
RESEARCH ARTICLE

Data integration uncovers the metabolic

bases of phenotypic variation in yeast

Marianyela Sabina PetrizzelliID
1,2,3,4*, Dominique de VienneID

1, Thibault NideletID
5,
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Abstract

The relationship between different levels of integration is a key feature for understanding the

genotype-phenotype map. Here, we describe a novel method of integrated data analysis

that incorporates protein abundance data into constraint-based modeling to elucidate the

biological mechanisms underlying phenotypic variation. Specifically, we studied yeast

genetic diversity at three levels of phenotypic complexity in a population of yeast obtained

by pairwise crosses of eleven strains belonging to two species, Saccharomyces cerevisiae

and S. uvarum. The data included protein abundances, integrated traits (life-history/fermen-

tation) and computational estimates of metabolic fluxes. Results highlighted that the nega-

tive correlation between production traits such as population carrying capacity (K) and traits

associated with growth and fermentation rates (Jmax) is explained by a differential usage of

energy production pathways: a high K was associated with high TCA fluxes, while a high

Jmax was associated with high glycolytic fluxes. Enrichment analysis of protein sets con-

firmed our results.

This powerful approach allowed us to identify the molecular and metabolic bases of inte-

grated trait variation, and therefore has a broad applicability domain.

Author summary

The integration of data at different levels of cellular organization is an important goal in

computational biology for understanding the way the genotypic variation translates into

phenotypic variation. Novel profiling technologies and accurate high-throughput pheno-

typing now allows genomic, transcriptomic, metabolic and proteomic characterization

of a large number of individuals under various environmental conditions. However, the

metabolic fluxes remain difficult to measure. In this work, we take advantage of recent

advances in genome-scale functional annotation and constraint-based metabolic model-

ing to provide a mathematical framework that allows to estimate internal cellular fluxes

from protein abundances and elucidate the biological mechanisms underlying phenotypic

variation. Applied to yeast as a model system, this approach highlights that the negative
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correlation between production traits such as maximum population size and growth and

fermentation traits is explained by a differential usage of energy production pathways.

The ability to identify molecular and metabolic bases of the variation of integrated traits

through population studies has a broad applicability domain.

Introduction

Phenotypic diversity within the living world results from billions of years of evolution. Most

evolutionary pressures like mutation, random genetic drift, migration and recombination

shape phenotypic diversity by directly changing the genetic composition of populations. The

effects of selection are more difficult to predict because fitness is determined by phenotype,

which results from a complex interaction between genotype and the environment [1]. An addi-

tional layer of complexity results from the fact that life-history traits [2] are the results of pro-

cesses that occur at the cellular level. During the last decades, there has been a growing interest

for a better understanding in evolutionary biology of the so-called genotype-phenotype map

(see e.g. [3]). In parallel, novel profiling technologies and accurate high-throughput phenotyp-

ing strategies have led to the genome-scale characterization of genomic sequences as well as to

the quantification of transcriptomic, proteomic and metabolomic data at the individual level.

Linking cellular processes to high-level phenotypic traits is becoming a new discipline in Biol-

ogy, known as integrative biology.

Unicellular organisms are the model species of choice for integrative biology because most

of their integrated traits are the direct product of cell metabolism, without needing to take into

account the complexity of tissues and organs as in multicellular organisms. Schematically, cells

sense the environment and transfer the information via signal transduction chains that interact

with gene regulation networks. Gene regulatory networks modulate transcription, translation

and post-translational modifications in response to environmental signals, resulting in varia-

tions in protein abundances. Differential abundances of enzymatic proteins affect the fluxes of

matter and energy that are related to phenotypic traits, including life-history traits and fitness.

Thus, in unicellular organisms, five integration levels are usually considered: genomic, tran-

scriptomic, proteomic (including post-translational modifications), metabolic and cellular.

The last level is the most integrated, and it encompasses a variety of traits that are more or less

related to fitness.

While technical progress has now allowed for genomic, transcriptomic, proteomic and trait

levels to be readily measurable in a high number of individuals, metabolic fluxes are still diffi-

cult to measure. Although Metabolic Flux Analysis, based on Nuclear Magnetic Resonance

(NMR) and differential usage of radioactive isotopes, is powerful [4], it remains low through-

put and cannot be applied to a high number of individuals. Technical developments in mass

spectrometry have boosted metabolomics [5] by enabling the characterization of the metabo-

lome. However, the technique still suffers from standardization difficulties [6].

Taking advantage of recent advancements in genome-scale functional annotation, con-

straint-based metabolic models provide a mathematical framework that allows us to predict

internal cellular fluxes from a priori knowledge of thermodynamic constraints on individual

enzymatic reactions, steady state hypotheses and the genome-scale stoichiometry matrix of all

metabolic reactions. The idea is to explore system’s properties at a steady state, during which

internal metabolites stay at a constant concentration while exchange fluxes are constant and

correspond to a constant import/export rate. However, because the number of reactions is

higher than the number of metabolites, the system has an infinite number of solutions. Flux
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Balance Analysis [7, 8] consists in choosing, among all possible solutions, the solution that

maximizes the biomass pseudo-flux that represents the conversion rate of biomass precursors

into biomass. This method is questionable because evolution is not always based on optimiza-

tion principles [9]. However, it has been shown to be relevant in some cases, such as chemostat

cultures of Escherichia coli [10]. Data-driven methods have also been proposed, which consist

in choosing the most likely solution given transcriptomic, proteomic or metabolomic data

(reviewed in [11]). Among all available methods, the one from [12] seems promising for stud-

ies at the population/species level. It is based on the assumption that, at the genome scale,

fluxes should covary with enzymatic protein abundances. Unlike the GIMME method [13], it

takes into account quantitative variations instead of presence/absence. It does not make any

assumptions about the shape of the flux-enzyme relationship like in IOMA [14]. Moreover,

it does not requires heavy model curation nor absolute quantification of protein abundances

like in Resource Balance Analysis [15, 16]. In [12], the only assumption is the expectation that

there should be some correlation at the population level between fluxes and enzyme abun-

dances. When considering quantitative proteomic data, which partly account for post-transla-

tional regulations, such assumption sounds biologically relevant. Irrespective of the method,

comparisons rely on the probability distribution of the solution space, which is analytically

intractable because of the stoichiometry constraints. Recently, [17] have proposed a Bayesian

probabilistic method to characterize the solution space that is much faster than the classical

Hit and Run algorithm [18] and allows for analyses at both the genome and population scale.

The HeterosYeast project investigated the molecular bases of heterosis in yeast at two differ-

ent levels of integration: the proteomic level and the integrated trait level [19–21]. A diallel

study of two yeast species involved in wine fermentation was carried out and the hybrid and

parental strains were monitored during fermentation of grape juice at two temperatures. Inte-

grated and proteomic traits were analyzed. In brief, the most important findings were: homeo-

stasis of the interspecific hybrids observed at the trait level [21] and the predominance of

interspecific heterosis at the proteomic level [20]. A closer analysis of genetic variance compo-

nents confirmed that high-level phenotypes tended to exhibit higher additive genetic variance

and lower interaction variance than proteomic traits [22]. However, previous studies on the

HeterosYeast data set failed to find a clear link between variation at the trait level and variation

at the proteomic level.

Given the important genomic resources in yeast [23], a number of curated genome-

scale metabolic models are now available [24]. Among these, the DynamoYeast model [25]

describes central carbon metabolism in yeast. It is small enough (70 reactions and 60 metabo-

lites) to remain tractable, and has been tested against experimental data [26].

The availability of the HeterosYeast dataset, combined with a curated metabolic model of

central carbon metabolism in yeast and a probabilistic approach to explore the solution space,

encouraged us to integrate experimental proteomic data into the metabolic model in order to

predict unobserved metabolic fluxes. We used these predicted fluxes to bridge the gap between

proteomic data and integrated traits, and better understand the metabolic basis of life-history

trait variation. This approach allowed us to show that the negative relationship between

growth/fermentation traits and production traits is accounted for by a differential usage of the

energy production pathway.

Results

The HeterosYeast dataset provided valuable observations on the genetic diversity of yeast

strains involved in the wine-making process at different levels of cellular organization, i.e. phe-

notypic traits related to life-history or fermentation [21], and quantitative proteomic data [20].
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All traits were estimated or measured at 18˚C and 26˚C on a half-diallel design comprising 7

strains of S. cerevisiae and 4 strains of S. uvarum, with a total of 127 strain × temperature

combinations.

