenic factor (sFlt-1) and surprisingly, pro-angiogenic factor (VEGF)
was significantly inhibited at a 25(OH)D concentration ≥ 100 ng/mL compared to the lower
25(OH)D levels. These authors believe that adequate Vit D supplementation ensuring
this 25(OH)D level may reduce the risk of PE development [245]. However, most studies
have indicated that vitamin D upregulates VEGF gene expressions [246–248]. Grundmann
et al. have observed that by increasing VEGF expression and pro-matrix metalloproteinase
(pro-MMP-2) activity, Vit D induces angiogenesis in endothelial progenitor cells [164].
It has been found that by restoring functional properties of endothelial colony-forming
cells (ECFC), which are endothelial progenitor cells, and participate in vasculogenesis and
endothelial repair, Vit D may reduce the severity of PE symptoms resulting from endothelial
damage [249]. Brodowski et al. have also confirmed the beneficial 1,25(OH)2D influence
on endothelial progenitor cells, which allows reversing endothelial damage characteristic
of PE [250].

5.3. Immune System

The immunomodulatory properties of Vit D may explain its favorable effect on re-
ducing the risk of PE development [251]. Vitamin D limits the overexpression of Th1,
which is characteristic of placentas in preeclampsia [252]. Expression of pro-inflammatory
cytokines such as TNF-α and IL-6 was inhibited in placental tissues collected from pa-
tients with PE and treated with 1,25(OH)2D compared to trophoblast cell cultures without
1,25(OH)2D [253].

The results of studies among women with PE have shown that compared to healthy
ones, they were characterized by significantly lower Vit D levels and elevated levels of IL-6,
although no correlation was observed between their concentrations [254].
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It has been suggested that it also regulates the proper response of the maternal immune
system to the placenta, which prevents the release of anti-angiogenic factors [255].

5.4. RAAS

Although the ultimate role of RAAS in the development of PE has not been clearly
defined, it has been shown that ATR1-AA are responsible for the development of hyper-
tension [72]. In an animal model, it has been demonstrated that the Vit D administration
significantly reduces the blood pressure induced by ATR1-AA [71].

6. Vitamin D and Preeclampsia Risk

Due to the multitude of functions of vitamin D, especially its immunomodulatory
properties and its beneficial effect on angiogenesis and vascular endothelium, its use in
preventing preeclampsia seems attractive. The results of several experimental, clinical, ob-
servational, and randomized studies and meta-analyses on this issue have been published.
Searching the PubMed database using the keywords “vitamin D” and “preeclampsia” only
from the last ten years gives the result of 360 articles. However, only a tiny percentage of
them attempted to answer whether Vit D can effectively prevent PE.

This chapter presents the results of randomized controlled trials and meta-analyses
that have been published over the past ten years. Electronic databases PubMed has been
searched using keywords such as “Vitamin D” and “preeclampsia”. Only articles available
in English were considered. Only 5 out of 14 published RCTs and 16 out of 30 meta-analyses
provided information on the effect of vitamin D on preeclampsia.

The results of the selected RCTs, which have been released within the last ten years
and present the information on the Vit D influence on PE risk, are presented in Table 3.

Table 3. Selected randomized placebo-controlled trials on vitamin D influence on PE risk.

Author Aim of the Study Size of Groups
Vit D Dose

(IU) and Duration
of Treatment

GA at the Entry to
the Study Main Outcome

Mirzakhani
et al. 2016 [217] PE risk Vit D (SG) 408

CG 408
4400 daily
400 daily 10–18th week

PE incidence
SG 8.08%

CG 8.33%, NS
RR 0.97

95% CI: 0.61–1.53

Rostami et al.
2018 [256]

Vit D status
screening

Screened
Vit D 800

Without Vit D 200

Non screened 900

50,000–300,000
weekly or monthly;

6–12 weeks
<14th week

Screening reduces PE
risk by 60%

RR 0.40
95% CI: 0.30–0.60

Karamali et al.
2015 [257] PE risk

Vit D (SG) 30
CG 30

patients with high
PE risk

50,000 every
2 weeks 20–32nd week

PE incidence
SG 3.3%
CG 10%
p = 0.3

Sablok et al.
2015 [228]

Pregnancy
complication risk

Vit D (SG) 120
CG 60

60,000–120,000
every 4 weeks 20–32nd week

PE incidence
SG 11.1%
CG 21.1%
p = 0.08

Ali et al.
2019 [258] PE risk Vit D (SG) 83

CG 81 4000 daily
at 13th week

up to 12th week
after delivery

PE incidence
SG 1.2%
CG 7.4%
p = 0.049

PE—preeclampsia; Vit D—vitamin D; SG—study group; CG—control group; GA—gestational age; P—statistical significance; RR—relative
risk; CI—confidence interval.
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The presented papers assessed not only the effectiveness of Vit D administration in PE
prevention, but their authors also analyzed the relationship of Vit D concentration with the
risk of PE [217,228,256–258], and the legitimacy of Vit D deficiency screening to prevent
PE [256]. Additionally, studies by Mirzakhani et al. determined the expression of 348 Vit
D-dependent genes in preeclamptic patients [217].

