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Both adenosine A1 receptor and cGMP inhibit synaptic transmission at the
hippocampus and recently it was found that A1 receptor increased cGMP levels in
hippocampus, but the role of cGMP on A1 receptor-mediated inhibition of synaptic
transmission remains to be established. In the present work we investigated if blocking
the NOS/sGC/cGMP/PKG pathway using nitric oxide synthase (NOS), protein kinase
G (PKG), and soluble guanylyl cyclase (sGC) inhibitors modify the A1 receptor effect
on synaptic transmission. Neurotransmission was evaluated by measuring the slope
of field excitatory postsynaptic potentials (fEPSPs) evoked by electrical stimulation at
hippocampal slices. N6-cyclopentyladenosine (CPA, 15 nM), a selective A1 receptor
agonist, reversibly decreased the fEPSPs by 54 ± 5%. Incubation of the slices with
an inhibitor of NOS (L-NAME, 200 µM) decreased the CPA effect on fEPSPs by
57 ± 9% in female rats. In males, ODQ (10 µM), an sGC inhibitor, decreased the
CPA inhibitory effect on fEPSPs by 23 ± 6%, but only when adenosine deaminase
(ADA,1 U/ml) was present; similar results were found in females, where ODQ decreased
CPA-induced inhibition of fEPSP slope by 23 ± 7%. In male rats, the presence of
the PKG inhibitor (KT5823, 1 nM) decreased the CPA effect by 45.0 ± 9%; similar
results were obtained in females, where KT5823 caused a 32 ± 9% decrease on the
CPA effect. In conclusion, the results suggest that the inhibitory action of adenosine
A1 receptors on synaptic transmission at hippocampus is, in part, mediated by the
NOS/sGC/cGMP/PKG pathway.

Keywords: adenosine A1 receptor, cGMP, hippocampus, synaptic transmission, soluble guanylyl cyclase, protein
kinase G

INTRODUCTION

Adenosine A1 receptor activation and cyclic guanosine monophosphate (cGMP) have similar
actions at the nervous system. Both decrease neurotransmitter release and synaptic transmission,
including excitatory synaptic transmission at the hippocampus (Dunwiddie and Hoffer, 1980;
Nordström and Bartfai, 1981; Prast and Philippu, 2001; Feil and Kleppisch, 2008; Serpa et al., 2009;
Dias et al., 2013), protect against neurotoxic insults (Montoliu et al., 2001; Ribeiro et al., 2003;
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Orio et al., 2007; Serpa et al., 2015b) and modulate synaptic
plasticity, including long-term depression at the hippocampus
(Santschi et al., 2006; Feil and Kleppisch, 2008; Dias et al., 2013).
However, the relationship between adenosine A1 receptors and
cGMP remains to be clarified.

Cyclic guanosine monophosphate is produced by the action
of guanylyl cyclases (GC), which are a family of enzymes that
catalyze the conversion of GTP to cGMP. There are two types of
GC, the soluble form (sGC), activated by nitric oxide (NO), and
the particulated form (pGC), which is a receptor for extracellular
ligands such as natriuretic peptides (Lucas et al., 2000). cGMP
is degraded by phosphodiesterases (PDEs), which catalyze its
hydrolysis (Kleppisch, 2009). The main effector of cGMP is
protein kinase G (PKG), which associates with the scaffold
protein GKAP. GKAP targets different PKG isoforms to different
subcellular compartments (Schlossmann and Desch, 2009) where
the PKG isoforms phosphorylate specific substrate proteins.

The adenosine A1 receptor is the most abundant adenosine
receptor in the central nervous system (Ribeiro et al., 2003).
It is coupled to Gi/o proteins, inhibiting adenylyl cyclase
and consequently decreasing cyclic adenosine monophosphate
(cAMP) formation and protein kinase A (PKA) activation
(Fredholm et al., 2001; Serpa et al., 2015a). Furthermore
adenosine A1 receptor also regulates phospholipase C activity
(Cascalheira and Sebastião, 1998; Cascalheira et al., 2002),
inhibits N- and P/Q-type calcium channels (Ambrósio et al.,
1997) and activates inwardly rectifying potassium channels
(Takigawa and Alzheimer, 2002).