In order to access an intermediate level of integration between protein abundances and

traits, we used the DynamoYeast model, a curated Constraint-Based Model (CBM) of central

carbon metabolism in yeast consisting of 70 reactions and 60 metabolites [25] (Fig 1). In the

DynamoYeast model, the only entry is glucose, and the model does not take into account the

complexity of metabolism like the recycling of amino-acids or extra-cellular TCA supple-

ments. However, it was shown to accurately predict growth on complex medium like grape

must [26]. Using gene-protein-reaction associations, enzymatic proteins and protein com-

plexes were linked to the reactions of the CBM. Among the 70 enzymatic proteins and protein

complexes, the abundances of 33 of them were retrieved from the dataset of 615 protein abun-

dances quantified in the HeterosYeast project.

Thus, the metabolic fluxes that best matched the observed patterns of variation of enzy-

matic protein abundance were retained (see Material and methods). In brief, the strategy we

proposed was: (i) to characterize the feasible solution space of the DynamoYeast model, L,

through the posterior density distribution of the fluxes given by the Expectation Propagation

algorithm (hereafter denoted EP, [17]); (ii) to select a unique solution through minimization

of the objective function that measures the Euclidean distance between observed enzyme

abundances and reaction rates (Z, Eq 11 in Material and methods).

Below, we first describe the method and its validation using simulated datasets. Then, we

analyze the relationship between the different integration levels, using the HeterosYeast dataset

and the predicted fluxes of central carbon metabolism.

Sampling the feasible solution space with the expectation propagation

algorithm

Sampling points from the feasible solution space L can be performed directly from the poste-

rior truncated multivariate normal distribution of the fluxes. We compared the Hit and Run

(HR) algorithm [27] with the EP posterior distribution of the fluxes to test the goodness of pre-

diction of the EP algorithm [17] on the DynamoYeast posterior distribution.

We first characterized the feasible space of solutions L of fluxes from the DynamosYeast

model from both methods (S1 File). The means of the posterior density distribution of fluxes

obtained by the HR algorithm (burning length equal to 106 and a jump of 0.5) for 106 samples

were well correlated with the means estimated with the EP algorithm (rmean = 0.98), with mod-

erate correlations between the variances (rvar = 0.4). The correlation between means and vari-

ances increased when considering 107 samples (rmean = 1, rvar = 0.93) (S1 and S2 Figs). We

further observed that the EP algorithm well predicts the sampled space of solutions (S1 Fig)

and the variance-covariance matrix (S3 Fig) between the DynamoYeast fluxes.

These results are similar to the ones obtained by [17]. Therefore, we decided to use the EP

algorithm to sample the feasible solution space of the CBM.

Protein abundances are good predictors of the initial set of metabolic

fluxes

Computer simulations were performed to assess the goodness of prediction of the proposed

method, as detailed in section Testing the prediction algorithm. The two main parameters that

were tested were: (i) the number of sampled points Ns in L; (ii) the number of observed pro-

teins Nobs to be included in the objective function Z (Eq 11 in Material and methods). To this

end, a vector of flux values, vinitial, was first sampled from the feasible solution space of the
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Fig 1. Representation of the DynamoYeast model of central carbon metabolism in S. cerevisiae. Metabolites are in black. Constraints on exchange

fluxes are indicated in red between square brackets and correspond to fermentation, with glucose as the only input flux. The reaction color code is as

follows: (i) in red, the experimentally measured CO2 exchange flux; (ii) in blue, the reactions associated with enzymatic proteins quantified in this study;

(iii) in black, the other reactions present in the DynamoYeast model. The list of the full metabolite names is in S1 Table.

https://doi.org/10.1371/journal.pcbi.1009157.g001
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DynamoYeast model. We then computed protein abundances by assuming different func-

tional relationships between fluxes and enzymatic proteins, and we used the proposed method

to predict metabolic flux values, vpredicted. Different a priori functional relationships between

fluxes and enzymatic proteins led to similar results. Simulations showed that minimization of

Z led to a high correlation between vinitial and vpredicted (Fig 2A). Correlations ranged from 0.65

to 0.99 (p-value < 0.05). By increasing the number of sampled points, Ns in L, the mean corre-

lation slightly increased and its variance decreased. The number of observed protein abun-

dances Nobs had a more complex influence on the accuracy of the predictions. When

increasing Nobs, the correlation between vinitial and vpredicted either increased, decreased or

stayed constant, as illustrated in Fig 2B. However, the order of magnitude of the variation was

small, and the correlation tended to be more stable for high Ns value (Fig 2B). In particular, the

stability is reached when the number of observed proteins exceeds the size of the null space

(Ker(S) = 16), i.e. the number of degrees of freedom of the DynamoYeast metabolic model.

When considering the actual set of enzyme abundances that were matched between the

HeterosYeast proteomic data and the DynamoYeast CBM (Nobs = 33), we observed a high

Fig 2. Correlation between initial and predicted fluxes in simulated datasets using the DynamoYeast model. Enzymatic protein abundances were

expressed in terms of a hyperbolic function of the initial fluxes using Eq 12. Colors indicate the number of points Ns that were sampled in solution space

L. A. Boxplot representation as a function of the number of observed proteins Nobs, from 10 to 70, in increments of ten. Each box represents 1,000

simulations. B. Observed changes in the correlation during a single simulation run when the number of observed proteins was increased in increments

of 1, from 1 to 70 (same color code as in A). The relationship between initial and predicted fluxes shown for one simulation with Nobs = 33 (matching

the 33 enzymes of the HeterosYeast dataset) and Ns = 100 (C), and Nobs = 33 and Ns = 106 (D).

https://doi.org/10.1371/journal.pcbi.1009157.g002
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correlation between vinitial and vpredicted. This correlation increased when increasing the num-

ber of sampled points (see for example Fig 2C and 2D). We also checked that the 33 reactions

were distributed over the modules of the metabolic reaction tree [28] (see Testing the CBM

coverage with the observed proteomic dataset), as shown in S4 Fig. Altogether, we considered

that our algorithm was efficient for predicting unobserved fluxes from enzyme abundances,

given the correlation values obtained through simulations. More generally, simulations pro-

vide a method to check for the good coverage of the metabolic model with observations, with-

out needing to predict elementary modes, which becomes computationally heavy as the size of

the metabolic model increases.

Predicting unobserved fluxes from the observed variation in protein

abundances

The HeterosYeast proteomic data were used in the context of the DynamoYeast model of cen-

tral carbon metabolism in yeast. In addition, for each strain × temperature combination, the

observed CO2 release rate was used as an additional constraint in the form of a priori knowl-

edge to delimit the feasible solution space L. We sampled Ns = 106 points in L to select a unique

solution that minimizes the Euclidean distance between fluxes and enzyme abundances. As a

result, we predicted 69 unobserved fluxes in the CBM for each of the 127 strain × temperature

combinations. Statistical approaches were then used to investigate the variation components

and the structure of the new dataset D consisting of 615 protein abundances (E), 70 metabolic

fluxes (V) and 28 fermentation and life-history traits (T):

D ¼ ðE;V;TÞ

Patterns of variation depend on the integration level

The 127 observations in the new dataset D had a specific structure. There were 7 parental strains

(S.c.) and 21 intraspecific hybrids from S. cerevisiae (S.c. × S.c.), 4 parental strains (S.u.) and 6

intraspecific hybrids from S. uvarum (S.u. × S.u.), and 28 interspecific hybrids (S.c. × S.u.). All

strains were observed during alcoholic fermentation of wine grape juice at two temperatures,

18˚C and 26˚C [21].

To better understand the patterns of variation at each integration level, Principal Compo-

nent Analyses (PCA) were performed for each type of trait separately. Results are presented in

Fig 3, where strains are identified by species, type of cross (intraspecific hybrid, interspecific

hybrid or parental strain) and temperature. The first PCA components accounted for 20%,

23% and 27% of the total variation and the second for 14%, 18% and 19% of the total variation

for protein abundances, metabolic fluxes and fermentation/life-history traits, respectively

(Fig 3A, 3B and 3C). Different integration levels displayed different patterns of phenotypic

diversity.

