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Infectious disease is a great enemy of humankind. The ravages of COVID-19 are leading to profound crises
across the world. There is an urgent requirement for analyzing the current pandemic situation, predicting
trends over time, and assessing the effectiveness of containment measures. Thus, numerous statistical
models, primarily based on the susceptible–exposed–infected–recovered or removed (SEIR) model, have
been established. However, these models are highly technical, which are difficult for the public and gov-
erning bodies to understand and use. To address this issue, we developed a simple operating software
based on our improved K-SEIR model termed as the kernelkernel SEIR simulator (K-SEIR-Sim). This
software includes natural propagation parameters, containment measure parameters, and certain charac-
teristic parameters that can deduce the effects of natural propagation and containment measures.
Further, the applicability of the proposed software was demonstrated using the example of the
COVID-19 outbreak in the United States and the city of Wuhan, China. Operating results verified the
potency of the proposed software in evaluating the epidemic situation and human intervention during
COVID-19. Importantly, the software can perform real-time, backward-looking, and forward-looking
analysis by functioning in data-driven and model-driven ways. All of them have considerable practical
values in their applications according to the actual needs of personal use. Conclusively, K-SEIR-Sim is
the first simple customized operating software that is highly valuable for the global fight against
COVID-19 and other infectious diseases.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Infectious diseases are the common adversaries of humanity
and can cause significant social crises [1]. The new infectious dis-
ease coronavirus 2019 (COVID-19) has become a pandemic in a
short time span [2]. It has affected and continues to widely and
profoundly affect the world. Factories and schools have closed,
and public transport and travel have been stringently restricted.
Until March 19, 2021, a total of 121,464,666 cases and 2,684,093
deaths have been confirmed worldwide (3:44 pm CET, 19 March
2021). Therefore, there is an urgent need to determine ways to
analyze the epidemic features, infer key processes, and evaluate
strategies for mitigating the impact of this pandemic. Statistical
models are often used to perform such tasks. Numerous attempts
have been made to model the spread of COVID-19 in many coun-
tries or areas to help scientists, governments, and public fight the
crisis [3–7]. For this purpose, the susceptible–exposed–infected–r
ecovered or removal (SEIR) models have been established [4].

The susceptible–infections–recovered (SIR) model was estab-
lished in 1927, and the SEIR model is derived from the SIR model
and additionally includes the incubation period and exposed pop-
ulations [8]. SEIR has become a classic model in research related to
infectious diseases and is also a base for establishing other models.
After the outbreak of COVID-19 till March 24, 2020, 31 models
have been developed [9]. As of July 1, 2020, more than 40 investi-
gations have been published based on SEIR and modified SEIR
models (PubMed and Embase). These model-based researchers pri-
marily wrote their own algorithms to obtain the corresponding
experimental results by setting different parameters [10]. They
subsequently evaluated the epidemic features and containment
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measures and presented suggestions and warnings [11]. However,
each adjustment requires professional programming, and flexibly
adjusting the parameters in a simulation process is challenging.
Moreover, it is nearly impossible to perform real-time regression
fitting of parameters for existing data. As these models present
data using mathematical language, they are difficult to understand
and use for scientists of other academic disciplines as well as gen-
eral policy makers and staff. None of the abovementioned models
can be recommended for clinical use [12].

To address this issue, we developed a kernel SEIR simulator (K-
SEIR-Sim), which is a simple customized operating software based
on our improved SEIR model. The software functions by setting dif-
ferent parameters. The user only needs to open the software and
input the basic parameters to instantly obtain data of the target
area regarding the current epidemic situation, trends over time,
and effectiveness of control measures and medical treatment,
among others. It is important to have such a model that is easily
usable, because COVID-19 can bring political, economic, social,
environmental, managerial, psychological and other impacts on
people [13]. For example, a study documented its large disruptions
to physical activity, sleep, time use, and mental health of young
adults [14]. Using this model to assess the epidemic features of a
city or a region, a psychiatrist can manage to improve mental
well-being, a stadium owner can arrange physical activities ration-
ally, an online educator can schedule study time, and so on. Even
someone may look at economic impacts of COVID-19 by an esti-
mate of the number of cases. To help users efficiently use this soft-
ware, we demonstrated the applicability of K-SEIR-Sim using
examples of the COVID-19 outbreak in the United States, Wuhan
city of China, Diamond Princess, and France. The operating results
of the proposed software were found to be excellent.