Previous studies have shown that NO donors inhibit synaptic
transmission in slices of hippocampus, and this inhibition was
blocked by adenosine A1 receptor antagonists (Boulton et al.,
1994; Broome et al., 1994). Later it was found that the inhibitory
effect of NO on synaptic transmission involves adenosine release
to the extracellular medium and is unaffected by inhibition of
sGC (Arrigoni and Rosenberg, 2006). On the other hand, NO
was shown to enhance the inhibitory effect of 2-chloroadenosine
(CADO) in synaptic transmission and this effect of NO was
blocked by inhibitors of sGC (Fragata et al., 2006). Our group
recently observed that activation of the adenosine A1 receptor
increased cGMP levels in the hippocampus (Serpa et al., 2014).
However, whether the inhibitory effect of adenosine A1 receptor
on synaptic neurotransmission is mediated by cGMP is yet
unknown. To answer this question we tested if blockade of
components of the cGMP signaling pathway would modify
the inhibitory effect of adenosine A1 receptors in synaptic
transmission at rat the hippocampus.

MATERIALS AND METHODS

Hippocampal Slice Preparation
Young adult male and female Wistar rats (8–10 weeks old)
were handled according to European Community guidelines and
Portuguese law concerning animal care, and anesthetized with
Isoflurane before decapitation. Experiments were approved by
the ethical committee of the Institute of Molecular Medicine and
Faculty of Medicine, University of Lisbon. The brain was quickly

removed and the hippocampi dissected under ice-cold Krebs–
Henseleit solution with the following composition (mM): NaCl
118, NaHCO3 25, KCl 4.7, glucose 11.6, KH2PO4 1.2, MgSO4
1.2, CaCl2 1.3, gassed with O2 (95%), and CO2 (5%) (pH = 7.4).
After hippocampal dissection, transverse slices (400 µm thick)
were cut with a McIlwain tissue chopper and allowed to recover
in gassed Krebs–Henseleit solution at room temperature (22–
25◦C) for at least one hour (1h) before use. For recordings, the
slices were transferred to a recording chamber (1ml capacity) and
continuously perfused at 3 ml/min with Krebs–Henseleit buffer
maintained at 32◦C with a TC-202A temperature controller.
Drugs to be tested were applied to the perfusion solution.
Whenever testing the effect of a drug (test drug) in the presence of
another drug (modifier drug), the test drug was only added to the
bath after allowing a full effect of the modifier drug, i.e., the fEPSP
slope had to return to a stable value for at least 10min before the
second addition of the test drug to the slices. The usual procedure
was to apply the modifier drug 1 h after starting the washout of
the first application of test drug and for at least 30 min before
application of the test drug in its presence.

Recording Field Excitatory Post-synaptic
Potentials (fEPSP)
Field excitatory postsynaptic potentials (fEPSPs) were recorded
through an extracellular microelectrode (2–8 M� resistance,
filled with a 4 M NaCl solution) placed in stratum radiatum
of Cornus Ammonis 1 (CA1). Stimulation (rectangular 0.1
milliseconds pulses), was delivered once every 15 s through
a bipolar concentric wire electrode positioned in the Schaffer
collaterals-commissural fibers, in the stratum radiatum near
the CA3–CA1 border. The intensity of stimulus (80–200 µA
intensity) was adjusted to obtain a large fEPSP with a minimum
population spike contamination. To avoid supramaximal
stimulation, the stimulus intensity was also adjusted to obtain
a fEPSP slope within 50–80% of its maximum value under
supramaximally stimulating conditions. When using inhibitors
(modifier drug) of the NOS/sGC/PKG pathway, whenever the
effect of the inhibitor alone produced an increase of the fEPSP
slope higher than 80% of its maximum value, after the effect of
the antagonist stabilized and prior to the second application of
CPA (test drug), the intensity of the stimulus was also adjusted
to obtain a baseline roughly identical to that obtained before the
first application of CPA. Extracellular recordings were obtained
with an Axoclamp 2B amplifier and digitized (using a National
Instruments BNC 2120 interface at a sample interval of 50 µs
(20 kHz)). Individual fEPSPs were monitored, and averages of
eight consecutive responses were recorded and analyzed through
the LTP 230d software (Anderson and Collingridge, 2001).
Responses were quantified as the slope of the initial phase of the
averaged fEPSPs, since slope measures are considered a more
accurate measure of fEPSP magnitude than the amplitude, due to
eventual contamination by the population spike.