At the proteomic level (E), the first two PCA axes contributed to both differences between

temperatures and between species and type of cross. Heterosis was observed for the three types

of hybrids at both temperatures. First, S.u. × S.u. hybrids were clearly differentiated from their

S.u. parents. Second, S.c. × S.u. interspecific hybrids were closer to their S.c. parents than their

S.u. parents. Finally, S.c. × S.c. hybrids were close to their S.c. parents, but the range of variation

between S.c. × S.c. hybrids was greater than between parental strains. Altogether, protein abun-

dance in a hybrid strain cannot be predicted by the mean of its parental values.

At the trait level (T), we observed a high temperature effect, with axis 1 (27% of the varia-

tion) clearly separating the strains that were grown at 26˚C from those that were grown at

18˚C. At 26˚C, strains were characterized by high growth rates (r), high CO2 fluxes (Jmax and
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Vmax), high Hexanol and Decanoic acid, a low carrying capacity (K) and short fermentation

times (AFtime, t-lag, t-75, t-45, S5 Fig). At 18˚C, strains were characterized by low growth

rates and low CO2 fluxes, a high K and long fermentation times (S5 Fig). These two groups

of traits mostly varied with temperature, although some differences between strains were

observed within rather than between types of cross, especially at 18˚C. At 26˚C, S.u. strains

perform slightly better than S.c. strains (higher growth rates, faster fermentation). The types of

cross were clearly separated along PCA axis 2. Heterosis was observed at the trait level in intra-

specific hybrids. However, interspecific hybrids seemed to be in-between the two parental

strains. Traits that explain the differences between the observations along axis 2 were cell size

(Size-t-Nmax) and Ethanol at the end of fermentation (positively correlated with axis 2), aroma

Fig 3. Principal Component Analysis and sparce Partial Least Square-Discriminant Analysis. PCA for protein abundances (A), metabolic fluxes

(B) and fermentation/life-history traits (C). sPLS-DA for metabolic fluxes (D). Observations are represented on the first two PCA axes (sPLS-DA,

respectively). Each dot corresponds to a strain × temperature combination. Different types of dots correspond to different temperatures, while the type

of cross is color-coded. Segments join the data points to the centroid of the group (cross × temperature) to which they belong.

https://doi.org/10.1371/journal.pcbi.1009157.g003
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production at the end of fermentation, as well as Sugar.Ethanol.Yield (negatively correlated)

(S5 Fig). Note that these traits were not influenced by temperature. Hence, at the trait level, we

observed differences between yeast species for traits related to aroma production that were not

influenced by temperature. Most fermentation and life-history traits showed a strong tempera-

ture effect, large differences between strains within a type of cross, and weak heterosis.

At the flux level (V), temperature separated the observations on axis 1, but both axis 1 and

axis 2 distinguished strains independently of their origin. Notice however that the variation

range in hybrids was greater than in the parental strains, indicating differences between inbred

and hybrid strains. Altogether, central carbon metabolic fluxes were influenced by temperature

and showed strong differences between strains that were not related to the type of cross or

the parental species. Sparse Partial Least Squares Discriminant Analysis (sPLS-DA) was per-

formed on metabolic fluxes in order to select the main features that best characterize the

species × temperature combinations (Fig 3D). As previously, the first axis distinguished strains

grown at different temperatures. Six fluxes contributed to the first axis of the sPLS-DA: CO2,

ethanol, pyruvate decarboxylase, alcohol dehydrogenase, 6-phosphogluconolactonase and

phosphogluconate dehydrogenase fluxes (S6 Fig). All were negatively correlated with axis 1

and were involved in fermentation. This shows that fermentation was more efficient at

26˚C. The second axis distinguished inbred strains from intraspecific hybrids with a

genotype × temperature interaction: both S.u. × S.u. and S.c. × S.c. hybrids had higher coordi-

nates than their parents at 26˚C, whereas S.u. × S.u. had lower coordinates than their parents

at 18˚C, and S.c. × S.c. hybrids were confounded with their parental strains. Interspecific

hybrids were characterized by a wide variation range at both temperatures. Fluxes that contrib-

uted to axis 2 were mainly mitochondrial fluxes. Mitochondrial acetyl-CoA formation, mito-

chondrial citrate synthase, mitochondrial aconitate hydratase, mitochondrial isocitrate

dehydrogenase (NAD+) and mitocondrial transport fluxes of pyruvate, oxaloacetate and acet-

aldehyde were negatively correlated with the second axis, while mitochondrial transport of

2-oxodicarboylate, ethanol and CO2 fluxes were positively correlated (S6 Fig).

In summary, we found at each integration level a strong temperature effect, large differ-

ences between strains, and evidence for heterosis, i.e. differences between hybrids and mid-

parent values. However, patterns differed between the proteomic and the most integrated

level. At the proteomic level, proteins involved in differences between strains were the same as

the ones involved in differences between species and between temperatures. At the flux level,

there were few differences between species. Differences between temperatures were associated

with enzymatic reactions related to fermentation, while differences between strains were asso-

ciated with enzymatic reactions that were either involved in fermentation, or in the part of the

TCA cycle that takes place in mitochondria. At the trait level, differences between tempera-

tures were associated with differences in growth and fermentation traits, which were relatively

conserved within species but showed between-strain variation. Differences between species

mostly concerned volatile compounds that are produced by secondary metabolism at the end

of fermentation.

Fermentation and life-history traits are associated with different metabolic

pathways of carbon metabolism in yeast

Regularized Canonical Correlation Analysis (rCCA) was performed to investigate the correla-

tion between metabolic fluxes and fermentation/life-history traits (Fig 4). Fermentation and

life-history traits could be divided into two main groups showing contrasting profiles. The

first group consisted of traits that clustered with the carrying capacity, K. They were negatively

correlated with fluxes involved in the glycolysis, ethanol synthesis and pentose phosphate
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pathways, and positively correlated with fluxes in the TCA reductive branch. By contrast, the

second group consisted of traits that clustered with the intrinsic growth rate, r, and were posi-

tively correlated with fluxes involved in the glycolysis, ethanol synthesis and pentose phosphate

pathways and negatively correlated with fluxes in the TCA reductive branch. Consistent with

these results, the biomass pseudo-flux was positively correlated with r and negatively correlated

with K.

When looking at the flux correlation structure described in Fig 4, we see the opposition

between glycolytic fluxes and TCA fluxes. High growth rates and CO2 fluxes (Jmax, Vmax) and

correspondingly fast fermentation (short fermentation times) seem to be associated with a

central carbon metabolism oriented towards fermentation, while high carrying capacity, low

growth rate and slow fermentation seem to be associated with a central carbon metabolism ori-

ented towards the production of downstream metabolites (succinate, pyruvate, acetate, acetal-

dehyde and butanediol).

The K group could be divided into three subgroups, based mainly on the correlation

between traits and the glycerol synthesis and acetaldehyde fluxes: AFtime, K and CO2max

(subgroups designated by the name of the main trait in boldface). The AFtime subgroup

showed a slightly negative correlation, the K subgroup a slightly positive correlation and the

CO2max subgroup a positive correlation. AFtime grouped most traits correlated with the

duration of fermentation, AFTime, t-45, t-75, t-Nmax; K grouped traits measuring the lag time

and the beginning of fermentation (t-lag, t-Vmax), the carrying capacity (K) and the concentra-

tion of Octanoic acid (a fatty acid) at the end of fermentation, while CO2max grouped traits

correlated with fermentation products (total CO2, Ethanol and Sugar.Ethanol.Yield), two vola-

tile esters, Isoamyl acetate and Phenyl-2-ethanol acetate, as well as cell size and cell viability

measured close to the end of fermentation, and t-N0.

Fig 4. Regularized Canonical Correlation Analysis of metabolic fluxes and fermentation/life-history traits. Penalization parameters were

tuned through a leave-one-out cross-validation method on a 1000 × 1000 grid between 0.0001 and 1 (λ1 = 0.8, λ2 = 0.0001). Canonical

correlation values between metabolic fluxes and fermentation/life-history traits are represented as a gradient of colors from blue (−1) to red

(+1). Metabolic fluxes (columns) and fermentation/life-history traits (rows) were clustered using the hclust method. Flux names are encoded as

abbreviations of the substrate and the product of the reaction connected by “_”. The five groups defined by fermentation and life-history traits

are shown on the right.

https://doi.org/10.1371/journal.pcbi.1009157.g004
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Similarly, within the r group we distinguished two clusters of traits: SO2 and Vmax. SO2

grouped basic enological parameters measured at the end of fermentation (total and free SO2,

residual sugar), cell viability measured once carrying capacity is reached (Viability-t-Nmax),

and two volatile compounds Phenyl-2-ethanol (alcohol) and 4-methyl-4-mercaptopentan-2-one
(X4MMP, thiol). Vmax grouped traits that correlated with Vmax and r, such as Jmax and the

amount of hexanol (alcohol) and hexanoic and decanoic acids (fatty-acid) that were quantified

at the end of fermentation (Table 1).