According to the results of the presented RCTs, it might be concluded that Vit D
supplementation seems ineffective in the prevention of PE. Mirzakhani et al., Sablok et al.
and Karamali et al. have not demonstrated a beneficial effect of Vit D supplementation in
reducing the risk of PE, even despite the inclusion of this treatment in the second trimester
of pregnancy (Mirzakhani et al.) [217,228,257]. In contrast, in Sablok et al. and Karamali
et al. studies, Vit D was offered late, between the 20th–32nd week [228,257]. For these
cases, the late start of Vit D administration and the lack of adequate concentration during
placental implantation seem to have influenced the results. Although the difference in
doses used in these studies is significant 4400 vs. 50,000 IU, and different administration
regimens have been used, it does not affect the results. In contrast, the results of the study
conducted by Ali et al. have indicated the effectiveness of the 4000 IU dose in preventing
PE. In this research, all patients were started with Vit D supplementation at week 13, which
may have significantly affected the outcome [258]. The group studied by Karamali et al.,
although consisting of patients at high risk of developing PE, was tiny. Hence the results
of this study may not be representative [257]. It is also noteworthy that the very wide
range of doses from 4400 IU per day [217] through 50,000 [256,257] to even 300,000 [256]
was provided at various time intervals in the studied groups. So far, no organization
recommends such high doses of vitamin D (50,000 and 300,000 IU) during pregnancy. Low
doses of vitamin D (400 IU) [223] or no treatment was offered to pregnant women in control
groups [25,228,256,257].

However, research by Marzakhani et al. has also yielded promising results. It has been
shown that the satisfying level of Vit D defined by the authors as >30 ng/mL, observed in
both early and late pregnancy, is associated with a significantly lower risk of PE (RR 0.28,
95 CI: 0.10–0.96) [217]. Results of research conducted by Rostami et al. on a large group
of patients have shown that screening of Vit D status in pregnant women from the low-
risk group allows reducing the risk of PE by 60% (RR 0.40, 95% CI: 0.30–0.60. The NNS
(numbers needed to screen) value has been estimated at 11 (95% CI, 8 to 17), which means
that screening 11 pregnant women will prevent 1 case of PE. In this study, patients subjected
to screening were divided into subgroups depending on the concentration of Vit D—the
level of >20 ng/mL was considered sufficient, and the pregnant women did not receive
Vit D (control group). The study group had a concentration of Vit D < 20 ng/mL, and a
subgroup of moderate (10–20 ng/mL), and severe deficit (<10 ng/mL) has been separated.
A dose of 300,000 IU given once to women with moderate and 300,000 IU given twice in
women with severe Vit D deficiency and maintenance dose of 50,000 IU 1x per month have
been shown to be effective in achieving > 20 ng/mL in the perinatal period (RR 1.7, 95%
CI:1.2–24 and RR 2.3, 95% CI: 1.7–3.3, respectively). The authors did not note the significant
side effects of such high doses of Vit D in pregnant women, but their effects on offspring
were not evaluated. These authors believe that the results of their study raise the question
of the effective dose of Vit D in preventing pregnancy complications and suggest that this
dose may be significantly higher than the currently proposed [256].

The presented research results have suggested that the critical issue in assessing the
role of Vit D in preventing PE may not be its dose but appropriate serum concentration.
Vitamin D in the dose according to the serum levels needs to be offered in the 1st trimester
and even in the periconception period. However, so far, the optimal concentration of Vit D
in pregnancy has not been determined.

The results of the selected meta-analysis on the Vit D influence on PE prevalence
published within the last ten years are presented in Table 4.
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Table 4. Selected meta-analyses on Vitamin D influence on PE risk.

