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Abstract

Background: NADPH-cytochrome P450 reductase (CPR) plays a central role in cytochrome P450 action. The genes coding
for P450s are not yet fully identified in the bed bug, Cimex lectularius. Hence, we decided to clone cDNA and knockdown the
expression of the gene coding for CPR which is suggested to be required for the function of all P450s to determine whether
or not P450s are involved in resistance of bed bugs to insecticides.

Methodology/Principal Findings: The full length Cimex lectularius CPR (ClCPR) cDNA was isolated from a deltamethrin
resistant bed bug population (CIN-1) using a combined PCR strategy. Bioinformatics and in silico modeling were employed
to identify three conserved binding domains (FMN, FAD, NADP), a FAD binding motif, and the catalytic residues. The critical
amino acids involved in FMN, FAD, NADP binding and their putative functions were also analyzed. No signal peptide but a
membrane anchor domain with 21 amino acids which facilitates the localization of ClCPR on the endoplasmic reticulum was
identified in ClCPR protein. Phylogenetic analysis showed that ClCPR is closer to the CPR from the body louse, Pediculus
humanus corporis than to the CPRs from the other insect species studied. The ClCPR gene was ubiquitously expressed in all
tissues tested but showed an increase in expression as immature stages develop into adults. We exploited the traumatic
insemination mechanism of bed bugs to inject dsRNA and successfully knockdown the expression of the gene coding for
ClCPR. Suppression of the ClCPR expression increased susceptibility to deltamethrin in resistant populations but not in the
susceptible population of bed bugs.

Conclusions/Significance: These data suggest that P450-mediated metabolic detoxification may serve as one of the
resistance mechanisms in bed bugs.
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Introduction

During the past ten years, the bed bug has rapidly resurfaced

throughout the world [1–3]. In an industry-wide survey of pest

management firms in the United States, 76% considered bed bugs

to be the most difficult pest to control [4]. It has been proposed

that the global bed bug resurgence is partly due to the ubiquitous

development of pyrethroid resistance [5–7]. Our previous studies

determined a causal link between two identified knockdown

resistance (kdr) mutations and deltamethrin resistance in bed bug

populations, indicating decreased target-site sensitivity of voltage-

gated sodium channels as one of the mechanisms of pyrethroid

resistance. Interestingly, one population of bed bugs collected from

Cincinnati (CIN-1) showed more than 12,765-fold deltamethrin

resistance but no mutations were detected in the voltage-gated

sodium channel gene [7]. Moreover, PBO, a P450 inhibitor,

suppressed deltamethrin resistance in CIN-1 population [8]. These

data suggest that cytochrome P450-mediated metabolic detoxifi-

cation might be a principal mechanism responsible for deltame-

thrin resistance in some bed bug populations. However, the

identity of P450s involved in detoxification of pyrethroids in bed

bugs remains unknown.

Cytochrome P450s constitute one of the largest superfamilies of

enzymes that play important roles in detoxification of xenobiotics

[9,10] as well as in biosynthesis and metabolism of endogenous

compounds [11,12]. The reaction of the P450 system requires

electrons transferred from Nicotinamide Adenine Dinucleotide

Phosphate (NADPH) to the P450 heme center by a Cytochrome

P450 partner enzyme, NADPH-Cytochrome P450 Reductase

(CPR) [13]. Although, multiple P450 genes have been found in the

genomes of insects (http://drnelson.uthsc.edu/cytochromeP450.

html), typically only one CPR gene exists in each insect genome.

CPR is a multidomain protein which belongs to the electron

transfer flavoproteins family [14] containing both Flavin Adenine
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Dinucleotide (FAD) and Flavin Mononucleotide (FMN) domains

[15]. In addition to cytochrome P450s, CPR also serves as the

electron donor protein for several oxygenase enzymes found in the

endoplasmic reticulum of most eukaryotic cells [16–19]. Genes

coding for CPRs have been identified and characterized from a few

species of insects, such as house fly, Musca domestica L. [20–22],

fruit fly, Drosophila melanogaster (Meigen) [23], silkworm, Bombyx mori

L. [24], cabbage armyworm, Mamestra brassicae (L.) [25],

mosquitoes, Anopheles gambiae Giles [26] and Anopheles minimus

Theobald [27]. Sequences of CPR cDNAs are also available for

many other insect species (Table S1).

With critical biological function associated with cytochrome

P450s, insect CPRs have been placed in a vital path in

metabolism-based insecticide resistance and were considered as

the novel target for the development of synergists [26,28]. In the

current study, the Cimex lectularius CPR (ClCPR) cDNA was cloned

and the gene coding for CPR was silenced in both deltamethrin

resistant and susceptible populations of bed bugs. The data

collected helped to reveal the role of P450-mediated metabolic

detoxification in the deltamethrin resistance of bed bugs.