To the best of our knowledge, this is the first ever introduced
simple and customized software based on the widely used SEIR
model developed for use by both professional scientists and non-
professional ordinary people. Using this software, we can obtain
data on the transmission dynamics of infectious diseases, analyze
the role of medical interventions, and evaluate the effectiveness
of public policy implementations using data available in the public
domain. Thus, the proposed software may greatly help in the fight
against COVID-19 and other infectious diseases.
2. Methods

2.1. Developing the K-SEIR model

First, the K-SEIR model divides the population into the follow-
ing six categories. (1) Susceptible (S): those who are susceptible
to the infection. The outbreak has infected people of all ages; thus,
all people are generally susceptible. Therefore, in this software, S
represents the entire population in a certain area. S has an average
daily infection rate of k. (2) Exposed (E): Asymptomatic carrier of
the virus. These individuals are in the incubation period after virus
infection. The incubation period increases the difficulty of epi-
demic prediction and control. We know that the infection rate of
the exposed population is typically the same as that of the infected
population; thus, the model proposes the same value of k for E as S.
The probability of a carrier turning into an infected case per day is
r, which follows a normal distribution with the average incubation
day. (3) Infectious (I): those who showed clinical symptoms after
being infected with the virus. Currently, no difference is reported
between the infection rates of mild and severe cases; hence, this
model does not distinguish between the infection rate of mild
and severe patients. Both the exposed (E) and infected (I) can infect
S. (4) Removed (R): those who were removed from the infected
population. The average daily removal rate for infected patients
1967
is c, which is divided into two parts: cure rate a and mortality rate
b. Thus, a + b = c. The removal number in the classical SEIR model
is decomposed into the self-healing number H (healer) and death
number D (death). (5) Healer (H): those who have been healed
after infection. Although there were reports of reinfection
[15,16], there is no definite conclusion whether COVID-19 patients
can be reinfected after recovery [17], to generalize the model,
patients who recovered from the illness were set to have an aver-
age daily probability l of reinfection. As long as there is reinfec-
tion, if the reinfection rate is obtained from an epidemiological
survey, the coefficient of reinfection can be set to this value when
the software is used; If the healer produces antibodies and is no
longer infected, the value of l is 0. (6) Death (D): those who died
after infection. This category of population must be properly han-
dled to avoid counting them among people who could infect
others.

Hereafter, we set the initial conditions for the K-SEIR model.
The number of the population at time t is s, e, i, r, h, and d. At time
t = 0, the corresponding parameters are denoted as s0, e0, i0, and r0.
Then, s0 + e0 + i0 + r0 = N, where N is the number of total population
in a certain region. The parameter K was added for human inter-
vention, because it is unrealistic to expect the outbreak of the epi-
demic to entirely follow natural transmission laws; hence, human
intervention is inevitable. First, the government and public often
reduce interpersonal communication or increase social distancing
owing to executive orders or spontaneous actions, or they can wear
masks to prevent the transmission of the virus. These measures can
reduce the daily natural infection rate (k) by reducing the interper-
sonal contact rate affected by physical isolation measure (k1). Sec-
ond, the government can improve the removal rate by expediting
the medical treatment. Notably, the removal rate will only acceler-
ate the end of the epidemic, not the increase of cure rate. However,
the removal rate will not help in improving the survival rate of the
population. Therefore, we divided medical treatment into two
parameters: hospital admission capacity (k2) and the ability of
medical treatment (k3). Human intervention parameters can be
calculated using fitting parameters as follows:

The actual infection rate kk = the natural infection rate
k � (1 � k1), hence, k1 = 1 � kk/k (equation 1, Eq. 1); the actual
removal rate ck = the initial removal rate c � k2, hence, k2 = ck/c
(equation 2, Eq. 2); and the actual cure rate ak = the initial cure rate
a � k3, hence, k3 = ak/a (equation 3, Eq. 3).

2.2. Developing the software K-SEIR-Sim

The theoretical K-SEIR model was transformed into a simple
software, implemented in PYTHON language, using software engi-
neering. In particular, the tasks of graphical user interface design,
control logic, operation logic, precision control, speed control, data
visualization, data import and export, parameter fitting, key data
display, and other specific contents were completed. Through con-
stant modification and debugging, we developed a stable version of
the software: K-SEIR Simulator V2.5. The software and instructions
are available online (http://peiyun.cn/download/seir_sim.files/
SEIR_sim_V2.53.exe) for free download for noncommercial use
only.

2.3. Practical applications of software K-SEIR-Sim for fighting against
COVID-19

2.3.1. Data-driven analysis for the outbreak of COVID-19 in the United
States

Data-driven analysis for infectious diseases is a crucial applica-
tion of the proposed software. First, a matching generalization of
the fitting analysis was performed. We collected sample data from
March 1 to April 30, 2020 from the official epidemic statistics in the
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Table 1
Basic information for K-SEIR model.