Drugs
N6-cyclopentyladenosine (CPA) was purchased from Tocris,
(9S,10R,12R)-2,3,9,10,11,12-Hexahydro-10-methoxy-2,9-dimet-

Frontiers in Pharmacology | www.frontiersin.org 2 April 2016 | Volume 7 | Article 103

http://www.frontiersin.org/Pharmacology/
http://www.frontiersin.org/
http://www.frontiersin.org/Pharmacology/archive


Pinto et al. cGMP Mediates Adenosine Receptor Activity

FIGURE 1 | Effect of CPA (15 nM) on the slope of fEPSPs in hippocampal slices of male rats. (Left): Superimposition of averaged time course changes of
fEPSP slope induced by two consecutive applications of CPA (15 nM) separated by 90 min, in the absence of any additional drugs. Each point in the ordinates
corresponds to the average ± SEM of fEPSP slopes, normalized for its value before addition of CPA, of three independent experiments. The horizontal bar indicates
the time of perfusion with CPA. Right panel: Representative traces of average of fEPSPs recorded before and after 40 min application of CPA (15 nM), corresponding
to the first (upper) or to the second (lower) application of CPA, are shown. The effect of CPA was obtained after 40 min of exposure to the drug, when the CPA
effect stabilized. No significant differences were observed between the two applications of CPA (P > 0.05, paired Student’s t-test).

hyl-1-oxo-9,12-epoxy-1H-diindolo[1,2,3-fg:3′ ,2′,1′-kl]pyrrolo
[3,4-i][1,6]benzodiazocine-10-carboxylic acid methylester
(KT5823) was from Santa Cruz Biotecnology, 1H-
[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one (ODQ) and NG-nitro
-L-arginine methylester (L-NAME) were from Sigma and
Adenosine deaminase (ADA) was from Roche. All other reagents
used were from analytical grade.

Data Analysis and Statistics
Data was analyzed through the GraphPad Prism 6.0 software and
expressed as mean ± SEM from n independent experiments. To
allow comparisons between different experiments slope values
were normalized, taking as 100% the averaged five values
obtained immediately before applying the test drug(s). The
significance of the differences between the means obtained in two
different conditions, or when comparing means with zero, was
evaluated by Student’s t-test, where the paired Student’s t-test was
used whenever evaluating the significance of differences between
two conditions tested in a paired way in the same experiment.
Statistically significant differences were considered significant
for values of P < 0.05. To compare the effect of CPA, in the
absence and in the presence of a test drug, across gender, two-
way ANOVA was used, followed by least significant difference
(LSD) post hoc test and values of P < 0.05 were considered
to represent statistically significant differences. Statistical power
(Pw) of significance tests used, was calculated retrospectively
using the PASS 14 Power Analysis and Sample Size Software
(NCSS, LLC. Kaysville, UT, USA).