Materials and Methods

The bed bugs
Three bed bug colonies were used in this study. One insecticide-

susceptible colony, LA-1, collected in 2006 in Los Angeles, CA

[29] was maintained in the laboratory without any insecticide

exposure. Two deltamethrin resistant populations of bed bugs,

CIN-1 (Cincinnati, OH, contains no kdr mutations) and NY-1

(Plainview, NY, contains two kdr mutations) were collected from

human dwellings in the United States during 2006–2008 [9] and

maintained in the laboratory by using a parafilm-membrane

feeder. Bed bugs were kept in screened containers and fed with

37uC heparinized chicken blood or rabbit blood with sodium

citrate through a thinly stretched parafilm membrane [30]. Blood

was purchased from Hema Resource and Supply Company

(Aurora, OR). Bed bugs were reared at 27uC, 6565% RH, and a

photoperiod of 14:10 (L:D) h.

RNA extraction, cDNA preparation and Cloning
Total RNA was isolated from 3 CIN-1 adults using the TRI

reagent (Molecular Research Center Inc., Cincinnati, OH) and

the RNA was treated with DNase I (Ambion Inc., Austin, TX).

cDNA was synthesized using iScript cDNA synthesis kit (Bio-Rad

Laboratories, Hercules, CA) with DNase I treated total RNA as a

template. The PCR products were amplified using primer pair

NADPHF/NADPHR (Table S2) that was designed based on a

conserved amino acid region found in 10 insect CPR sequences.

The PCR products were cloned into pGEMH-T Easy Vector

Systems (Promega) and sequenced. Cloning and sequence analyses

of P450 gene fragments were repeated at least three times with

different preparations of RNAs. Three clones from each

replication were sequenced.

Rapid amplification of cDNA ends (RACE) of the putative
ClCPR gene fragment

RACE was carried out using the SMARTerTm RACE cDNA

Amplification Kit (Clontech) as described in the manufacturer’s

manual. The first strand cDNAs were synthesized with SMART-

ScribeTM Reverse Transcriptase using CIN-1 RNA as a template.

The double-stranded cDNA was synthesized following the

protocol described in the manufacturer’s manual (Clontech).

The 59 and/or 39 ends of the P450 cDNA fragments were

amplified by PCR using adapter primers UPM and NUP and gene

specific primers generated based on the 59 and/or 39 end

sequences of the putative ClCPR transcript (Table S2). The full

length of putative ClCPR cDNA was subsequently generated by

RT-PCR using specific primer pair of ClCPRF/ClCPRR (Table

S2) synthesized based on the 59and 39end sequences of the putative

ClCPR mRNA. Cloning and sequence analyses of the ClCPR

transcript were repeated at least three times, and three clones from

each replicate were verified by sequencing.

In silico structural analysis
The Isoelectric point (pI) and Molecular Weight (MW) of ClCPR

were calculated by an ExPASy proteomics tool, Compute pI/Mw

(http://web.expasy.org/compute_pi) from the Swiss Institute of

Bioinformatics. The signal peptide and protein subcellular locali-

zation of ClCPR were analyzed at the SignalP 3.0 server (http:www.

cbs.dtu.dk/services/SignalP/) and WoLF PSORT (http://wolfpsort.

org/). The secondary structure, binding domains, and catalytic

residues were predicted by PHYRE2 Protein Fold Recognition

Server (http://www.sbg.bio.ic.ac.uk/phyre2/html/), Pfam 25.0

(2011, http://pfam.sanger.ac.uk/), and a conserved domain search

on the NCBI website (http://www.ncbi.nlm.nih.gov/Structure/cdd/

cdd.shtml) [31]. The protein tertiary structure of ClCPR was

predicted by using the I-TASSER server (http://zhanglab.ccmb.

med.umich.edu/I-TASSER/) [32] and then the PDB coordinate file

of the highest ranking model was loaded into Chimera (http://plato.

cgl.ucsf.edu/chimera/docs/credits.html) for molecular visualization

and modification. The transmembrane helices of ClCPR were

analyzed by TMHMM Server 2.0 (htt://www.cbs.dtu.dk/services/

TMHMM-2.0/). The hydrophobicity of ClCPR was predicted by an

on line molecular tool, Protein Hydrophobicity Plots (http://www.

vivo.colostate.edu/molkit/hydropathy/).

Phylogenetic tree construction
All CPR sequences in insects which have the complete open

reading frames (ORFs) were extracted from the National Center

for Biotechnology Information (NCBI) (Bethesda, MD) (http://

www.ncbi.nlm.nih.gov/). The insect CPR amino acid sequences

were analyzed using ClustalW alignment through Molecular

Evolutionary Genetic Analysis software version 5 (MEGA 5)

(http://www.megasoftware.net/) [33]. To improve the align-

ments, the pair wise alignment was performed with the gap

opening penalty at 10, and the gap extension penalty left at default

0.1. The multiple alignments were conducted with the gap

opening penalty at 3 and the gap extension penalty at 1.8 [34].