Population Formula Parameter

Susceptible (S) ds
dt ¼ �ksi=N þ lh k: average daily infection rate

s: number of the population (S) at time t
i: number of the population (I) at time
tl: average daily rate of reinfectionh:
number of the population (H) at time t
N: number of total population in a
certain region

Exposed (E) de
dt ¼ ksi� re r: incidence rate per day

e: number of the population (E) at time t
Infectious (I) di

dt ¼ re� ci c: average daily removal rate for
infected patients

Removed (R) dr
dt ¼ ci It’s the sum of the cured and the dead

Healer (H) h ¼ ar r: number of the population (R) at time t
a: average daily cure rate

Death (D) d ¼ br b: average daily mortality rate
a + b = c
s0 + e0 + i0 + r0 = N 0: time t = 0
kk = (1 � k1) k
ck = k2c
ak = k3a

K: kernel for human intervention
k1: physical isolation measure, the
coefficient of k
k2: hospital admission capacity, the
coefficient of c
k3: the ability of medical treatment, the
coefficient of a

Note: k = R0/AIP. R0 stands for basic reproductive number, and AIP stands for
average infectious period. r = 1/IP. IP stands for incubation period.
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United States. Thereafter, the corresponding fitting operation was
conducted using the collected data. The parameter N indicates
the total population, which is approximately 330 million in the
United States. The susceptible population equals the total popula-
tion minus the nonsusceptible population. The nonsusceptible
population corresponds to the total population times the sweep
rate, and the sweep rate is generally 5% [18]. Based on the theoret-
ical simulation, E is 3 for 1 case in the early stage of the epidemic
(see Supplementary data S1). Therefore, when the diagnosed num-
ber I on March 1, 2020 was 69, the exposed number was set as 207,
i.e., 69 � 3 = 207. The parameter of infectious number is I. The
parameter for healer number H is set as 1, and the parameter for
died number D is also set as 1. After importing the collected sample
data from March 1 to April 30, 2020, the average incubation period
was manually set, which is generally 4 to 7 days according to the
current available data for this epidemic [19]. Herein, the incuba-
tion period is set as 5 days, and the function of parameter scanning
is used to automatically fit the optimal parameter values of k, r, c,
a, and b. The antibody failure rate l is set as 0. Next, the develop-
ment of the epidemic is deduced according to these parameters.

In the next step, an error generalization of thefitting analysiswas
performed. Owing to the lack of early detection ability anddetection
data for mild patients in the United States, the data published in the
early period can be significantly distorted. Therefore, the statistical
data from March 1 to April 30, 2020 were intercepted for error
analysis.

For the parameter generalization of the fitting analysis, first, the
parameters must be obtained using the official data of the United
States. As the actual epidemic data are related to human interven-
tion measures, the fitting parameters should include changes in k1,
k2, and k3. Generally, k1 increases linearly, indicating a gradual
increase in social isolation [5]; k2 remains nearly constant,
indicating that the removal rate did not change; k3 increases signif-
icantly, indicating that the healing power gradually increased. The
actual infection rate depends on the initial infection rate and isola-
tion intensity k1. The initial infection rate was calculated to be
0.502, which was obtained by dividing the basic reproduction
number R0 by the infection days. We considered R0 = 3.77
[20,21] and infection days = incubation period + the time required
for diagnosis and treatment, where the incubation period was
5 days and the time required for diagnosis and treatment was
2.5 days. Therefore, the initial infection rate was 0.502. The isola-
tion intensity k1 can be calculated using the infection rate. Next,
the reliability of these parameters should be confirmed using the
official data of the United States. After obtaining the optimal
parameters by fitting the historical data, a 10-day prediction
deduction is conducted. By generalizing errors obtained using the
fitting analysis of the 10-day data, both the rationality of the
parameters and the reliability of the model are verified. During
parameter fitting, the weightage of a parameter can be set based
on the requirement of the error of fitting data. When performing
fitting analysis, we can sacrifice the current consistency in the pur-
suit of long-term consistency, which is particularly useful when
the actual data do not evidently match the epidemic rule owing
to the lack of updated data over a log period. Moreover, as the val-
ues of open data are often less than that of the actual data, the
weightage of positive and negative parameters can be adjusted to
make the fitting data close to the published data. The fitting
parameters of the epidemic situation include human intervention
parameters.

we also

2.3.2. Model-driven analysis for the outbreak of COVID-19 in Wuhan,
China

To obtain basic data on infectious diseases, model-driven anal-
ysis is required. On January 23, 2020, the number of infections was
1968
830, the number of healers was 34, and the number of deaths was
25 (The data came from China’s National Health Commission). The
latent day was set to 5, the removal day was set to 10, and R0 was
set to 3.77. To reflect the effects of lockdown, self-isolation, wear-
ing masks, and cabin hospitals to the maximal possible extent, we
set k1 = 0.80 and k2 = 1.4. Because no specific drugs are available,
we set k3 = 1.6. The total population was set to 100 million.

3. Results

3.1. K-SEIR model

The proposed K-SEIR model is an improved SEIR model that
considers the influence of both natural propagation and human
intervention. The parameter K of human intervention is further
divided into three parameters: k1, k2, and k3. Simultaneously, we
decomposed the R parameter into two parameters: H and D. Then,
we established the K-SEIR model (Table 1, Fig. 1).