In summary, we were able to associate fermentation and life-history traits with metabolic

fluxes based on their correlation patterns. In particular, we found that the negative correlation

between r and K is explained by a different pathway usage of the central carbon metabolism. A

high r and a low K are associated with glycolysis and fermentation, while a low r and a high K
are associated with the TCA cycle and respiration.

Table 1. Group name, trait description and abbreviation for each fermentation/life-history trait analyzed in this

study. Traits are grouped following the correlation structure obtained by rCCA (Fig 4).

Group

Name

Trait Abbreviation

AFtime Duration of fermentation AFtime
Time at which the carrying capacity is reached t-Nmax

Fermentation time at which 45 gL−1 of CO2 was released, out of the

fermentation lag-phase

t-45

Fermentation time at which 75 gL−1 of CO2 was released, out of the

fermentation lag-phase

t-75

K Carrying capacity K
Fatty acid Octanoic acid

Time to reach the inflection point out of the fermentation lag-phase t-Vmax

Fermentation lag-phase t-lag
CO2max Total amount of CO2 released at the end of the fermentation CO2max

Average cell size at t-Nmax Size-t-Nmax

Percentage of living cells at t-75 Viability-t-75
Growth lag-phase t-N0

Ratio between the amount of metabolized sugar and the amount of released

ethanol

Sugar.Ethanol.Yield

Basic enological parameter Ethanol
Ester Isoamyl acetate
Ester Phenylethanol.

acetate
SO2 Basic enological parameter Total SO2

Basic enological parameter Free SO2

Basic enological parameter Residual Sugar
Thiol X4MMP

Alcohol Phenylethanol
Percentage of living cells at t-Nmax Viability-t-Nmax

Vmax Maximum CO2 release rate Vmax

Maximum CO2 production rate divided by the estimated cell concentration Jmax

Growth rate r
Alcohol Hexanol

Fatty acid Decanoic acid
Fatty acid Hexanoic acid

https://doi.org/10.1371/journal.pcbi.1009157.t001
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Metabolic bases of phenotypic trait variation in yeast

In order to confirm the association between integrated trait variation and the differential

usage of central carbon metabolism, we identified proteins involved in trait patterning that

were not included in the DynamoYeast model, as observed from the correlations between

traits and fluxes (see section Statistical analysis). We performed a Linear Discriminant Analysis

on the correlation matrix between the T traits and the E proteins using as discriminant features

the five groups of fermentation and life-history traits described above. Linear Discriminant

Analysis clearly separated the five trait categories along the first axis, which explains 99% of

the total variation (Fig 5). AFtime and K traits were close to each other, and had positive coor-

dinates on LDA1; Vmax had high negative coordinates, SO2 had a slightly negative mean and

CO2max had a slightly positive mean on LDA1. Given the high discriminative power of

LDA1, it is clear that proteins that were positively or negatively correlated with LDA1 partici-

pate in the differentiation of AFtime and Vmax trait groups.

Functional analysis of proteins that best correlate with the first axis of the LDA was per-

formed on the group of proteins with a correlation of 0.85 in the positive and in the negative

direction. Pearson’s chi square test of enrichment showed that the group of proteins that

were negatively correlated with the first axis was enriched in proteins linked to protein fate,

cytoskeleton, detoxification, growth and death but also to the fermentation, glycolysis and

phosphate pathways. The group of proteins that were positively correlated with LDA1 was

enriched in proteins linked to energy conversion, nitrogen and sulfur pathways, metabolism,

Fig 5. Linear Discriminant Analysis of protein abundances. A. Projection of the 28 fermentation/life-history traits onto the first two axes of a Linear

Discriminant Analysis of protein abundances. Groups of traits were defined from their correlation with central carbon metabolism fluxes. Each dot

corresponds to one fermentation or life-history trait. Colors correspond to groups of traits, which are named after one representative trait. The results

confirm the structure of fermentation and life-history traits and reveal two groups of traits with antagonistic proteomic patterns: the AFtime group and

the Vmax group. B. Functional enrichment categories of proteins that are positively (red) and negatively (green) correlated with the first LD1 axis. The

groups of proteins were defined taking a positive (resp. negative) correlation threshold of 0.85 (resp. −0.85). The bars represent the proportion of

proteins positively/negatively correlated to the LD axis belonging to a functional category divided by the proportion of proteins from the same category

found in the MIPS database. Only the categories for which this value is higher than 1 are shown.

https://doi.org/10.1371/journal.pcbi.1009157.g005
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energy reserves, electron transport, TCA and respiration. This result was represented as a

barplot in Fig 5.

In order to evaluate the interest of considering the flux level as an intermediate level

between proteins and integrated traits, we run the same analysis by discarding the flux levels.

We performed a rCCA to investigate the correlations between protein abundances and fer-

mentation/life-history traits, and we identified seven groups of traits. We retrieved the

AFtime, CO2max and K groups previously identified, but Jmax no longer belonged to the

Vmax group, and trait related to the Phenylethanol pathway differentiate themselves from the

SO2 group. This time, the first two axes of the Linear Discriminant Analysis were needed to

differentiate the seven groups of traits, with the first axis explaining only 79% of the total inter-

groups variation (S7 Fig). While this pattern of variation clearly better illustrates the complex-

ity of cell functioning and the importance of all metabolic reactions that fall outside the central

carbon pathway, it fails to capture proteins directly connected to central carbon metabolism.

On the contrary, the approach that consists in (i) defining groups of traits on the basis of their

correlation with central carbon metabolic fluxes and (ii) seeking for additional proteins, out-

side central carbon metabolism, that differentiate the best between groups of traits, allowed us

to track additional pathways that link central carbon metabolism to the variation of more inte-

grated traits.

In conclusion, the association between trait variation and central carbon metabolism

observed at the flux level is confirmed by the proteomic analysis. Proteins that covary with

traits of the Vmax group and with glycolytic and fermentation fluxes are involved not only in

glycolysis and fermentation, but also in protein synthesis and degradation (protein fate) and in

cytoskeleton formation, which can be associated with cell division. Proteins that covary with

traits of the AFtime group and with the TCA cycle and respiration fluxes are involved not only

in the TCA cycle and respiration, but also in electron transport, energy conversion and nitro-

gen and sulfur metabolism.

Discussion

We applied cutting-edge methods of data integration to an original yeast dataset. The Hetero-

sYeast dataset comprised quantitative proteomic data as well as fermentation and life-history

traits measured during wine fermentation on a range of strains from two yeast species. The

objective was to integrate information at different levels of cellular organization (proteomic

and metabolic fluxes) to better understand the metabolic bases of phenotypic variation in

yeast, in particular life-history traits related to fitness. The key point of this study was to incor-

porate proteomic data in a constraint-based metabolic model to estimate the values of unob-

served metabolic fluxes. Using a combination of multivariate analyses of heterogeneous high-

dimensional datasets, we were able to show that the metabolic flux level retains information

that is not directly interpretable at the proteomic or trait level. In particular, we showed that

the negative correlation between traits associated with population growth rate and traits asso-

ciated with maximum population size (carrying capacity) could be explained by a differential

usage of central carbon metabolism, in this case fermentation versus TCA cycle.

Functional genome annotations, coupled with current knowledge in biochemistry, now

allow cell metabolism to be described at the genome scale, using constraint-based metabolic

models that take into account the stoichiometry of each reaction and incorporate thermody-

namic constraints [29]. Without any a priori knowledge, the number of steady-state solutions

for reaction rates is infinite; however, this number can be reduced by integrating observations.

Three types of experimental data can be used: (i) exchange metabolic fluxes; (ii) metabolite

input/output rates and (iii) protein abundances. External metabolic fluxes and metabolite
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input/output rates can be used directly in constraint-based models to reduce the feasible solu-

tion space, L (Eq 5 and inequality Eq 6) under the steady-state assumption.