The sites containing missing data or alignment gaps were

eliminated in a pair-wise manner. A p-distance,0.8 when

carrying out the compute overall mean distance suggested the

alignment was acceptable [34]. Subsequently, the alignment result

was converted to a MEGA file (.meg) and submitted to construct

the phylogenetic tree with neighbor-joining algorithm. A total of

2,000 bootstrap replications were used to test of phylogeny.

Ultimately, the selected tree was created with cut-off value of 50%.

Quantitative real time PCR (qRT-PCR) and reference gene
selection

qRT-PCR was performed in MyiQ single color real-time PCR

detection system (Bio-Rad Laboratories, Hercules, CA). Total

RNA was isolated from 3 female bed bugs at 5 days after RNAi

treatment using the TRI reagent (Molecular Research Center Inc.,

Cincinnati, OH). The RNA was treated with DNase I (Ambion

Inc., Austin, TX). cDNA was synthesized using iScript cDNA

synthesis kit (Bio-Rad Laboratories, Hercules, CA). DNase I

treated total RNA was used as a template. Each qRT-PCR

RNAi in Bed Bugs
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reaction (10 ml final volume) contained 5 ml FastStart SYBR

Green Master (Roche Diagnostics, Indianapolis, IN), 1.2 ml of

cDNA, and 0.6 ml each of forward and reverse gene specific

primers (Table S2, stock 10 mM). An initial incubation of 95uC for

3 min, followed by 40 cycles of 95uC for 10 s, 55uC for 20 s, and

72uC for 30 s settings were used. A fluorescence reading

determined the extension of amplification at the end of each

cycle. Each experiment was repeated at least three times using

independent biological samples.

The suitability of four reference/control genes, rpl11, rpl8, rps16

and hsp70 was evaluated with the Bestkeeper software package

[35,36]. This program was used not only to calculate potential

reference genes, but also to assess the effects of RNAi on target

genes. We designed primers for reference genes based on the EST

sequences in the GenBank database (GenBank Accession Nos.:

rpl11, EZ419774; rpl8, EZ419796; rps16, EZ419784; hsp70,

EZ419756). Primers used for amplification reference genes are

shown in Table S2. Relative expression levels for specific genes, in

relation to the most reliable reference gene, were calculated by the

22DDCT method [37].

dsRNA injection by traumatic insemination mimicking
The dsRNA was synthesized using the MEGscript RNAi Kit

(Ambion Inc., Austin, TX). Genomic DNA was isolated from CIN-

1 adults using DNeasy Tissue Kit (QIAGEN). Genomic DNA and

T7 promoter-containing PCR primers (Table S2, with T7 RNA

promoter sequence (TAATACGACTCACTATAGGG) appended

at the 59 ends of both sense and antisense specific primers) were used

in a PCR reaction to obtain gene specific fragments containing T7

promoter sequence on both ends. PCR product (200–400 bp) was

used as a template to synthesize dsRNA. The same length PCR

fragments were obtained using either genomic DNA or cDNA as a

template suggesting that there is no intron in the region of this gene

used for dsRNA preparation. For the dsRNA purification, phenol/

chloroform extraction followed by ethanol precipitation method

was applied. dsRNA was diluted in nuclease-free water to 4–5 mg/ml

for injection into bed bug adults. The one week old female adults

were anaesthetized with ether vapor for 10 min and placed on a

glass slide covered with double-sided tape. The dsRNA (,1.25 mg)

was injected into the spermalege of the abdomen with an injection

needle pulled out from a glass capillary tube using a needle puller

(Idaho Technology, Salt Lake City, Utah). The spermalege is where

the cuticle of the female is punctured during traumatic insemina-

tion.. Prior to injection, the glass needles were sterilizeed by soaking

in 100% ethanol for 12 h. Controls were injected with the dsRNA

using bacterial malE gene as a template. After injection, insects were

removed from the glass slide, allowed to recover for 3 h at room

temperature, then returned to normal rearing conditions.

Bioassays with deltamethrin after dsRNA injection
In the preliminary studies, bed bug adults were treated with

serial dilutions of technical grade deltamethrin (99% active

ingredient, Bayer Environmental Science, St. Louis, MO)

prepared in acetone. A discriminating dose (causing approximately

50% of mortality) of deltamethrin was applied for the bioassays.

Acetone was used as a control. The solution was dropped on the

thorax of the bugs (1 ml/drop) using a PB-600 repeating dispenser

(Hamilton Co., Reno). The mortality was determined at 24 h after

treatment. Mean and standard errors for each time point were

obtained from at least three independent bioassays.

Statistical analysis
Statistical analyses were carried out using SAS software (v9.1, SAS

Institute Inc., Cary, NC). Student’s t-test (two-tailed paired t-test) was

used to compare the gene expression and mortality difference

between two samples. The differences among samples were analyzed

by One-way ANOVA, followed by Duncan multiple mean

separation techniques. The level of significance was set at P,0.05.