For a total population of 100,000, the parameter of infection rate
(k) and removal rate (c) was simulated as 0.01 and 1, respectively.
Fig. 2 displays the results of running the example program. Based
on pure numerical and theoretical simulations, we can determine
numerous features of this model. The total number of infected cases
is very low or very high, and the intermediate state is very narrow.
When the total number of infected cases is greater than 90% or less
than 10%, the infection rapidly peaks and the epidemic will also
rapidly end. When the number of infected cases is between 10%
and90%, the infection slowly peaks and the epidemic lasts for longer
periods. To contain the spread of the epidemic, the infection rate
should be minimized and the removal rate should be improved.
However, the cost-benefit ratio should be considered for this pur-
pose. The mortality rate is the primary factor in evaluating the
cost-benefit ratio. For example, influenza has a very low mortality
rate and can be allowed to develop regardless of its rate of infection
and removal. The changes of k and c can also be observed under
human intervention;hence, themodel is still availableunderhuman
intervention.

The above simulation analysis of the K-SEIR model suggests that
many interventionmeasures can be employed to contain the spread



Fig. 1. Schematic of the logic structure of the K-SEIR-Sim model. The K-SEIR-Sim model consists of Susceptible (S), Exposed (E), Infectious (I), Removed (R), Healer (H), and
Death (D). The parameter of human intervention measures is K, which includes three parameters: k1 is a measure of physical isolation; k2 is a measure of hospital admission
capacity; and k3 is a measure of the ability of medical treatment .

Fig. 2. Epidemic features by simulation in the natural propagation state. a, Total number of infections. When the infection rate is greater than 0.3, almost all infections
eventually occur in the natural state. When the infection rate is less than 0.3, greater removal rate corresponds to a smaller total number of infections. There is a steep climb
from a small number of infections at the bottom to almost all infections, with a narrow parameter transition zone. b, Peak number of infected people. The higher the infection
rate, the lower the removal rate and the larger the peak number of infected people (up to 60% of the total number of infected people). c, Contour relationship between the
proportion of peak infections, infection rate (k), and removal rate (c). For the contour relationship between the proportion of peak infections, k and c, a proportion of peak
infections of less than 10% occurs only in a very small parameter distribution. d, Peak time. For the peak time, when the number of infected people is high or low, the peak
time is short. In areas where the number of confirmed cases was steep, the later the peak occurred and the longer the outbreak lasted, even more than 365 days.
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of the epidemic. First, physical isolationmeasure (k1) can be reduced
to reduce the daily natural infection rate (k). Second, the removal
rate can be improved by increasing the availability of medical treat-
ment.However, the increase in the removal rate andnot the increase
of the cure rate will accelerate the elimination of the epidemic,
whichwill not help improve the survival rate of the population. Con-
sequently, medical treatment is divided into two parameters, k2
(hospital admission capacity) and k3 (the ability of medical treat-
ment), which is highly valuable in the application.
3.2. K-SEIR-Sim software

As the current models are based on mathematical programming
languages, they are only suitable for professionals. Therefore, uni-
versal public welfare software (K-SEIR-Sim V2.53) was established
to simulate the development of infectious diseases based on our
improved K-SEIR model (Fig. 3).
1969
Researchers can manually set the parameter combinations on
the software interface to obtain the results of simulation or predic-
tion. They can also arbitrarily adjust the parameters during the
running process, without the need for programming skills. More-
over, the software has an automatic parameter-scanning function
so that after the actual epidemic data are imported (e.g., confirmed
cases, cured cases, and deaths), the parameter-scanning function
can be used to obtain the current optimal parameter combination,
which makes later prediction. Thus, based on the users’ demands,
the software can function in two ways: model-driven and data-
driven. It can also perform real-time, forward-looking, and
backward-looking analysis addressing practical needs.
3.3. User’s guide of K-SEIR-Sim software

K-SEIR-Sim software works in either data-driven or model-
driven way. Both of them are composed of five operation steps
(Fig. 4). The data-driven operation consists of the following five



Fig. 3. Schematic of the user interface on software startup. The user interface includes three core function modules, namely, parameter settings, simulation of epidemic
situations, and parameter scanning. The software can work in three ways: model-driven, data-driven, or mix-driven, based on users’ demands.

Fig. 4. User’s guide of K-SEIR-Sim software. The data-driven and model-driven operation both consist of five step operations, but some operations are different.
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steps: create epidemic data TXT file, import the TXT file, perform
parameter fitting analysis, carry out the simulation, show the simu-
lation results. The five-step operation of the model-driven way is:
set the initial parameters, set the transmission parameters, set the
human intervention parameters, carry out the simulation, show
the simulation results. TXT file based on epidemic data for data-
driven way covers susceptible population, latent infections, con-
firmed cases, deaths and starting date. For the model-driven way,
the initial parameters are involved in total population, susceptible
population, latent infections, confirmed cases, deaths and starting
date; the transmission parameters based on epidemiological survey
1970
data include infection rate, incidence, and removal rate; and the
parameters of human intervention contain isolation intensity, hos-
pital capacity, and healing benefits. The simulation results for both
working modes show cumulative number and daily increase num-
berof eachpopulation, peakdate, remissiondate, enddate andsoon.