RESULTS

Adenosine A1 Receptor Activity Is
Dampened by a NOS Antagonist
To allow comparisons of the effects of an agonist of adenosine A1
receptor in the absence and presence of a modifier drug in the
same slice, we first tested if two consecutive applications of the
adenosine A1 receptor selective agonist, 8-cyclopentyladenosine
(CPA), separated by 90 min, caused a similar inhibition of
evoked fEPSPs. CPA was used at a concentration (15 nM)
previously shown to be selective for adenosine A1 receptor at
hippocampal slices (Sebastião et al., 1990). As illustrated in
Figure 1, no significant differences (P > 0.05, paired Student’s
t-test; Pw = 6%), between the fEPSP inhibition caused by the
two consecutive applications of CPA were detected. Indeed, the
first application of CPA (15 nM) decreased the fEPSP slope by
40 ± 2% (n = 3) whereas the second application decreased
it by 41 ± 2% (n = 3); the time course of the inhibition as
well as the washing out of the drug effect was also similar for
each of the applications (Figure 1). Therefore, in the subsequent
experiments, the effect of the 1st application of CPA (15 nM)
was used as internal control, when testing the effect of a second
application of CPA in the presence of any other drug.

To evaluate whether production of NO, an activator of soluble
guanylyl cyclase, contributes to the inhibition of fEPSPs caused by
adenosine A1 receptor activation, the effect of CPA in the absence
and in presence of L-NAME, a NOS inhibitor (Lessmann et al.,
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2011), was compared in the same slice. In these experiments,
L-NAME was applied to the preparations at least 40 min after
starting to washout the first CPA application and 30 min before
addition of the second CPA application, which was added to
the slices only after stabilization of fEPSPs slope in the presence
of L-NAME. The slope of fEPSPs for the last 10 min before
application of CPA was taken as 100%, to allow comparison
between the effects of CPA in the two conditions. Male and
female animals were used and data analyzed separately since we
previously found that adenosine A1 receptor modulation of the
NO/cGMP pathway in the hippocampus depended on gender
(Serpa et al., 2014). As illustrated in Figure 2, in the presence of
L-NAME (200 µM) the inhibitory action of CPA on fEPSPs was
clearly attenuated in slices taken from female rats. CPA (15 nM)
alone depressed the fEPSP slope by 54 ± 5%, whereas in the
presence of L-NAME (200 µM) it decreased the fEPSP slope by
only 23 ± 6% (n = 5; P < 0.01, paired Student’s t-test, compared
with CPA alone; Pw > 95%), which corresponds to a 57 ± 9%
reduction (n= 5; P < 0.05 compared with zero) of the CPA effect.
In experiments performed with male rats, L-NAME also showed
a tendency to dampen the effect of CPA, since CPA (15 nM)
alone depressed the fEPSP slope by 60 ± 9% whereas in the
presence of L-NAME (200 µM) it decreased the fEPSP slope by
53 ± 10% (n = 4; P = 0.06, paired Student’s t-test, compared
with CPA alone; Pw = 52%). This corresponds to a 14 ± 6%
(n = 4) decrease of the CPA effect produced by L-NAME, which
was significantly lower (P < 0.01, Student’s t-test; Pw > 85%)
than the % decrease obtained in female rats (57 ± 9%, n = 5).
L-NAME per se, added to the slices after the first washout of
CPA, caused an excitatory effect on fEPSPs either in slices from
male or female rats (range: −5.5 to 120%; average: 55 ± 16%
increase, n = 9, males and females, P < 0.01 when compared
with zero, Student’s t-test; Pw > 85%), no significant differences
between the effect in both genders being detected (P > 0.70,
Student’s t-test; Pw = 5%). Maximal effects of L-NAME on fEPSP
slope were achieved within 20 min after its application to the
slices, CPA being applied to the slices only after at least 30 min
of L-NAME perfusion. No correlation was detected between the
effect of L-NAME per se on fEPSP slope and the % attenuation of
the effect of CPA (Figure 2D).