Results

Cloning, sequence analysis, and structural modeling of
ClCPR

The overall strategy of cloning the full length of ClCPR is shown

in Figure S1. Briefly, a partial putative ClCPR cDNA fragment was

amplified from deltamethrin resistant population, CIN-1, by

multiple PCR amplifications using degenerate primers, NADPHF

and NADPHR designed based on CPR sequences identified in

other insect species (Table S2). BLAST analysis of the amino acid

sequence predicted from the partial putative ClCPR cDNA sequence

showed that the sequence encoded ClCPR and shared 81% amino

acid similarity with the CPR sequence from the body louse, Pediculus

humanus corporis. To amplify the 59 and 39 ends of this gene, 59-

RACE and 39-RACE reactions were conducted using the adapter

primers and gene specific primers designed based on the 59 and 39

end sequence of the putative ClCPR cDNA fragment, respectively

(Table S2). The sequences of the 59-RACE and 39-RACE fragments

overlapped with the ClCPR cDNA fragment sequence, identifying

them as the 59 and 39 ends of the putative ClCPR gene.

Subsequently, the full length ClCPR cDNA was amplified from

CIN-1 bed bugs using PCR and the specific primers (ClCPRF and

ClCPRR) designed based on the 59 and 39 end sequences of the

putative ClCPR gene (Fig. S1, Table S2). The ClCPR amino acid

sequence was aligned with the amino acid sequences of other CPRs

from taxonomically diverse insect species. The sequence of ClCPR

showed 65%, 68%, 66%, and 70% amino acid identity respectively

with the CPR sequences of An. gambiae, D. melanogaster, M. brassicae,

and M. domestica, (Table S1).

The ClCPR cDNA sequence contained an ORF of 2037

nucleotides encoding 679 amino acids. The pI and Mw were

predicted as 5.55 and 77.01 kilodaltons, respectively. No signal

peptide was found within ClCPR, but the membrane anchor which

facilitates the localization of ClCPR on the endoplasmic reticulum

was identified (Fig. 1A). All functional domains involved in the

binding of cofactors, FMN, FAD and NADPH were identified in

the predicted ClCPR protein primary and tertiary structures (Fig. 1).

Three amino acid residues including Arginine 457, Tyrosine 459,

and Serine 460 constitute a FAD binding motif which is similar to

the conserved FAD binding domain [38] (Fig. 1A). The ClCPR

catalytic residues (active site) comprise Serine 460, Cysteine 631,

Aspartic 676, and Tryptophan 678 (Fig. 1A). These residues have

been shown to be critical in the hydride transfer reaction catalyzed

by rat CYP Oxidoreductase [39,40].

To understand the structure which may direct function, the

three-dimensional model of ClCPR was predicted. As shown in

Fig. 1B, ClCPR consists of three distinct protein binding domains,

FMN binding domain, FAD binding domain, and NADP binding

domain. The FAD and NADP binding domains present at the C

terminus are similar to the FAD/NADP domain reported in

human CPR [41]. The FAD binding pocket is composed of

thirteen amino acids, and the NADP binding pocket is composed

of fifteen amino acids (Fig. 1B). At the N terminus, the FMN

domain with two FMN binding sites is structurally similar to

flavodoxins and interacts with the redox-partner binding site of the

P450s [42] (Fig. 1C). During a catalytic cycle, ClCPR is predicted

to transfer a hydride ion derived from NADPH to FAD, and then

FAD transfers electrons to FMN, from where they are delivered to

acceptor proteins (such as P450s) [15,43].

RNAi in Bed Bugs
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Subcellular localization of ClCPR
No conserved signal peptide was identified at the N-terminal

end of ClCPR suggesting that ClCPR is retained in the cytoplasm.

The CPR is anchored on the membrane of endoplasmic reticulum

by an N-terminal hydrophobic segment [44]. A deduced

hydrophobic transmembrane region consisting of 21 amino acids

identified at the N-terminal end of ClCPR may be involved in the

membrane anchor function (Fig. S2).

Phylogenetic relationship of ClCPR with other insect
CPRs

Phylogenetic analysis was performed based on the amino acid

sequences of ClCPR and 17 other insect CPR proteins (Table S1).

The phylogenetic tree was generated by MEGA 5 with the

neighbor-joining algorithm. As expected, insect CPRs from the

same insect order were grouped together (Fig. 2). Among all the

sequences, ClCPR shared the highest sequence similarity (75%)

with the CPR of the body louse, Pediculus humanus corporis (Table

S1). It was consistent with the result of phylogenetic analysis, in

which ClCPR originated from a same evolutionary root with the

CPR in P. humanus corporis with the bootstrap value of 82 (Fig. 2)

even though they do not belong to the same taxonomic order.