Protein abundances, linked to the metabolic fluxes considered in the model through a

gene-protein-reaction (GPR) association, carry information regarding network functioning

and the state of the metabolic network at a given time and under specific conditions. Following

[12], we used protein abundance profiles to find the set of metabolic fluxes that minimized the

Euclidean distance between metabolic fluxes and enzyme abundances. Indeed, even though

the relationship between flux and enzyme abundances is commonly non-linear, the extent to

which a particular pathway is used is more or less associated with the abundance of its enzymes

[30]. Despite the fact that the DynamoYeast metabolic model is an oversimplified model of

central carbon metabolism with glucose as the only external carbon source, we show that pro-

tein abundance variations were sufficient to capture quantitative changes in the orientation of

central carbon metabolism that occurred between strains and between growing temperatures

in our dataset. Even though our flux predictions may not be very accurate, we are confident

that we captured the main patterns of flux variation. Predicting unobserved fluxes from

observed protein abundances overall adds information about the functioning of the actual

metabolic network.

The method described here relies on a probabilistic approach. Following [17], we chose to

characterize the feasible solution space L by means of its posterior density distribution calcu-

lated with the Expectation Propagation (EP) algorithm. The computation time of the EP algo-

rithm is much shorter than that of the well-known Hit and Run algorithm [18], allows to

sample metabolic fluxes in L and provides their associated posterior probability. In order to

select a unique solution in L, we minimized Z, the Euclidean distance between observed pro-

tein abundances and the associated metabolic fluxes weighted by the inverse of the probability

of observing such a set of fluxes, pv (Eq 11). This minimization process involved sampling in L,

and selection was made after computing Z over a high number of sampled points.

Computer simulations confirmed that our method had good prediction efficiency. In par-

ticular, we showed that prediction efficiency was not affected by the non-linearity of the flux-

enzyme relationship. The most important parameter was the number of reactions Nobs for

which proteomic observations were available, compared to the CBM size, n. When Nobs was

too low, adding new information led to a decrease in prediction efficiency. A decrease in corre-

lation between initial and predicted fluxes means that, when a new enzyme is added, the solu-

tion that minimized the total Euclidean distance can lead to flux predictions that are farther

from their true value. This can occur whenever there is a weak correlation between the first

n − 1 fluxes, and the additional flux vn. Therefore, it is important that protein abundance

observations cover the main features of the architecture of the metabolic network. Here, we

observed protein abundances for 33 out of the 70 reactions of the DynamoYeast model, which

was sufficient to attain high prediction accuracy. The structure of the stoichiometry matrix

allows us to define metabolic modules that correspond to main metabolic pathways [28]. Our

simulations showed the importance of covering most metabolic modules with observations of

protein abundance. Recent progress in gel-free/label-free quantitative proteomics now allow

to quantify thousands of proteins and should ensure good coverage even for metabolic models

at the genome scale [31].

In this study, we predicted the metabolic fluxes of central carbon metabolism in a popula-

tion obtained from a half-diallel cross between two species of yeast, S. cerevisiae and S. uvarum.

The genetic values of 615 protein abundances and 28 fermentation/life-history traits were

estimated under fermentation conditions at two different temperatures, 18˚C and 26˚C, lead-

ing to a total of 127 observations from 66 different yeast strains [32]. As described above, we

predicted metabolic fluxes for each strain × temperature combination by coupling the
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DynamoYeast model, a highly curated Constraint-Based Model of central carbon metabolism

[25] using the observed CO2 release rate as a priori knowledge, and measurements of protein

abundances associated with 33 out of the 70 reactions in the model.

The final dataset consisted of three matrices of 127 × 615 protein abundances, 127 × 70 cen-

tral carbon fluxes, and 127 × 28 fermentation/life-history traits. As the total number of charac-

ters (713) greatly exceeded the number of samples (127), we used regularization techniques for

the multivariate analyses [33]. In order to relate the variation patterns we observed at different

integration levels, we used a top-down strategy from the most integrated to the least integrated

level. First, we explored the correlation between traits and metabolic fluxes. Second, we identi-

fied the proteins which were not included in the metabolic model that best explained the corre-

lation between traits and fluxes. We showed that the integration of the flux level allowed us to

better understand the patterns of variation at the trait level.

In our dataset, we found a negative correlation between traits associated with growth and

CO2 fluxes, and traits associated with population size and fermentation length. These negative

correlations reflected different life-history strategies, as has been observed previously in differ-

ent yeast collections from either industrial [34] or natural sources [35, 36]. This broadly corre-

sponds to the well-known r-K trade-off in ecology [37]. More recently, [38] suggested that

such a trade-off could arise from eco-evolutionary feedback loops because competing strains

also modify their environment through the production of different sets of metabolites. The

HeterosYeast dataset shows that the choice of a strategy is plastic [21] and can be modified by

the environment (here the fermentation temperature).

By adding information to the DynamoYeast model, we showed that such a trade-off can be

explained by metabolic switches between fermentation associated with glycolysis, and down-

stream metabolite production, associated with the TCA cycle. This duality in the functioning

of yeast central carbon metabolism was observed by [26], who matched the DynamoYeast

model to experimentally measured exchange fluxes in different S. cerevisiae strains. The switch

between the two modes of functioning (Fig 4) depends partly on the balance between two iso-

forms of alcohol dehydrogenase (ADH). Interestingly, [34] previously found that the trade-off

between cell size and K is related to changes in the percentage of acetylation of ADH 1p, with

high levels being associated with large cells and low K.

Because this paper describes a proof of concept, we deliberately chose to focus on central

carbon metabolism and we used the DynamoYeast model because it contains a small num-

ber of reactions compared to available genome-scale models [24]. Therefore, we were not

able to explain between-strain variation for traits related to secondary metabolism like

aroma production, which merely discriminated between the two yeast species. Moreover,

only a small subset of the proteomic data was coupled with the metabolic model. By search-

ing for the proteins that best explained the trait patterns revealed at the flux level, we were

able to identify proteins that were associated with the r-K trade-off at the trait level. Analysis

of protein functional annotations confirmed the known link between the glycolysis and pen-

tose-phosphate pathways and fermentation, and between extensive usage of TCA cycle and

energy conversion.

Altogether, by coupling phenomic data with mathematical modeling of metabolism and

cutting-edge statistical analyses (taking into account the high-dimensionality and heterogene-

ity of the measures), we were able to explain a well-known trade-off between two sets of yeast

life-history traits by the differential usage of energy production pathways. Glycolysis and fer-

mentation lead to fast growth and resource consumption. TCA and downstream metabolite

production lead to slow growth and high population size. The duality between the two alterna-

tive uses of the central carbon metabolism is encoded into the architecture of the metabolic

network.
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Material and methods

Materials

Materials: The HeterosYeast dataset. The genetic material for the experimental study

consisted of 7 strains of S. cerevisiae and 4 strains of S. uvarum associated with various food

processes (enology, brewing, cider fermentation and distilling) or isolated from the natural

environment (oak exudates). The 11 parental lines were selfed and pairwise crossed, which

resulted in a half-diallel design with a total of 66 strains: 11 inbred lines, 27 intraspecific

hybrids (21 for S. cerevisiae, noted S. c. × S. c., and 6 for S. uvarum, noted S. u. × S. u.) and 28

inter-specific (noted S. c. × S. u). The 66 strains were grown in triplicate in fermentors at two

temperatures, 26˚C and 18˚, in a medium similar to enological conditions (Sauvignon blanc

grape juice, [21]). From a total of 396 alcoholic fermentations (66 strains, 2 temperatures, 3

replicates), 31 failed due to the poor fermenting ability of certain strains. The design was set up

as a block of two sets of 27 fermentations (26 plus a control without yeast to check for contami-

nation), one carried out at 26˚C and the other at 18˚. The distribution of the strains in the

block design was randomized to minimize residual variance of the estimators of the strain and

temperature effects, as described in [34].

For each alcoholic fermentation, two types of phenotypic traits were measured or estimated

from sophisticated data adjustment models: 35 fermentation/life-history traits and 615 protein

abundances. Fermentation/life history traits were classified into four categories [21]:

• Kinetics parameters, computed from the CO2 release curve modeled as a Weibull function

fitted on CO2 release quantification monitored by weight loss of bioreactors: the fermenta-

tion lag-phase, t-lag (h); the time to reach the inflection point out of the fermentation lag-

phase, t-Vmax (h); the fermentation time at which 45 gL−1 and 75 gL−1 of CO2 was released,

out of the fermentation lag-phase, t-45 (h) and t-75 (h) respectively; the time between t-lag
and the time at which the CO2 emission rate became less than, or equal to, 0.05 gL−1h−1,

AFtime (h); the maximum CO2 release rate, Vmax (gL−1 h−1); and the total amount of CO2

released at the end of the fermentation, CO2max (gL−1).