Inhibition of Soluble Guanylyl Cyclase
Decreased the Effect of CPA on fEPSP
Slope: Dependence on Adenosine
Deaminase
The target for NO is the soluble guanylyl cyclase, that catalyses the
formation of cGMP fromGTP. To evaluate if inhibition of fEPSPs
caused by A1 receptor activation could require guanylyl cyclase
activity, we next compared the effect of CPA in the absence and
in the presence of ODQ, a soluble guanylyl cyclase irreversible
inhibitor. As illustrated in Figure 3A, the presence of ODQ, at a
concentration selective for guanylyl cyclase (Fragata et al., 2006),
did not affect the inhibitory effect of CPA on fEPSPs recorded
from hippocampal slices taken either from male or female rats.
Application of ODQ alone, at least 40 min after starting the
first washout of CPA and 30 min before addition of the second

CPA application, increased the fEPSP slope by 17 ± 3% in males
(n = 3; P < 0,05, when compared with zero, Student’s t-test;
Pw > 80%) and by 29 ± 4% in females (n = 3; P < 0,02, when
compared with zero, Student’s t-test; Pw > 90%).

We then questioned if endogenous adenosine was interfering
with A1 receptor activity in a way that it was masking the effect
of ODQ on CPA-mediated inhibition of the fEPSP slope. To
assess that issue we repeated the above experiments but in the
presence of ADA, that metabolizes adenosine into inosine (see
Lopes et al., 1999). ADA (1 U/ml) was present throughout the
experiment, thus during the first and second applications of CPA.
The inhibitory effect of CPA (15 nM) on fEPSPs slope obtained
in the absence of ADA, 37 ± 4% (n = 7, males and females),
was increased to 50 ± 3% (n = 9, males and females) in the
presence of ADA (P < 0.02, Student’s t-test; Pw = 70%). In
the experiments performed with ADA present, ODQ (10 µM)
attenuated the inhibitory effect of CPA (15 nM) on the fEPSP
slope, the attenuation being statistically significant either inmales
or females. Indeed, in the presence of ODQ, the effect of CPA was
attenuated (Figures 3B–D) from 50 ± 4% to 39 ± 6% in males
(n = 5; P < 0.02; paired Student’s t-test; Pw > 80%) and from
51± 5% to 39%± 6% in females (n= 4; P< 0.05; paired Student’s
t-test; Pw = 80%), corresponding to an attenuation of CPA effect
of 23 ± 6% in males and 23 ± 7% in females. The effect of CPA
(15 nM), as well as the dampening of the effect of CPA (15 nM)
by ODQ (10µM), were identical in both genders (P > 0.05, Two-
Way ANOVA, post hoc LSD test). ODQ (10µM) per se but in the
presence of ADA (1 U/ml) increased the fEPSP slope by a similar
magnitude (range: −2.0 to 64%, average: 21 ± 6%, n = 9, males
and females, P < 0.01 when compared with zero, Student’s t-test;
Pw > 80%) as in the absence of ADA, no significant differences
being detected in the magnitude of the effect in hippocampal
slices taken from male or female rats (P > 0.3, Student’s t-test;
Pw= 20%). Furthermore, the effect of ODQper se in the presence
of ADA didn’t differ (P > 0.85, student’s t-test; Pw= 5%) from its
effect in the absence of ADA (23 ± 3% increase, n = 6, males and
females). No correlation was detected between the magnitude of
the increase of fEPSP slope caused by ODQ and the % attenuation
of the effect of CPA caused by this guanylyl cyclase inhibitor
(Figure 3E).