Bed bug reference gene selection
Since very little information is available on gene expression in

the bed bug, we decided to identify a housekeeping gene for qRT-

PCR analysis. Results of reference gene examination RNA isolated

from whole body samples across different developmental stages

and populations are shown in Table S3 and Fig. S3. Based on the

two most important criteria for evaluating the stability of reference

genes by the BestKeeper program, the stability (SD value) and the

relation to the BestKeeper index (r and P-value), all four reference

Figure 1. Structure of ClCPR. (A) Schematic drawing of ClCPR with membrane anchor (orange bar), conserved binding domains (green bar-
Flavodoxin, blue bar-FAD binding, cyan bar-NADP binding), FAD binding motif (ArgxTyrSer), and catalytic residues (Ser-Cys-Asp-Trp). (B) Predicted
three-dimensional structure of ClCPR with emphasis on FAD and NADP binding pockets. Three binding domains are highlighted in different colors
(green-Falvodoxin, blue-FAD binding, and cyan-NADP binding) in the model. Fifteen amino acids composing the NADP binding pocket are
highlighted as red spheres. Thirteen amino acids which constitute the FAD binding pocket are highlighted as yellow spheres. N- and C- termini are
also labeled in the ClCPR tertiary structure. (C) Sequence alignment for FMN binding sites in insect CPRs. Residues constituting the FMN1-binding site
were labeled with red numbers, and the residues constituting the FMN2-binding site are labeled with blue numbers. The arrows show the direction
from the N terminus to the C terminus. All insect CPR amino acid sequences were extracted from NCBI (Bethesda, MD) (http://www.ncbi.nlm.nih.gov/).
The sequence alignment was performed using ClustalW through MEGA 5 [33]. The cDNA sequence of ClCPR has been deposited in the GenBank
database, accession number, JQ178363.
doi:10.1371/journal.pone.0031037.g001
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genes, rpl11, rpl8, rps16 and hsp70 tested are stable across

developmental stages and populations tested. The rpl8 was chosen

as the reference gene to calculate relative expression levels of

ClCPR because it showed the most stable expression among

samples tested. In subsequent studies, rpl8 expression was found to

be stable across different tissues as well as dsRNA injected and

control insects (data not shown). Therefore, rp18 was used as a

reference gene in all the experiments.

Developmental, sexual, and spatial expression patterns
of ClCPR

The developmental, sexual, and spatial expression of ClCPR

gene was investigated using qRT-PCR. The mRNA levels of

ClCPR in 1 to 5 day pooled eggs, small nymphs (1st to 3rd instar),

large nymphs (4th and 5th instar), and 1 week old female and male

adults in both resistant CIN-1 and susceptible LA-1 populations

were quantified. Low levels of ClCPR mRNA were detected in

eggs, small nymphs, and large nymphs in both CIN-1 and LA-1

populations (Figs. 3A and B). There were no significant differences

in the ClCPR mRNA levels among these samples. The mRNA

levels of ClCPR in female and male adults were significantly higher

than those in the early stages of both populations (Figs. 3A and B).

Moreover, the ClCPR mRNA was detected in the antennae, head,

thorax, and abdomen isolated from female CIN-1 adults (Fig. 3C).

Dose dependent and systemic ClCPR knockdown
The bed bugs are unusual in being a gonochorist taxon with

obligate traumatic insemination. During the process of copulation,

the male pierces the female’s abdominal wall and transfers sperm

into her haemocoel [2]. However, the female bed bugs evolved a

unique anatomical organ, the spermalege, into which the male

punctures the female with a needle-like paramere. Research

suggested that the evolution of spermalege resulted from selection

to defense against mating-associated pathogens [45]. Preliminary

studies showed that injection of dsRNA through spermalege

caused lower mortality compared to the injections at the other sites

in the abdomen. Therefore, the dsRNAs were routinely injected

through the spermalege into the body of female bed bugs (Fig. 4).

Bed bugs injected with malE or ClCPR dsRNA suffered similar rate

of mortality within 5 days after injection (most of them died in the

first one or two days) (Fig. S4). There was no other obvious

negative effects caused by injecting ClCPR dsRNA observed during

the 6-day experimental period (including 5 days after injection and

24 h for bioassay).