When the software is run for the first time by an inexperienced
person, and when the detailed information is unavailable at the
initial stage of an epidemic, how to use this software to simulate
the spread? There are a few caveats he/she should pay attention
to, please see the Supplementary data S2. For common use, see
the examples below.
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3.4. Practical applications of software K-SEIR-Sim for fighting against
COVID-19

3.4.1. Data-driven analysis of the outbreak of COVID-19 in the United
States

We performed a fitting analysis to confirm the reliability of the
proposed software. During fitting analysis, we must first evaluate
whether the simulated and actual data match (Fig. 5). We take
the data from France as an example to perform the fitting analysis,
and the results show that the software runs well and the simula-
tion results are reliable (see the Supplementary data S3). Further,
we collected data from the official epidemic statistical data in the
United States from March 1 to April 30, 2020 to conduct the fitting
analysis. From the result of this fitting analysis, we obtained the
optimal parameters of natural transmission in each stage and the
corresponding parameters of human intervention. Based on these
parameters, we conducted the comparison between the deduction
results and the official data by running the software. The compar-
ison showed that the deduction data agree well with the official
data for confirmed cases (I), cured cases (H), and deaths (D).

In the next step, we must examine the errors of the fitting anal-
ysis (Fig. 6). From March 1 to March 22, 2020, there were 12 days
(accounting for about half of the days) in which the infection and
death errors were within 10%, while a recovery error within 10%
occurred only within 3 days. From March 23 to April 30 (when
the government implemented the quarantine measures), 15 days
(37.5%) reflected with an infection error within 4%, more than
40% with a recovery error within 4%, and 25 days (more than
50%) reflected a death error within 4% (Fig. 6). Overall, the accuracy
of fitting was higher than 96%. The percentage of days with errors
ranging from 4% to 10% were as follows: 50% (infection error), 30%
(recovery error), and 37.5% (death error). In conclusion, when the
model proposed in this paper is used to fit the existing data, the fit-
ting accuracy can be retained at greater than 90%.

We must also generalize the parameters of the fitting analysis.
We first obtain the parameters by running the software (Fig. 7).
Fig. 6 shows the optimal transmission dynamics parameters of the
outbreak in the United States at different periods starting from
Fig. 5. Comparison between deduction results and the official data by simulation analysi
because the corresponding lines are basically overlapped. The abscissa shows time, and th
the figure represents the deduction data, while the following three lines shows the offic
cured cases (deduction); and D, number of the dead (deduction). I., the number of con
number of the dead (official).

1971
March 1 to April 30, 2020. The parameter of the infection rate is
decreasing, indicating that the home quarantine measures adopted
by the government are effective and that people’s awareness of pre-
ventionand control is gradually improving. Because the government
implemented prevention and control measures on March 23, the
rate of k1 increased from 0 to 1 and reached 0.948 on April 30 (ac-
cording to Eq1). This implies that the average person restricts 95%
of their social intensity, showing that the home isolation measures
adopted by the government and the public have reached a maxi-
mum state and the possibility of a further increase in k1 is insignifi-
cant. If the government resumedwork andproduction, thepeakmay
increase. Another parameter of the removal rate is negligible and
relatively stable. Thus, the number of people removed from the con-
firmed number is very small, indicating that a large number of
infected patients are still in the state of diagnosis. The effect of the
parameter of medical treatment (k2) is not obvious (the actual
removal rate = the initial removal rate� k2 (Eq. 2); the removal rate
is nearly the same; hence, k2 is nearly the same, because once hospi-
tal admission capacity reaches saturation, it can’t take anymore.
However, the mortality rate is not high. The third parameter of the
cure rate is increasing. As the actual cure rate is the initial cure
rate � k3 (Eq. 3), the initial cure rate is approximately 0.33 based
on early data analysis. It can be inferred that as of April 30, the
increase in the cure rate, k3, is 2.23, indicating that the level of med-
ical treatment and the success rate of cure have improved.

The reliability of the parameters must be verified by running
the software (Table 2). Based on the evidence of the optimal
parameters obtained by fitting historical data, a 10-day (May 1–
10, 2020) prediction deduction analysis was conducted. By com-
paring the results of this analysis with the published data and from
the corresponding error calculation, we can see that the results
predicted by the model agree well with the published data and
the corresponding error is mostly within 10%.