• Life history traits, estimated and computed from the cell concentration curves over time,

modeled from population growth, cell size and viability quantified by flow cytometry analy-

sis: the growth lag-phase, t-N0(h); the carrying capacity, K (log[cells/mL]); the time at which

the carrying capacity was reached, t-Nmax (h); the intrinsic growth rate, r (log[cell division/

mL/h]); the maximum value of the estimated CO2 production rate divided by the estimated

cell concentration, Jmax (gh−110−8cell−1); the average cell size at t-Nmax, Size-t-Nmax(μm); the

percentage of living cells at t-Nmax, Viability-t-Nmax (%); and the percentage of living cells at

t-75, Viability-t-75 (%).

• Basic enological parameters, quantified at the end of fermentation: Residual Sugar (gL−1);

Ethanol (%vol); the ratio between the amount of metabolized sugar and the amount of

released ethanol, Sugar.Ethanol.Yield (gL−1%vol−1); Acetic acid (gL−1 of H2SO4); Total SO2

(mgL−1) and Free SO2 (mgL−1).

• Aromatic traits, mainly volatile compounds measured at the end of alcoholic fermentation

by GC-MS: two higher alcohols (Phenyl-2-ethanol and Hexanol, mgL−1); seven esters (Phe-
nyl-2-ethanol acetate, Isoamyl acetate, Ethyl-propanoate, Ethyl-butanoate, Ethyl-hexanoate,
Ethyl-octanoate and Ethyl-decanoate, mgL−1); three medium chain fatty acids (Hexanoic
acid, Octanoic acid and Decanoic acid, mgL−1); one thiol 4-methyl-4-mercaptopentan-2-one,
X4MMP(mgL−1) and the acetylation rate of higher alcohols, Acetate ratio.
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For the proteomic analyses samples were harvested at 40% of CO2 release, corresponding to

the maximum rate of CO2 release. Protein abundances were measured by LC-MS/MS tech-

niques from both shared and proteotypic peptides relying on original Bayesian developments

[39]. A total of 615 proteins were quantified in more than 122 strains × temperature combina-

tions as explained in detail in [20].

Genetic value of protein abundances and fermentation/life-history traits. We consid-

ered the genetic value of protein abundances and fermentation/life-history traits, rather than

their measured/computed value. In a previous study, [22] decomposed the phenotypic value of

a trait at a given temperature, PT, into its genetic, GT, and residual, �, contributions:

PT ¼ GT þ � ð1Þ

The genetic value, GT, was decomposed in terms of additive and interaction effects, taking into

account the structure of the half-diallel design. By including two different species and the

parental inbreds in the experimental design, we were able to distinguish between intra- and

interspecific additive genetic effects (Aw and Ab, respectively) and decompose the interaction

effects into inbreeding (B) and intra and interspecific heterosis effects (Hw, Hb). Thus, the

genetic value of a trait at a given temperature T was modeled as follows:

Gpi
T ¼ mT þ 2Awi ; T

þ bsðiÞ; T þ Bi; T ð2Þ

G
Hw
ij

T ¼ mT þ Awi ; T
þ Awj; T

þHwij; T
; ð3Þ

G
Hb
ik

T ¼ mT þ Abi ; T
þ Abk; T

þ Hbik; T
: ð4Þ

for a parental strain pi (Eq 2), for an intraspecific hybrid Hw
ij between parents pi and pj (Eq 3),

and for an interspecific hybrid Hb
ik between parents pi and pk (Eq 4). μ is the overall mean and

βs(i) is the deviation from the fixed overall effect for the species:

sðiÞ 2 fS: cerevisiae; S: uvarumg

We retrieved the genetic value for all proteomic data. For the fermentation traits, the model

did not converge for most ethyl esters (Ethyl-propanoate, Ethylbutanoate, Ethyl-hexanoate,
Ethyl-octanoate and Ethyl-decanoate), and for Acetate Ratio and Acetic acid. These traits were

removed from the final analysis, which in the end included 28 traits.

Protein functional annotation. Cross-referencing MIPS micro-organism protein classifi-

cation [40], KEGG pathway classification [41–43] and Saccharomyces Genome database [44]

information, we attributed a single functional category to each protein.

The first two hierarchical levels of MIPS functional annotation were taken into account to

assign proteins to 34 different categories. All secondary levels were used for the 01.metabolism,

02.energy and 10.cell cycle and DNA processing categories, resulting in 20 different functional

categories. The 11.transcription category was subdivided into the transcription sub-group

(11.06 and 11.02) and into the RNA processing sub-group (11.04). Similarly, the 12.protein syn-
thesis category was split into the ribosomal proteins (12.01) and translation (12.04, 12.07, 12.10)

sub-groups, and the 20.transport category was split into the vacuolar transport (20.09) and

transport (20.01, 20.03) sub-groups.

By contrast, the first hierarchical category was used for 14.protein fate, 30.signal transduc-
tion, 32.detoxification, 34.homeostasis, 40.cell growth and death, 42.cytoskeleton In addition, 16.
binding function and 18.02.regulation category were fused into 16.binding, and 32.transposon
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movement was fused with 10.01.DNA processing. Finally, 41.mating and 43.budding were

included in the 10.03.cell cycle category.

DynamosYeast model. We used the DynamoYeast model, which is a previously devel-

oped Constraint-Based Model of central carbon metabolism in S. cerevisiae [25]. The main

metabolic pathways included in this model are upper and lower glycolysis, the pentose phos-

phate pathway (PPP), glycerol synthesis, ethanol synthesis and the reductive and oxidative

branches of the tricarboxylic acid (TCA) cycle. This model consists of 60 metabolites and 70

reactions, including one input flux, the uptake of glucose, and 10 output fluxes (Fig 1), taking

place in the cytosol, mitochondria or in the extracellular medium.

The range of variation of the fluxes was fixed to allow for alcoholic fermentation. The

following reactions were considered to be irreversible with vinf = 0: Oaa_Mal (malate

dehydrogenase), Mal_Fum (fumarase), Fum_Succ (fumarate reductase), and their respective

mitochondrial counterparts Oaa_Mal_m, Mal_Fum_m and Fum_Succ_m, and Oaa_Cit_m
(mitochondrial citrate synthase) (fluxes are denoted through the abbreviation of the substrate

and the product connected by “_”, followed by the enzyme name in parentheses). The fructose

reaction was not included in the model, and Glu_Akg_m (mitochondrial glutamate dehydro-

genase), as well as Aceto_But (butanediol dehydrogenase) were set to zero. In all, there were 16

reversible and 52 irreversible reactions.

Following the conventions implemented by many genome-scale metabolic models, many

reactions of the DynamoYeast model of central carbon metabolism in S. cerevisiae are associ-

ated with genes and proteins via gene-protein-reaction (GPR) associations [45].

In general, there can be a many-to-many mapping of genes to reactions; for example, one

reaction can be linked to proteins (P1 and P2) or P3. The first Boolean AND relationship

means that the reaction is catalyzed by a complex of two gene products. Since the maximum

of the complex is given by the minimum of its components, the weighting of the complex is

defined as: P1 AND P2 = min(P1, P2). The OR relationship allows for alternative catalysts of

the reaction. Thus, total capacity is given by the sum of its components: (P1 AND P2) OR

P3 = min(P1, P2) + P3 [12]. Following these rules for each of the 11 yeast strains and the 55

hybrids at both temperatures, we estimated the protein abundances associated with the reac-

tions of the DynamoYeast model, resulting in 33 reaction weightings out of 70.

Among the 70 reactions, only six were associated to protein complexes with an AND Bool-

ean relationship, and four of them (in bold in the right column) matched two proteins of the

HeterosYeast proteomic dataset (proteins in bold, Table 2).

We checked that pairwise correlations between proteins involved in the same complex

were either positive or null, suggesting the absence of post-translational regulation that would

change the overall enzyme concentration.

Methods

Constraint-based modeling of metabolic networks. Metabolic networks can be described

in terms of the relationship between M metabolites, m, and N reactions, v, at a given time t:

ðv;mÞt

Their topology can be expressed through the M ×N stoichiometric matrix S, in which rows cor-

respond to the stoichiometric coefficients of the corresponding metabolites in all reactions.