A preliminary study showed that 1.25 mg of ClCPR dsRNA was

sufficient to silence ClCPR gene in each individual bed bug. In

order to identify the most effective dose for silencing the ClCPR

gene, serial 10-fold dilutions of ClCPR dsRNA were injected and

the ClCPR mRNA levels were quantified using qRT-PCR and

total RNA isolated at 5 days after injection of dsRNA. As shown in

Figure 5A, 0.125 mg/individual of ClCPR dsRNA was the most

effective dose to suppress the expression of ClCPR gene in CIN-1

population. Subsequently, we detected ClCPR knockdown effi-

ciency in different body parts, including head, thorax, and

abdomen. RNAs extracted from these body parts of both control

(injected with dsRNA of malE, a bacterial gene) and ClCPR dsRNA

Figure 2. The neighbor-joining consensus tree illustrates the phylogenetic relationship of ClCPR with other insect CPRs. The
phylogenetic tree was generated by MEGA 5 according to the amino acid sequences. All nodes have significant bootstrap support based on 2,000
replicates. All insects CPRs were clustered into six groups which was six insect orders. The CPRs from bed bug (Cimex lectularius) and body louse
(Pediculus humanus corporis) which showed the closest evolutionary relationship with ClCPR were highlighted in black boxes.
doi:10.1371/journal.pone.0031037.g002
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treated bed bugs were subjected to qRT-PCR analysis. The ClCPR

gene was successfully suppressed in all body parts tested, indicating

that the RNAi effect in bed bugs is systemic (Fig. 5B).

ClCPR knockdown increases CIN-1 and NY-1 sensitivity to
deltamethrin

Five days after injection of dsRNA, the survived bed bugs were

exposed to deltamethrin through topical application. The percent

survival was recorded after 24 h exposure to deltamethrin. The

ClCPR knockdown in deltamethrin resistant populations CIN-1

(no kdr mutation) and NY-1 (two kdr mutations) bed bugs showed a

consistent increase in susceptibility to deltamethrin compared with

control bed bugs (Figs. 6A and 6B). In contrast, there was no

significant difference in the susceptibility to deltamethrin between

ClCPR knockdown and control in insecticide susceptible LA-1 bed

bugs (Fig. 6C).

Discussion

Overview
The main goal of this study is to characterize NADPH-

Cytochrome P450 reductase from the bed bug and investigate

whether the P450-mediated metabolic detoxification plays any

role in the deltamethrin resistance of bed bugs. To achieve the

goal, the ClCPR gene was isolated from a deltamethrin resistant

population (CIN-1) with a combined PCR strategy (Fig. S1). Three

conserved binding domains, a FAD binding motif, and the

catalytic residues as well as the critical residues involved in FMN,

FAD and NADP binding were identified (Fig. 1). The spatial

Figure 3. Spatial and temporal expression of ClCPR. Changes in mRNA levels of the ClCPR in CIN-1 (A) and LA-1 (B) populations. Egg; SN, small
nymph (1–3 instar); LN, large nymph (4–5 instar); female and male, 1 week old. The relative mRNA levels were shown as a ratio in comparison with the
levels of rpl8 mRNA. The data shown are mean+SEM (n = 3). (C) Relative mRNA levels of the ClCPR in the antennae, head, thorax, and abdomen of the
CIN-1. Tissues were dissected and total RNAs were isolated to quantify the ClCPR mRNA levels by qRT-PCR as described in Materials and Methods.
Relative mRNA levels were normalized using the expression of rpl8. The data shown are mean+SEM (n = 4). Statistical significance of the gene
expression among samples was calculated using one-way ANOVA followed by Duncan multiple mean separation techniques. There was no significant
difference among relative expression within samples with the same alphabetic letter (i.e. a, b and c).
doi:10.1371/journal.pone.0031037.g003

Figure 4. Bed bug dsRNA injection by mimicking traumatic
insemination. Female bed bug showing the site of dsRNA injection
via the spermalege using a sterilized glass needle.
doi:10.1371/journal.pone.0031037.g004
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configuration and the putative functions of these conserved

domains were analyzed by predicting a 3-D model of ClCPR

(Fig. 1B). The ClCPR was predicted anchoring on the membrane

of endoplasmic reticulum by a 21 amino acids transmembrane

region (Figs. 1A and S2). The phylogenetic analysis showed that

ClCPR had the shortest genetic distance to the CPR from body

louse (Fig. 2). The ClCPR gene was ubiquitously expressed in all

tissues tested (Fig. 3A and B) but showed an increase in expression

as immature stages develop into adults (Fig. 3A). With mimicking

the traumatic insemination of bed bugs, dsRNA of ClCPR was

injected into the bed bug and successfully suppressed the

expression of the gene coding for ClCPR throughout the body

(Figs. 4 and 5). Similar to the previous report from An. gambiae [26],

when the ClCPR was suppressed through RNAi in deltamethrin

resistant bed bug populations, the susceptibility of these bed bugs

to deltamethrin was significantly enhanced. In this study, the

susceptibility enhancement was observed in populations contain-

ing kdr mutation (NY-1, Fig. 6B) as well as no-kdr mutations (CIN-

1, Fig. 6A), but not in the susceptible population (LA-1, Fig. 6C),

suggesting P450-mediated metabolic detoxification may serve as

one of the resistance mechanisms employed by bed bugs.