3.4.2. Model-driven analysis for the outbreak of COVID-19 in Wuhan,
China

The model-driven analysis for infectious diseases is another
crucial application of the proposed software. After entering the
s. The comparison showed that the deduction data agreed well with the official data,
e ordinate is population. The above three lines in the icon of the upper left corner of
ial data. I, the number of confirmed cases (deduction); H, healer, i.e., the number of
firmed cases (official); H., healer, i.e., the number of cured cases (official); and D.,



Fig. 6. Error variations of matching between the fitting and official data from the United States from March 1 to April 30. From March 1 to March 22, the infection and death
errors were within 10% for 12 days, whereas the recovery error was within 10% for only 3 days. From March 23 to April 30, the infection error was within 4% for 15 days,
whereas the recovery and death errors were within 4% for 25 days. All of these fitting accuracies can be maintained at greater than 90%. Negative error indicates that the
fitting value is less than the official data.

Fig. 7. Optimal propagation dynamic parameters in different periods. The infection rate is decreasing. On March 23, the rate of k1 increased from 0 to 1 and reached 0.948 on
April 30. The removal rate is very low and relatively stable. The medical treatment (k2) effect is not obvious, and the mortality rate is not high. The cure rate increased from
0.33 on March 1 to 0.74 on April 30. The abscissa represents the days, counting from March 1.
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calculated parameters into the software using the open data, we
run the software and obtain the results. We take the data from Dia-
mond Princess as an example to perform model-driven analysis,
and the results show that the software runs well and the simula-
tion results are reliable (see the Supplementary data S4). Further,
1972
The parameters calculated using the data from Wuhan, China, on
January 23, the day of the lockdown in Wuhan, are inputed to
the software to predict the situation after 60 days (Fig. 8). There
would be more than 5 million healers and more than 4 million
deaths in the case of free transmission. However, the lockdown



Table 2
Comparison of prediction results in 10 days (infectious/healer/death).

5/1 5/2 5/3 5/4

Published data (I/H/D) https://doi.org//1099275/156089/63972 1134059/164015/65886 1162383/175382/67505 1191854/180152/68702
Simulation data (I/H/D) 1160147/153332/63502 1187453/158894/65487 1214492/164572/67513 1241397/170364/69580
Error (I/H/D) 5.54%/�1.77%/�0.73% 4.71%/�3.12%/�0.61% 4.48%/�6.16%/0.01% 4.16%/�5.43%/1.28%

5/5 5/6 5/7 5/8
Published data (I/H/D) 1214023/188069/69974 1239848/201152/72381 1263705/213109/74817 1293907/217251/76998
Simulation data (I/H/D) 1268276/176269/71687 1295216/182285/73834 1322288/188411/76020 1349548/194648/78246
Error (I/H/D) 4.47%/�6.27%/2.45% 4.47%/�9.38%/2.01% 4.64%/�11.59%/1.61% 4.30%/�10.40%/1.62%

5/9 5/10
Published data (I/H/D) 1324352/223930/78701 1349605/238081/80101
Simulation data (I/H/D) 1377043/200996/80511 1404811/207456/82816
Error (I/H/D) 3.98%/�10.24%/2.30% 4.09%/�12.86%/3.39%

Fig. 8. Model-driven analysis for COVID-19 in Wuhan, China. The model-driven
analysis for COVID-19 is performed by entering the calculated parameters into the
software using the open-access data fromWuhan, China of January 23. The software
inferred the situation after 60 days. In the case of free transmission, there would be
more than 5 million healers and more than 4 million deaths, whereas the lockdown
resulted in 3961.8 deaths and 46,312.1 healers. The abscissa shows time (days), and
the ordinate is population.
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only caused 3961.8 deaths and 46,312.1 healers, which is close to
the corresponding numbers of 3814 and 43,214. These results fully
demonstrate the effective precautions of isolation and control
measures.
4. Discussion

To overcome the health and social crisis caused by infectious
diseases such as COVID-19, many decision-support tools have been
1973
proposed that are commonly underpinned by clinical mathemati-
cal models [9]. These models are classified into diagnostic and
prognostic models [22]. Unfortunately, a recent review demon-
strated the poor quality of these models, and none of them can
be recommended for clinical use [9]. Methodological shortcomings
and the unknown characteristics of new diseases in the urgent sit-
uations may be the root cause for this. Developing a clinical anal-
ysis model should be a science and an art [22]. To improve the
quality of a prediction model, many scientists have introduced
the factors of artificial intelligence technology [10,23], R packages
[24], intervention measures [25], hospitalization, and demand of
intensive care unit [26]. Applications have also been established
to assist in this area, including an open electronic health record
template to improve interoperability in China [27], a smartphone
app for peer-to-peer contact tracing in the United States [28],
and an interactive web-based app for complex reporting in the
Czech Republic [29]. Herein, we developed generalized and easily
operable software, which is important for advancing clinical appli-
cations. Notedly, when we revised our manuscript, we found a
online software named Epidemic Calculator (http://gabgoh.
github.io/COVID/index.html), which is also developed based on
SEIR model. It is very smooth in terms of parameter adjustment
and result presentation. It is important to point out that the soft-
ware we developed is different from the website software in three
main aspects. First, our software adds three control parameters, k1,
k2 and k3, it can reflect the real situation more. Second, our soft-
ware can conduct data-driven analysis. After importing existing
actual data, we can get transmission parameters, which is more
conducive to the analysis of the subsequent development of the
epidemic. Third, our software can be downloaded for local use,
not affected by network restrictions. Therefore, we think our soft-
ware is very valuable for epidemiological analysis.