The Inhibitory Effect of CPA on fEPSP
Slope Is Attenuated by a Protein Kinase
G (PKG) Inhibitor
The biological actions of cGMP are predominantly due to
activation of PKG. We thus evaluated whether the effect of
adenosine A1 receptors in synaptic transmission depend on PKG
activity, by comparing the effect of CPA in the absence and in the
presence of a selective PKG inhibitor, KT5823. In hippocampal
slices from either male (Figures 4B,C) or female (Figures 4A,C)
rats, the inhibitory effect of CPA (15 nM) on fEPSPs was
significantly (P < 0.05) attenuated in the presence of KT5823,
which was used at a concentration (1 nM) known to be selective
for PKG (Reyes-Harde et al., 1999). Indeed, in hippocampal
slices from male rats, CPA (15 nM) alone depressed the fEPSP
slope by 44 ± 11% while in the presence of KT5823 (1 nM)
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FIGURE 2 | Nitric oxide (NO) synthase antagonist L-NAME (200 µM) dampened CPA-induced inhibition of synaptic transmission in hippocampal slice
of female (A) and male (B) rats. CPA (15 nM) was first applied for 40 min (control time course) and washed-out for a minimum of 40 min more. L-NAME (200 µM)
was then applied for 30 min and throughout the second application of CPA (test time course). Control and test time courses were performed in the same
hippocampal slice. (A,B): Superimposition of timecourses obtained for female (A, left) and male (B) rats; each point in the ordinates corresponds to the
mean ± SEM of four experiments for males rats and five experiments for female rats; in each experiment a point corresponds to the average of eight consecutive

(Continued)
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FIGURE 2 | Continued

fEPSP slopes; the time-distance between points corresponds to 2 min; 100% represents average fEPSP slope recorded for 10 min before applying CPA under each
testing condition. Representative traces of averaged fEPSPs recorded before and after 40 min application of CPA, in the absence (upper) or in the presence (lower)
of L-NAME, are shown for females (A, right). As one may observe in the superimposition of time courses, the effect of CPA was dampened by the presence of
L-NAME in females, without interfering with the washout of CPA. (C): Comparison between average of percentage inhibition produced by CPA in the absence (left) or
in the presence (right) of L-NAME is shown for females (upper graphic) and males (lower graphic); the bars represented the average ± SEM after stabilization of the
inhibitory effect of CPA. ∗P < 0.008 (Paired Student’s t-test). (D): Absence of correlation between the effect of L-NAME per se on fEPSP slope and the % attenuation
of the effect of CPA by L-NAME (P > 0.05), for males and females together.

it decreased the fEPSP slope by 22 ± 3%, which corresponds
to a 45 ± 9% attenuation of the CPA effect (n = 4; P < 0.02,
compared with zero, Student’s t-test; Pw > 90%). With female
rats the results were similar to those obtained with male rats,
since CPA (15 nM) alone depressed the fEPSP slope by 50 ± 4%
whereas in the presence of KT5823 (1 nM) it decreased the fEPSP
slope by 34 ± 4% (n = 5; P < 0.05, compared with CPA alone,
paired Student’s t-test) corresponding to a 32 ± 9% decrease
in CPA effect (P < 0.02, compared with zero, Student’s t-test;
Pw = 80%). Application of KT5823 (1 nM) alone for 30 min,
after the first washout of CPA and before the addition of CPA
in its presence, increased the fEPSPs either in slices from male or
female rats (range: 4.0 to 65%; average: 24 ± 7% increase, n = 9,
males and females, P < 0.01 when compared with zero, Student’s
t-test; Pw > 85%), no significant differences being detected in the
magnitude of the effect in hippocampal slices taken from male or
female rats (P > 0.85, Student’s t-test; Pw = 5%). Furthermore,
no correlation was observed between the magnitude of the effect
of KT5823 per se and the % attenuation of the effect of CPA by
KT5823 (Figure 4D).

DISCUSSION

The main finding in the present work is that the NOS/sGC/PKG
pathway plays a role in the adenosine A1 receptor-mediated
inhibition of excitatory synaptic transmission in the
hippocampus. This is in accordance with the recent finding
that adenosine A1 receptor activation increases cGMP formation
at the hippocampus (Serpa et al., 2014) where cGMP decreases
neurotransmitter release (Nordström and Bartfai, 1981).