ClCPR gene discovery and analysis
As an obligatory electron donor, CPR transfers electrons from

NADPH to various cytochrome P450s that play central roles in

detoxification of xenobiotics [41]. Consequently, identification and

characterization of CPR from insects will help to determine

whether or not Cytochrome P450s are involved in response of

insects to specific insecticides and other xenobiotics [26,28]. The

primary structures of CPRs are highly conserved across diverse

taxa, indicating the functional importance of this enzyme

throughout the course of evolution [46]. The alignment of ClCPR

Figure 5. Relative ClCPR mRNA levels in control (malE dsRNA) and ClCPR dsRNA injected bed bugs. (A) The ClCPR mRNA levels were
quantified by qRT-PCR at 5 days after dsRNA injection in control (malE dsRNA) and ClCPR dsRNA treated bed bugs with different doses of dsRNA.
(B).Relative ClCPR mRNA levels in different body parts in control (malE dsRNA) and ClCPR dsRNA injected bed bugs. The relative ClCPR mRNA levels are
shown as a ratio in comparison with the levels of rpl8 mRNA. The data shown are mean+SEM (n = 3).
doi:10.1371/journal.pone.0031037.g005

Figure 6. Knockdown in the expression of ClCPR reduced the resistance to deltamethrin. (A) The percent survival of dsRNA treated CIN-1
(deltamethrin resistant population without para-type sodium channel gene mutation at 419 aa and 925 aa) bed bugs at 0.06 mg deltamethrin 5 days
after dsRNA injection. The mortality was recorded after 24 h exposure to deltamethrin (3 replicates, 50–60 individuals for each replicate). (B) The %
survival of dsRNA treated NY-1 (deltamethrin resistant population with 2 para-type sodium channel gene mutations at 419 aa and 925 aa) bed bugs
at 0.06 mg deltamethrin 5 days after dsRNA injection. The mortality was recorded after 24 h exposure to deltamethrin (3 replicates, 38–40 individuals
for each replicate). (C) The % survival of dsRNA treated LA-1 (deltamethrin susceptible population without para-type sodium channel gene mutation
at 419 aa and 925 aa) bed bugs at 0.0006 mg deltamethrin 5 days after dsRNA injection. The mortality was recorded after 24 h exposure to
deltamethrin (3 replicates, 60 individuals for each replicate). The differences between control and CPR-KD in three bed bug populations were
analyzed by Student’s t-test.
doi:10.1371/journal.pone.0031037.g006
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with other CPRs showed that ClCPR shares 64–75% amino acid

identity with other insect CPRs, and 54% with human (Homo

sapiens), rat (Rattus norvegicus) and mouse (Mus musculus) CPRs. The

structure analysis of ClCPR demonstrated that ClCPR has four

functional domains (Fig. 1). The hydrophobic N-terminal

membrane anchor of ClCPR is essential for its function in the

P450 catalytic cycle. It serves to anchor the protein molecule to the

endoplasmic reticulum which ensures proper spatial interaction for

electron transfer between the ClCPR and cytochrome P450s

[41,46]. Without the hydrophobic anchor, ClCPR is incapable of

transferring electrons to cytochrome P450s. ClCPR also has three

distinct protein binding domains. At the N-terminal, FMN binding

domain consists of two FMN binding sites, FMN1 and FMN2

(Figs. 1A and C). FMN1 and FMN2 binding sites were well

conserved among all insect CPRs indicating they play critical roles

in the interaction with cytochrome P450s (Fig. 1C). For example,

mutation of residues corresponding to Asp 211 and Thr 93 in C.

lectularius to alanine in the yeast CPR resulted in complete loss of

functional activity toward CYP51 [42].

The phylogenetic analysis showed that ClCPR had the closest

evolutionary relationship with the CPR from the body louse.

Although the bed bug and the body louse do not belong to the

same taxonomic order and occupy different living habitats, these

two species are both obligatory hematophagous (bloodsucking)

insects which maintain close association with the human being

throughout their life stages. Feeding on human blood implies that

they share some of the same xenobiotic challenges, therefore may

have evolved a similar function for their CPRs.

Tissue distribution of ClCPR
The primary tissue distribution of CPR is associated with the