To more closely align with the actual needs, we added artificial
parameters and some features to the software. When only natural
transmission is simulated, artificial parameters need not be
selected. When the transmission under human intervention is sim-
ulated, the artificial parameters can be adjusted according to the
actual requirements. Moreover, all parameters can be adjusted at
any time during the simulation operation process, which can sim-
ulate the previous situation and predict the future trend of the dis-
ease. The software can also perform real-time analysis and is
suitable for COVID-19 and other infectious diseases. Therefore, this
software can perform real-time, forward-looking, and backward-
looking analysis for infectious diseases. It can work in two ways:
data-driven and model-driven. The model-driven method refers
to running the software to analyze the development of the disease
by entering the values of the parameters, whereas data-driven
method indicates running the software to obtain the parameters
by entering the open data. We can select a method based on our
needs, which complements the special practical value of the
application.

http://gabgoh.github.io/COVID/index.html
http://gabgoh.github.io/COVID/index.html
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In the data-driven method, the actual epidemic data over a cer-
tain time period were considered as inputs for the software to per-
form the fitting analysis with the aim of obtaining running
parameters R0, infection rate, removal rate, mortality rate, artificial
parameters, and so on. The software can evaluate the effectiveness
of human control and the situation of the epidemic. Although there
may be some statistical-analysis related problems in the authentic-
ity of actual short-term data, the law of epidemic spread can be
obtained using comparatively long-term data. For example, in
terms of the recovery error, when we performed error analysis
based on the example of the data of the United States, we found
that there was a 3-day margin of error of 10% from March 1 to
March 22, 2020 (Fig. 6). The value of the recovery error was rela-
tively large for remaining days, with some exceeding 40%. A review
of official data showed that there were significant data gaps on
these days, which were inconsistent with the actual spread of
the virus. Considering the recovery number as an example, the
healer number per day was 7 from March 2 to March 4, 9 from
March 5 to March 8, and 12 from March 9 to March 16. Moreover,
official data had not been updated for several days, which is the
main reason for the large recovery error. However, infection and
death errors remained within a relatively stable range. Further,
the recovery errors on March 12 and March 18 increased abnor-
mally because the number of recovery patients released was not
updated from March 2 to March 4 and from March 17 to March
18; hence, the distortion of data resulted in the fluctuation of the
error. From March 30, the data of the cure error stabilized within
a reasonable range. Therefore, in the United States, data-driven
analysis of the proposed model has a certain reference value for
the simulation and prediction of the epidemic situation. It can also
be used in other countries or areas.

The data-driven analysis refers to an attempt to match the
actual data. However, the actual data are affected by many statis-
tical aspects; for some days, no data are available. Thus, we also
developed the function of model-driven analysis. The model-
driven analysis is very simple to use and requires only entering
the parameters into the software. Notably, when we simulated
the situation 60 days after the lockdown of Wuhan, the number
of healers was close to the actual reported number but the number
of infections was approximately 3 times higher than the actual
reported number (Fig. 8). This is because asymptomatic infections
were not counted at that time. According to a large number of lit-
erature analyses, asymptomatic infections occupied approximately
10%–60% of the total infections. Thus, the number of our simulated
infections is also relatively accurate. Additionally, despite the num-
ber of deaths was 2524 as per the official data on February 23, the
government added 1290 to the number of deaths when the pan-
demic ended in Wuhan. Thus, the number of deaths was close to
the actual reported number. Of course, when assuming that there
is absolutely free transmission and absolutely nothing we can do
to combat this disease, the numbers of infections and deaths are
staggering. However, that possibility does not exist in current soci-
ety. Despite this, our simulation analysis showed the usefulness of
the lockdown in Wuhan and implemented control measures.

The aim is for this software to be widely used. Using our soft-
ware, we conducted analysis of a single outbreak wave, simulating
the development of the epidemic in different regions of different
sizes, ranging from a country (330 million people in the US, Figs. 5–
7), a city (10 million people in Wuhan of China, Fig. 8), to a small
enclosed space (3711 people on Diamond Princess, see Supplemen-
tal data S4). We have obtained the simulation results which are in
good agreement with the actual situations. In addition to the sim-
ulation of a single epidemic wave the above mentioned, we also
used this software to simulate the development of multiple epi-
demic waves caused by lockdown and lifting of lockdown in France
(76.07 million people in France, see Supplemental data S3). This
1974
software simulates by default using day as a unit. France’s applica-
tion shows that it can simulate using week as a unit under the long
duration of the epidemic. All we need to do is to change the orig-
inal parameter values calculated by day to the parameter values
calculated by week (equal to the parameter values calculated by
day multiplied by 7) and carry out the same simulation operation.
We hope it is a useful tool for being widely used.