Authors Studied Group Number of
Participants Impact on PE Additional

Information

Khaing et al.
2017 [220] Vit D vs. placebo 357 RR 0.47

95% CI: 0.24–0.89 NNT 17

Palacios et al.
2016 [259] Vit D vs. no treatment 219 RR 0.52

95% CI: 0.25–1.05
PE occurrence 8.9%

vs. 15.5%

Palacios et al.
2019 [218] Vit D vs. no treatment 499 RR 0.48

95% CI: 0.30–0.79

Fogacci et al.
2020 [260]

Vit D vs. no treatment

Vit D vs. no treatment < 20th
week

4777

RR 0.37
95% CI: 0.26–0.52

RR 0.35
95% CI: 0.24–0.50,

p < 0.001

Increasing
dose–decreasing PE

risk RR −1.10
95% CI: −1.73–1.46,

p < 0.001

Gallo et al.
2020 [261] Vit D vs. no treatment 364

PE
RR 0.7

95% CI: 0.4–1.4, NS

GH
RR 0.8

95% CI: 0.3–2.2, NS

Pérez-López et al.
2015 [262] Vit D vs. placebo 877 RR 0.88

95% CI: 0.51–1.52, NS

Roth et al.
2017 [263] Vit D vs. no treatment 3398

RR 1.09
95% CI:0.43–2.76, NS

Aguilar-Cordero
et al. 2020 [264]

Random effects meta-analysis
25(OH)D < 75 nmol/L

25(OH)D < 50 nmol/L

Fixed effect meta-analysis
25(OH)D < 75 nmol/L

25(OH)D < 50 nmol/L

Interventional studies
Vit D supplementation

10,979

14,496

10,979

14,469

1660

RR 1.26
95% CI: 0.87–1.82, NS

RR 1.42
95% CI: 0.99–2.04, NS

RR 1.44
95% CI: 1.26–1.64

p < 0.00001
RR 1.47

95% CI: 1.29–1.67
p < 0.00001

RR 0.68
95% CI: 0.49–0.95

Akbari et al.
2020 [230] 25(OH)D < 20 ng/ml 21,546

Fixed RR 1.33;
p < 0.0001; random RR

1.54
p = 0.0029

Fu et al. 2018 [265] Vit D supplementation 21,127 RR = 0.41
95%CI = 0.22-0.78
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Table 4. Cont.

Authors Studied Group Number of
Participants Impact on PE Additional

Information

Hyppönen et al.
2014 [266]

Vit D supplementation early in
pregnancy

higher serum 25(OH)D

Vit D supplementation

59,789

5058

5982

RR 0.81
95% CI: 0.75–0.87

p < 0.000001

RR 0.52
95% CI: 0.30–0.89

p = 0.02

RR 0.66
95% CI: 0.52–0.83

p = 0.001

Aghajafari et al.
2013 [267]

Observational study
Insufficient 25(OH)D levels

25(OH)D < 75 nmol/L

25(OH)D < 50 nmol/L

3190

RR 1.79
95% CI: 1.25–2.58

RR 2.11
95% CI: 1.36–3.27

RR 1.27
95% CI: 0.60–2.42

Tabesh et al.
2013 [268]

Vit D deficiency
25(OH)D ≤ 50 nmol/L

(20 ng/mL),

25(OH)D <38 nmol/L
(15.2 ng/mL)

1775

931

RR 2.78
95% CI: 1.45–5.33

NS

Martínez-
Domínguez et al.

2018 [269]

First half of pregnancy normal
25(OH)D (≥30.0 ng/mL)

Insufficient (20.0–29.9 ng/mL)

Deficient (<20.0 ng/mL)

817

323

494

RR 0.73
95% CI: 0.35–1.51, NS

RR 0.79
95% CI: 0.28–2.21, NS

RR 0.67
95% CI: 0.24–1.89, NS

Kinshella et al.
2021 [270] Vit D supplementation 1353

RR 0.62
95% CI: 0.43–0.91

NS

Decrease in PE risk
by 38%

Yuan et al.
2021 [271] Low 25(OH)D levels 39,031

RR 1.62
95% CI: 1.36–1.94

p < 0.001

Vit D—vitamin D; 25(OH)D—25-hydroxyvitamin D; NNT—numbers needed to treat; P—statistical significance.; RR—relative risk;
CI—confidence interval.

The results of the meta-analyses published in the last ten years also do not allow determin-
ing unequivocally whether Vit D is effective in preventing PE. The presented meta-analyses
are not homogeneous: some refer to studies assessing the impact of its administration on
obstetric results [218,220,259–266,270], the others determine its protective level against the
development of PE and other complications of pregnancy [230,264,266,268,269,271]. Meta-
analyses were based on studies in the general population of pregnant women without
specifically separating groups at high risk of developing PE.
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According to the results of most of the meta-analyses presented, the administration of
Vit D allows diminishing the risk of PE significantly [218,220,259,260,265,266,270]. Some
studies, however, have not shown such a relationship [261–263]. Only Gallo et al. assessed
the effect of Vit D on PE and GH separately [261]. Other researchers have referred only
to preeclampsia.