potential localization of P450 activities, which in turn reflect the

prospective function of P450s. For example, the D. melanogaster

CPR was expressed more abundantly in embryos and antennae as

compared to adult heads, adult bodies and larvae [23] indicating

the functions of D. melanogaster P450s in embryonic development

and odorant clearance. The cabbage armyworm, M. brassicae, CPR

was predominantly expressed in all tissues tested including male

and female antenna, male brain, proboscis, thorax, abdomen, and

legs and female ovipositors. The cellular localization of CPR and

two P450s within antennae suggest the potential importance of

cytochrome metabolism in the olfactory sensilla of the cabbage

armyworm [25]. An. gambiae CPR was mainly localized in the

antennae, mid-gut epithelia and oenocytes which are considered to

be a major spot for heme biosynthesis in insects [26]. These

observations suggest potential roles of A. gambiae P450s in odorant

metabolism, insecticides metabolism, and regulating heme ho-

meostasis. All insects are living in their environments surrounded

by various chemicals, volatile or nonvolatile, natural or anthropic,

useful or harmful. The pores located on the antenna allow the

entrance of massive odor molecules which potentially trigger the

olfactory signaling transduction in the olfactory sensillum and

subsequently are metabolized by odorant-degrading enzymes

(including Cytochrome P450s) in the neuroepithelium or the

brain [25]. In this study, ClCPR was detected to be ubiquitously

distributed throughout the body, including antenna, head, thorax,

and abdomen (Fig. 3C). The significant expression of ClCPR in the

antenna demonstrates the potentially functional importance of bed

bug P450s in the odorant clearance and/or xenobiotics metabo-

lism which might facilitate the host identification and localization

in bed bugs. On the other hand, the broad presence of ClCPR in

the head and abdomen may imply the roles of bed bug P450s in

xenobiotics metabolism and/or endogenous compound biosyn-

thesis.

Inactivation of ClCPR
Inactivation of CPR as a whole has been proposed to cause

multiple developmental defects and embryonic lethality in mouse

[47,48] and increase the permethrin susceptibility in An gambiae

[26]. In this study, RNAi was tested in the bed bug, and the RNAi

effect was found to be dsRNA dose-dependent and systemic.

When the ClCPR was suppressed through RNAi in deltamethrin

resistant populations, the susceptibility of these bed bugs to

deltamethrin was significantly enhanced. The susceptibility

enhancement was not only observed in non-kdr mutation

population (CIN-1, Fig. 6A) but also observed in the population

that contains kdr mutation (NY-1, Fig. 6B) where decreased target-

site sensitivity of voltage-gated sodium channels was suggested as

one of the mechanisms of pyrethroid resistance. These data

suggest that multiple resistance mechanisms may exist in NY-1

population. However, there was no significant difference in the

susceptibility to deltamethrin between ClCPR knockdown and

control in insecticide susceptible LA-1 bed bugs (Fig. 6C). These

data suggest that P450-mediated metabolic detoxification might be

another mechanism responsible for deltamethrin resistance in

general bed bug populations. Recent report supports our

prediction by showing higher levels of P450 mRNAs in pesticide

resistant populations compared to their levels in susceptible

populations of C. lectularius [49–50]. Taken together, P450-

mediated metabolism could be added to factors such as the target

site insensitivity, behavioral and penetration mechanisms involved

in the deltamethrin resistance of bed bug populations.

Supporting Information

Figure S1 A schematic diagram showing the strategy
used to clone the full length ClCPR. The top line stands for

the cDNA. Other lines represent gene fragments isolated by

RACE or PCR with specific PCR primer pair(s): fragment 1

(NADPHF/NADPHR), fragment 2 (ClRACER1-1/UPM, ClRA-

CER2-1/NUP), fragment 3 (ClRACEF1-1/UPM, ClRACEF2-1/

NUP), fragment 4 (ClRACEF3/UPM, ClRACEF4/NUP), and

fragment 5 (ClCPRF/ClCPRR).

(TIF)

Figure S2 Transmembrane helix (A and B) and hydro-
phobicity (C and D) of ClCPR prediction. The total 679

amino acids (A) and 140 N-terminal amino acids (B) were

submitted into TMHMM Server 2.0 in turn. A 21-amino acid

transmembrane region was predicted and highlighted in red. The

total 679 amino acids (C) and 140 N-terminal amino acids (D)

were also submitted into the on line molecular tool, Protein

Hydrophobicity Plots. The hydrophobicity profiles of ClCPR were

delineated using Kyte-Doolittle scale. Regions with values above 0

are hydrophobic in character.

(TIF)

Figure S3 Selection of a reference gene. Stable expression

of four reference genes, rpl11, rpl8, rps16 and hsp70 are shown

across 8 RNA samples isolated from different developmental

stages: eggs (1,5), small nymphs (1–3 instar) (2,6), large nymphs (4–

5 instar) (3,7), and 1 week old female and male (4,8) adults in CIN-

1 (1–4) and LA-1 (5–8). Products obtained after 40 cycles of PCR

amplification under conditions described in the Materials and

Methods section were resolved on an agarose gel and the gel was

stained with ethedium bromide.

(TIF)

Figure S4 The average mortality of bed bugs at 5 days
after dsRNA injection. No significant difference was observed
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in the mortalities between ClCPR dsRNA and malE dsRNA

(control) injected bed bugs (n = 7; Student’s t-test, P = 0.49).

(TIF)

Table S1 ClCPR homologues in insects.
(DOCX)

Table S2 Primers used for cloning, RACE, qRT-PCR,
RNAi, and housekeeping gene analysis.
(DOCX)

Table S3 Statistical analyses of four candidate refer-
ence genes based on their threshold cycle (CT) value.
(DOCX)
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