Under mass-balance assumptions and thermodynamic bounds of reaction rates, the

dynamics of the network are governed by the linear system of constraints and inequalities:

Sv ¼ _m ð5Þ
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vinf � v � vsup ð6Þ

where _m 2 RM
is the vector of the M metabolite input/output rates, v 2 RN

is the set of N
reactions, and vinf, vsup are the extremes of variation of the set of fluxes. Under a steady state

assumption, _m ¼ 0 and the feasible solution space is expressed as:

L � fv 2 RN jSv ¼ 0; vinf � v � vsupg ð7Þ

In general, N is larger than M and the solution space L has infinite cardinality.

Characterization of the feasible solution space. We characterized the feasible solution

space L through the posterior probability of flux values obtained by the Expectation Propaga-

tion (EP) algorithm described in [17].

Instead of exploring L by sampling, as classical methods do, [17] combined statistical phys-

ics and Bayesian approaches to infer the joint distribution of metabolic fluxes. To do so, given

a set of metabolite input/output rates, _m, they encoded the stoichiometric constraints within

the likelihood posterior probability, defining a Boltzmann-like distribution with an energetic

quadratic function

EðvÞ ¼
1

2
ðSv � _mÞ>ðSv � _mÞ ð8Þ

while the inequality constrains were encoded in the prior probability of fluxes. Using Bayes

theorem, this method provides a model for the posterior density of flux distribution.

Therefore, each point v in L follows the truncated multivariate normal distribution

8v 2 L; v � N Tðμ;Σjvinf ; vsup; _mÞ ð9Þ

where μ is the vector of the mean posterior values of fluxes and Σ the posterior variance-

covariance matrix of fluxes estimated with the EP algorithm.

For each set of metabolic fluxes v, the posterior probability of observing v can be calculated

at follows:

pv ¼ Pðvjμ;Σ; vinf ; vsup; _mÞ ð10Þ

Different values of extremes of variation can be used to model a particular process, for

example for modeling reactions known to be irreversible in a specific context, i. e.

vinfi ¼ 0 or vsupi ¼ 0

Table 2. Reactions associated to protein complexes with an AND Boolean relationship.

Proteins Reactions

(YOR136W AND YNL037C) Icit_Akg_m_nad

(YIL125W AND YDR148C AND YFL018C) Akg_Succoa_m

(YGR240C AND YMR205C) F6p_Fdp

(YBR221C AND YER178W AND YFL018C AND YGR193C AND YNL071W) Pyr_Accoa_m

(YGR244C AND YOR142W) Succoa_Succ_m

(YGL080W AND (YGR243W OR YHR162W)) Pyr_tm

https://doi.org/10.1371/journal.pcbi.1009157.t002
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or for introducing experimental data constraints, i. e.

vi ¼ vobsi � �

for the i-th reaction.

Given that μ and Σ depend on the imposed range (vinf, vsup) of internal and exchange fluxes,

metabolic fluxes will take on particular values with probabilities that will depend on a priori
knowledge and on the chosen metabolic process.

The algorithm implemented by [17] was translated into R code. Extraction of the stoichio-

metric matrix from the DynamosYeast model was performed with the sybil package in R [46].

Prediction of metabolic fluxes from proteomic data. In living systems, most metabolic

reactions are catalyzed by enzymes, and quantitative proteomic data retain information about

enzyme abundances. Therefore, the metabolism of a cell at a given time is characterized by the

set of fluxes, metabolites and protein abundances

ðv;m;EÞt

where E = (E1, E2, . . ., EN), and Ei is the abundance of enzyme i associated with the reaction

flux vi. Indeed, even though reaction rates are not directly proportional to enzyme abundances,

a degree of covariation between protein abundance and flux reaction rate can be expected at

the scale of the metabolic network. This can be used to infer intracellular metabolic fluxes with

reasonable accuracy [12].

Among all possible solutions in L, we chose the one that minimized the objective function:

Z ¼
1

pv

XN

i¼1

ðEi � jvijÞ
2

ð11Þ

i.e. the Euclidean distance between the observed protein abundances Eobs and the associated

fluxes, weighted by pv, the posterior probability of observing the set of metabolic fluxes v.

The properties of the truncated multivariate normal distribution ensure that the solution of

the objective function is unique and no sophisticated algorithm is needed to find this solution.

For each set of observations Eobs, we sampled Ns points of the feasible solution space. There-

fore, 8k 2 {1, 2, 3. . .Ns}, we obtained vk 2 L and pvk . We calculated Z(k) and selected the set of

flux values, vpredicted, for which Z(k) was the minimum.

In practice, it is never possible to associate each reaction of the metabolic network with a

protein abundance. First, quantitative proteomics is not exhaustive. Second, reactions in a

metabolic model are not always associated with an enzyme. Assuming a steady state condition

and introducing information about protein abundances and measured external metabolic

fluxes allows us to describe the system as:

ð1obsv þ 1obs v;mconst; 1obsEþ 1obs EÞt ð18Þ

where 1obs (1obs) is an indicator vector: its component-wise value is equal to 1 if the associated

flux/protein component is observed (unobserved), otherwise it is equal to 0. Taking this into

account, we reformulated the problem as follows:

• Observed fluxes were introduced as additional constraints with

vi � N ðvobsi ; s
2
vi
Þ

where svi was set to a small value.
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• The objective function was calculated only on the subset of observed enzyme abundances:

Z ¼
1

pv

XNobs

i¼1

ðEi � jvijÞ
2

Predictions of metabolic fluxes were performed by coupling the DynamoYeast model to

our experimental data (protein abundances and CO2 reaction rates, the only measured flux in

our study). We constrained the solution space L by considering the maximum CO2 release

rate, measured at the same time point as the one used in the proteomics analyses [20]. For

each strain × temperature combination a unique solution was obtained by minimizing the

objective function, defined in Eq 11, from the set of observations.

Testing the prediction algorithm. The prediction algorithm is based on the assumption

that fluxes and enzyme abundances covary. Indeed, any reaction rate can be expressed as a

more or less complex function of enzyme abundances, kinetic constants and metabolite con-

centrations [47]:

vi ¼ kcatiEif ðκ;m; EÞ

where kcat is the catalytic constant, κ is a set of other kinetic constants, E is the set of enzymes

abundances other than enzyme i. The f function can be more or less complex depending on

the mode of regulation.

To test the accuracy of the prediction of metabolic fluxes from protein abundance data, we

used the feasible solution space of the DynamoYeast model and three different functions relat-

ing reaction rates to enzyme abundances. Specifically, we reversed the relationship, expressing

protein abundance as a function of the reaction rate using a simplified formalism derived from

the Metabolic Control Theory [48, 49]

vinitial ¼
1

1

AiEi
þ
P

j6¼i

1

AJEj

where the A0js are positive or negative constant terms. Given that enzyme concentrations can-

not be negative, and taking 8j, Aj = ±1, we obtain the hyperbolic relation:

Ei ¼
vinitial

1 � vinitial

�
�
�
�

�
�
�
� ð12Þ

We also tested the predictions under the assumption that the relationship between protein

abundances and flux reaction rates was linear:

Ei ¼ kjvinitialj ð13Þ

k being an uniform random number k � Uð0:1; 3Þ
Finally, we considered the case where protein abundances and flux reaction rates are linked

by a sigmoidal function [50], which we approximated with a Hill function:

Ei ¼
vninitial

1 � vninitial

�
�
�
�

�
�
�
� ð14Þ

where n is the Hill coefficient, sampled in the set O = {2, 3, 4, 5}.

For each simulation, we sampled an initial set of fluxes vinitial 2 L. We estimated the com-

plete set of enzymatic protein abundances, Einitial using Eqs 12, 13 or 14. Then, we minimized

the objective function Z to predict the set of fluxes vpredicted that best fit enzyme abundances.
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Prediction accuracy was measured as the correlation coefficient between vpredicted and vinitial.

Computer simulations were performed to test the influence of two main parameters: (i) the

number of sampled points Ns; (ii) the number of quantified proteins, Nobs, included in the

minimization process.