The inconclusive results of meta-analyses can be explained by the fact that different
types of studies were considered in which different doses of vitamin D were analyzed,
administered in different time patterns in women with different Vit D concentrations. Simi-
larly, the gestational age when Vit D was offered to pregnant women was heterogeneous
and included all trimesters. The authors of the meta-analyses also included in the evalua-
tion studies in which PE was diagnosed based on heterogeneous criteria [230,270,271].

In contrast, the results of meta-analyses assessing the relationship of vitamin D con-
centrations with the risk of preeclampsia has indicated that its low levels are associated
with an increased risk of PE. Higher levels seem to provide protection against PE devel-
opment [230,265,267,268,271] with the cut-off points used for Vit D concentrations being
as follows: <20 ng/mL, <50 ng/mL, and <75 ng/mL. Aghajafari et al. in their meta-
analysis, used two discriminators: level 25(OH)D < 50 nmol/L and <75 nmol/L, while
the third group was defined as insufficient 25(OH)D levels. They determined the level
of <75 nnmol/L for this group and included studies that reported outcomes as proportions
of two cut-off categories sufficient and insufficient [267]. A meta-analysis of Hypponen
et al. has evaluated the effect of higher serum 25(OH)D levels on the risk of developing
PE without specifying a value of this level. The term was used as defined in each study
eligible to their meta-analysis [266]. Only one of the presented analyses by Martínez-
Domínguez et al. has indicated that the concentration of Vit D does not affect the risk of PE
development [269].

The meta-analysis by Aguilar-Cordero et al. has presented random and fixed effects
of meta-analyses of observational studies, which differ significantly. Fixed effects are
auspicious and indicate a significant effect of low 25(OH)D concentration on PE risk, while
random effects do not confirm such a relationship. The authors decided to make this
assessment due to the high heterogeneity of the studies included in the meta-analysis [264].

The authors of the presented meta-analyses have indicated the high heterogeneity
of the included studies concerning the dose and type of Vit D supplementation and the
duration of its use.

7. Conclusions

Currently, the commonly recommended preeclampsia prophylaxis is the use of low
doses of acetylsalicylic acid in high-risk pregnant women and, by some institutions, calcium
supplementation in groups with its deficiencies in the diet. Numerous studies are being
conducted on the use of other substances and drugs for this purpose, which, due to their
properties and mechanisms of action, could prevent the development of preeclampsia.
One of these thoroughly studied substances is vitamin D. Based on the results of research
explaining its mechanism of action and understanding the reasons and pathophysiology
of the development of preeclampsia, it might be postulated that an anti-inflammatory
effect of Vit D and its beneficial influence on the endothelium constitutes its potential
use in PE prevention. Unfortunately, the results of the randomized controlled trials and
meta-analyses are ambiguous. Despite the multitude of studies published on this subject,
there are no clear conclusions about its effectiveness in PE prevention which could form
the basis for developing universal recommendations.

In the light of the available data, the following issues regarding the role of vitamin
D in preventing preeclampsia remain unresolved: 1. Should the target group for vitamin
D supplementation be all pregnant women or only those at high risk? 2. Should it be
recommended to test the vitamin D concentration in the periconceptional period and the
early first trimester in all pregnant women or a high-risk group? 3. Since when (during
the planning period of pregnancy or in the first trimester), how long and what doses of
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vitamin D should be proposed considering the safety of offspring? 4. What vitamin D
level in the periconceptional period and the first trimester should be considered sufficient?
These questions may determine the direction of research on vitamin D in the prevention
of preeclampsia.

It seems that the fundamental issue, despite the extensive literature, remains the
assessment of Vit D concentration in the periconceptional period and/or the early first
trimester and defining levels that would allow reducing the risk of PE development.
Women with risk factors for Vit D deficiency such as obesity, kidney, liver, thyroid gland
diseases, chronic bowel diseases, autoimmune diseases, asthma, diabetes t.2, hypertension,
and chronic glucocorticoids, antiepileptic and antiretroviral drug treatment would benefit
the most from screening. It appears that patients with risk factors for PE development and
Vit D deficiency may require higher doses of vitamin D than commonly recommended for
pregnant women.
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