Evidences of interaction between adenosine A1 receptor and
the NOS/sGC/PKG pathway have been previously reported. It
was shown that in the hippocampus (Saransaari and Oja, 2004)
and ventral striatum (Fischer et al., 1995) the release of adenosine
is markedly potentiated by NO donors and inhibited by NOS
inhibitors, suggesting that endogenous NO modulates adenosine
release. In fact, it has been suggested that the inhibition of field
EPSPs caused by NO at the hippocampus is mediated by NO-
induced release of adenosine which subsequently acts to depress
neurotransmission through A1 receptors (Fallahi et al., 1996).
Accordingly, NO-mediated inhibition of synaptic transmission
in hippocampal slices was blocked by an adenosine A1 receptor
antagonist (Boulton et al., 1994; Broome et al., 1994). However,
this effect of NO might not be mediated by sGC activation
since inhibition of soluble guanylyl cyclase did not affect the
inhibitory effect of NO on synaptic transmission (Arrigoni and

Rosenberg, 2006). Regarding synaptic plasticity, most studies
indicate that it is facilitated by activation of the NOS/sGC/PKG
pathway (Bohme et al., 1991; Arancio et al., 1995; Boulton
et al., 1995; Reyes-Harde et al., 1999), while A1 receptors usually
attenuate synaptic plasticity induced by electrical stimulation
(de Mendonça and Ribeiro, 2000). However, activation of
adenosine A1 receptor together with the simultaneous increase
in cGMP concentration elicited by zaprinast, suffices to induce
chemical LTD (Santschi et al., 2006). On the other hand, the
inhibitory effect of A1 receptor on basal synaptic transmission
is mimicked by activation of the NOS/sGC/PKG pathway,
since stimulating NOS, activating soluble guanylyl cyclase
or elevating concentrations of intracellular cGMP depressed
synaptic transmission in CA1 hippocampal neurons (Lei
et al., 2000). In accordance with an inhibitory action of the
NOS/sGC/PKG pathway on basal synaptic transmission are the
present observations that inhibitors of NOS (L-NAME), sGC
(ODQ), and PKG (KT5823) facilitate fEPSPs.

Adenosine A1 receptor-mediated inhibition of synaptic
transmission can be potentiated by an NO donor, an action
blocked by the sGC antagonist ODQ, suggesting a facilitatory
effect of cGMP on the adenosine A1 receptor effect at
the hippocampus (Fragata et al., 2006). Concerning the role
of cGMP on adenosine A1 receptor-dependent activity, first
evidence comes from a recent study showing that the inhibitory
effect of peripheral adenosine A1 receptors on inflammatory
hypernociception was blocked by sGC and PKG inhibitors (Lima
et al., 2010). We now report that when the activity of components
of the NOS/sGC/PKGpathway was blocked by the corresponding
selective inhibitors (L-NAME, ODQ, and KT5823) the inhibitory
effect of adenosine A1 receptors on hippocampal synaptic
transmission was attenuated, thus indicating that the cGMP
signaling cascade contributes in part for the inhibitory action
of adenosine at excitatory synapses. The fact that removal of
endogenous adenosine with ADA did not affect the potentiating
effect of ODQ per se on fEPSP and, on another hand, the
absence of correlation between the magnitude of the increase
of fEPSP slope caused by either ODQ, L-NAME, or KT5823
and the % attenuation of the effect of CPA caused by these
inhibitors also strongly suggest that the potentiating effects of
ODQ, L-NAME, or KT5823 per se on fEPSP slope are not
mediated by dampening of tonic activation of A1 receptors
by endogenous adenosine. Interestingly, we found that the
dampening of the A1 receptors on synaptic transmission by
the NOS inhibitor, L-NAME, was stronger in females than
in male rats, suggesting that the NOS-mediated inhibition of
synaptic transmission elicited by adenosine A1 receptor plays
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FIGURE 3 | The decrease of CPA-mediated inhibition of synaptic transmission by the sGC antagonist ODQ in males (A, left; B) and females (A, right;
C) rats is unmasked by the presence of ADA (B,C). CPA (15 nM) was first applied for 40 min (control time course) and washed-out for a minimum of 40 min
more. ODQ (10 µM) was then applied for 30 min and throughout the second application of CPA (test time course). Control and test time courses were performed in
the same hippocampal slice. (A–C): Superimposition of timecourses obtained for males (A,B, left) and female (A, right; C); each point in the ordinates corresponds
to the average of three to five experiments performed; in each experiment a point corresponds to the average of eight consecutive fEPSP slopes; the time-distance
between points corresponds to 2 min; 100% represents average fEPSP slope recorded for 10 min before applying CPA under each testing condition. Representative
traces of averaged fEPSPs recorded before and after 40 min application of CPA in the presence of ADA and in the absence (upper) or in the presence (lower) of
ODQ, are shown for males (B, right). As one may observe in the superimposition of time courses in (A), the effect of CPA and washout was not modified by the
presence of ODQ. The presence of ADA (1 U/ml) unmasked the dampening effect of ODQ on CPA-mediated inhibition of synaptic transmission (B,C) in male and
female rats hippocampal slices. (D): Comparison between average of percentage inhibition by CPA in the presence of ADA and in the absence (left) or in the
presence (right) of ODQ is shown for males (upper graphic) and females (lower graphic); the bars represent average ± SEM after stabilization of the inhibitory effect
of CPA. ∗P < 0.05 (Paired Student’s t-test). (E): Absence of correlation between the effect of ODQ per se on fEPSP slope and the % attenuation of the effect of CPA
by ODQ (P > 0.05), in the presence of ADA, for males and females together.
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FIGURE 4 | KT5823 attenuated the inhibition of synaptic transmission induced by CPA in the CA1 area of hippocampal slices of female (A) and
male (B) rats. CPA (15 nM) was first applied for 40 min (control time course) and washed-out for a minimum of 40 min more. KT5823 (1 nM) was then applied for
30 min and throughout the second application of CPA (test time course). Control and test time courses were performed in the same hippocampal slice. (A,B):