We assumed a steady state condition ( _m ¼ 0) and sampled Ns points from the solution

space of the multivariate posterior joint distribution of fluxes obtained using the EP algorithm

[17]. We drew an additional point in solution space L, vinitial, and we calculated protein con-

centrations from the inverse problem. We retained the set of fluxes, vpredicted for which Z
was minimum. The numbers Nobs and Ns were let to vary (Ns 2 {102, 103, 104, 105, 106} and

Nobs 2 {1, 2, 3. . .}).

In terms of computational time, it would be expensive to consider all the possible combina-

tions of observed enzymatic proteins associated with the metabolic model that can be included

in Eq 11 (there are Nobs(1 + (Nobs − 1) + (Nobs − 1)(Nobs − 2) + � � � + (Nobs − 1)!) combinations).

Therefore, for a given Ns, our strategy was to randomly choose one-by-one a protein to be

included in the computation of the Z function, and therefore for the prediction of metabolic

fluxes vpredicted.

We randomly choose one reaction, v1, from the complete set of reactions in the model, and

we minimized

Z1 ¼
1

pv
ðE1 � jv1jÞ

2
ð15Þ

to select one solution vpredicted1 over the Ns possible solutions of L. At the next iteration, we ran-

domly chose an additional flux v2 and its associated protein abundance E2, and we minimized

Z2 ¼
1

pv

X2

i¼1

ðEi � jvijÞ
2

ð16Þ

to predict vpredicted2 . This procedure was performed until the complete set of reactions was

selected. In total, simulations were run a thousand times for different values of Ns and Nobs.

Testing the CBM coverage with the observed proteomic dataset. We performed a mod-

ular decomposition of the DynamoYeast model via the analysis of the null space (or kernel) of

model stoichiometric matrix to check that the 33 reactions that matched with observations of

protein abundances were distributed over the main pathways.

The stoichiometric matrix S in the DynamoYeast model is of dimension 60 × 70 and of

rank 54, meaning that 16 among the 70 reactions are strictly coupled. Thus, the dimension of

the null space is Ker(S) = 16, roughly meaning that we need to know 16 independent flux com-

binations to predict changes in metabolic rates. Each reaction is associated with a 16 dimen-

sional row vector in the null-space 70 × 16 matrix. We ran a hierarchical clustering using as a

metric the symmetric matrix of the angles between the reaction vectors in the null-space [28]

and we found, as previously shown, that the reactions cluster within metabolic pathways (S4

Fig). We found that the 33 reactions that matched with observations of protein abundances

were distributed over the main pathways (S4 Fig).

In addition, we used our simulation method to check the correlations between initial and

predicted fluxes by choosing as being observed the same 33 fluxes as in the experimental

dataset.

PLOS COMPUTATIONAL BIOLOGY Data integration uncovers the metabolic bases of phenotypic variation in yeast

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009157 July 15, 2021 22 / 27

https://doi.org/10.1371/journal.pcbi.1009157


Statistical analysis

In order to study the main features characterizing fermentation and life-history traits in the

HeterosYeast dataset, we analyzed the variation components of data from three different levels

of cellular organization: protein abundances E, metabolic fluxes V and fermentation/life-his-

tory traits T:

D ¼ ðE;V;TÞ

The total number of observations was 127 strain × temperature combinations (66 strains, 2

temperatures, minus 5 missing data due to the poor fermenting abilities of some strains). The

whole dataset consisted of 615 protein abundances, 70 metabolic fluxes and 28 fermentation

and life-history traits. Two types of analyses were performed using different multivariate

approaches: analyses at a single phenotypic level and analyses integrating the different levels.

We ran Principal Component Analyses (PCA) to identify the most important sources of

variation within the datasets and the similarities/differences between the different phenotypic

levels. We included prior knowledge regarding the yeast species in order to perform a super-

vised sparse Partial Least Squares Discriminant Analysis (sPLS-DA) to extract and combine

discriminating features that best separate the different groups. The number of selected features

was tuned using 3-fold cross-validation repeated 1,000 times.

In addition, the three levels of cellular organization were integrated in an unsupervised

framework. First, we performed a regularized Canonical Correlation Analysis (rCCA) between

fluxes V and integrated traits T, using the mixomics package in R [33, 51] to search for the

key features that maximized the correlation between metabolic fluxes and fermentation traits.

Second, since the correlation matrix between traits and fluxes was clearly structured, we com-

puted the matrix of Euclidean distance between traits, based on their correlation with meta-

bolic fluxes, and clustered traits using the hclust package in R. This procedure allowed us to

define five groups of traits that showed similar correlation patterns with fluxes of the central

carbon metabolism. Finally, we stored the linear correlation coefficients between proteins

(P = 615) and traits (T = 28) in a (T × P) matrix and ran a Linear Discriminant Analysis to

search for proteins that best discriminate between groups of traits, considering traits as indi-

viduals. Pearson’s chi-square test of enrichment was computed on protein functional category

frequencies taking as prior probability the expected category frequency found in the MIPS

database.

The same procedure was applied ignoring the flux level. rCCA was run between fluxes V

and integrated traits T, and a hierarchical clustering was performed to group traits according

to their correlations with protein abundances. Then a Linear Discriminant Analysis was per-

formed to find the proteins that best discriminate between groups of traits.

Supporting information

S1 File. Sampling the solution space. Comparison of the posterior density distribution

obtained by Hit and Run (HR) sampling with the Expectation Propagation (EP) algorithm.

(PDF)

S1 Fig. Marginal probability densities of sixteen randomly chosen fluxes of carbon metabo-

lism in yeast. The histograms represent the HR result for T� 107 sampling points. The red

line is the result of the EP estimate.

(TIF)

S2 Fig. Comparison of the results of HR versus EP. The plots on the left are scatter plots

of the means and on the right variances of the approximated marginals computed via EP
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against the ones estimated via HR for an increasing number of explored configurations T, top

T� 106, bottom T� 107.

(TIF)

S3 Fig. Comparison of the results of HR versus EP. The plot shows the relationship between

8 pairwise fluxes. Correlation ellipses computed by the EP algorithm are drawn in red. Dot

points represent the mean value of fluxes computed with EP. For HR samples, T� 5 � 106.

(TIF)

S4 Fig. Modular decomposition of the DynamoYeast model via null space analysis. The

null space of the stoichiometric matrix of the DynamoYeast model is spanned by the columns

of the 70 reactions × 16 null-space matrix. Hierarchical clustering is applied using as a metric

the angles between the 16 dimensional row vectors reactions. The reactions associated with

enzymatic proteins quantified in this study are in blue, the other reactions present in the Dyna-

moYeast model are in black.

(TIF)

S5 Fig. Correlation between fermentation and life-history traits and the first two axes of the

Principal Component Analysis. The figure shows traits for which the correlation was> 0.5 or

< −0.5 (p-value < 0.05). The first axis is negatively correlated with growth rate (r), CO2 fluxes

(Jmax and Vmax), Hexanol and Decanoic acid and positively correlated with carrying capacity (K)

and fermentation times (AFtime, t-lag, t-75, t-45). The second axis is positively correlated with

cell size (Size-t-Nmax) and Ethanol at the end of fermentation, and negatively correlated with

aroma production at the end of fermentation and Sugar.Ethanol.Yield.

(TIF)

S6 Fig. Correlation between metabolic fluxes and the first two axes of the sparse Partial

Least Square Discriminant Analysis. The CO2, pyruvate decarboxylase, ethanol, alcohol

dehydrogenase, 6-phosphogluconolactonase and phosphogluconate dehydrogenase fluxes

contributed to the first axis of the sPLS-DA, and were all negatively correlated with it. The

second axis was negatively correlated with the mitochondrial acetyl-CoA formation, mito-

chondrial citrate synthase, mitochondrial aconitate hydratase, mitochondrial isocitrate

dehydrogenase (NAD+) and mitochondrial transport fluxes of pyruvate, oxaloacetate and

acetaldehyde fluxes, while positively correlated with the mitochondrial transport of 2-oxodi-

carboylate, ethanol and CO2 fluxes.

(TIF)

S7 Fig. Linear Discriminant Analysis of protein abundances using as discriminant features

the groups identified on the basis of the correlations between integrated traits and protein

abundances. Projection of the 28 fermentation/life-history traits onto the first two axes of a

Linear Discriminant Analysis of protein abundances. Each dot corresponds to one fermenta-

tion or life-history trait.

(TIF)

S1 Table. Metabolites of the DynamoYeast model. C and M stand for cellular and mitochon-

drial, respectively.

(XLSX)
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