Theoretically, this software can simulate other epidemics
besides COVID-19. For an epidemic that does not require human
intervention, we just don’t set any K parameters. For epidemics
without incubation period, setting incidence rate r to 0 is suffi-
cient. For epidemics that patients can produce antibodies but anti-
bodies will eventually fail, we only need to set the antibody failure
rate m which is obtained by statistics. In a word, our software is of
great practical value.

It’s also noteworthy that the SEIR model, in fact any model, has
an assumption of homogeneity, that is, that people are equally
likely to contract the disease and that people follow a homoge-
neous contact pattern. If homogeneity is not good in a region, it
can affect the natural propagation parameters. In different homo-
geneous environments, the parameters should be different. It
should be noted that, no matter how small the region is, the ideal
homogenization does not exist, and heterogeneity exists objec-
tively. But, no matter how heterogeneous it is, it will eventually
result in statistically homogenized model parameters within a cer-
tain region. For example, the epidemiological spread happened in
the USA in very heterogeneous geographic and time scale patterns.
Although the regions of USA are very different, they are no more
different than China and USA, so we can still think of USA as a sys-
tem. Although the actual situation of USA is not homogeneous, but
after a lot of statistical data, it is considered to be homogeneous.
Importantly, the simulation results are close to the real situation,
so we think that the software is still of practical value. Even so,
we cannot ignore it in the interpretation and analysis of simulation
results, avoiding being too idealistic.
5. Conclusion

There is still no end in sight to combat the COVID-19 crisis.
Although many statistical models have been established to analyze
the epidemic situation and containment measures, these models
are technical and cannot be easily understood and used by man-
agement agencies and public. Herein, we developed a simple, cus-
tomized software based on our improved SEIR model that can be
used by both professional scientists and individuals, institutions
and social organizations interested in epidemic analysis. This soft-
ware can deduce both the result of natural propagation and con-
tainment effects. It can perform real-time, forward-looking, and
backward-looking analysis, and it works in two ways: model-
driven and data-driven, which have special practical applications.
We demonstrated the applicability of this software using official
data from the United States, Wuhan in China, Diamond Princess
and France, which also proves the practical value of the software.
Conclusively, we developed the first simple and customized oper-
ating software K-SEIR-Sim in python language, which can play an
important role in the global fight against COVID-19 and other
infectious diseases.
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reporting of the COVID-19 epidemic in the Czech Republic: use of an
interactive web-based app in practice. J Med Internet Res 2020;22(5):e19367.

https://doi.org/10.1016/j.csbj.2021.04.004
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0005
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0005
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0005
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0010
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0010
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0015
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0015
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0015
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0020
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0020
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0020
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0025
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0025
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0025
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0025
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0025
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0030
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0030
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0035
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0035
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0035
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0040
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0040
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0040
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0045
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0045
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0045
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0050
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0050
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0055
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0055
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0055
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0060
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0060
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0065
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0065
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0070
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0070
https://doi.org/10.1016/j.cmi.2021.02.010
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0080
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0080
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0080
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0080
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0085
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0085
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0085
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0090
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0090
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0090
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0095
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0095
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0095
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0100
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0100
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0100
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0105
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0105
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0105
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0110
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0110
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0115
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0115
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0115
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0120
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0120
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0125
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0125
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0125
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0125
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0130
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0130
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0130
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0130
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0135
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0135
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0135
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0140
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0140
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0140
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0145
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0145
http://refhub.elsevier.com/S2001-0370(21)00112-4/h0145

	K-SEIR-Sim: A simple customized software for simulating the spread of infectious diseases
	1 Introduction
	2 Methods
	2.1 Developing the K-SEIR model
	2.2 Developing the software K-SEIR-Sim
	2.3 Practical applications of software K-SEIR-Sim for fighting against COVID-19
	2.3.1 Data-driven analysis for the outbreak of COVID-19 in the United States
	2.3.2 Model-driven analysis for the outbreak of COVID-19 in Wuhan, China


	3 Results
	3.1 K-SEIR model
	3.2 K-SEIR-Sim software
	3.3 User’s guide of K-SEIR-Sim software
	3.4 Practical applications of software K-SEIR-Sim for fighting against COVID-19
	3.4.1 Data-driven analysis of the outbreak of COVID-19 in the United States
	3.4.2 Model-driven analysis for the outbreak of COVID-19 in Wuhan, China


	4 Discussion
	5 Conclusion
	ack18
	Acknowledgments
	Declaration of Competing Interest
	Author contributions
	Appendix A Supplementary data
	References