(Continued)
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FIGURE 4 | Continued

Superimposition of timecourses obtained for female (A, left) and male (B) rats; each point in the ordinates corresponds to the mean ± SEM of four experiments for
male and five experiments for female rats; in each experiment a point corresponds to the average of eight consecutive fEPSP slopes; the time-distance between
points corresponds to 2 min; 100% represents average fEPSP slope recorded for 10 min before applying CPA under each testing condition. Representative traces of
averaged fEPSPs recorded before and after 40 min application of CPA, in the absence (upper) or in the presence (lower) of KT5823, are shown for females (A, right).
As one may observe in the superimposition of time courses, the effect of CPA decreased in the presence of KT5823, without interfering with the washout of CPA.
(C): Comparison between average of percentage inhibition produced by CPA in the absence (left) or in the presence (right) of KT5823 is shown for females (upper
graphic) and males (lower graphic); the bars correspond to average ± SEM after stabilization of the inhibitory effect of CPA. ∗P < 0.05 (Paired Student’s t-test). (D):
Absence of correlation between the effect of KT5823 per se on fEPSP slope and the % attenuation of the effect of CPA by KT5823 (P > 0.05), for males and females
together.

a more relevant role in females. This result is in agreement
with our recent finding that adenosine A1 receptor-mediated
activation of the NOS/sGC pathway depends on gender, the
A1 effect being stronger in females than in males rats (Serpa
et al., 2014). Although the dampening by L-NAME of the A1
receptor-mediated inhibition of fEPSP was stronger in females,
the stimulatory effect of L-NAME alone on fEPSP did not differ
across gender, suggesting that while basal NOS activity inhibits
synaptic transmission equally in males and females rats, the role
of NOS in mediating A1 receptor inhibition of fEPSP is more
relevant in females.

Curiously, the attenuation of the CPA effect on synaptic
transmission by the sGC inhibitor, ODQ, was only evident in
the presence of ADA. The absence of attenuation by ODQ of
the effect of CPA in the absence of ADA, could be consequence
of A1 receptor occupation with endogenous adenosine which
might be enough to produce maximal activation of sGC,
preventing further activation of sGC with the exogenous agonist.
Evidence that endogenous adenosine was interfering with the
CPA effect came from the observation that the presence of ADA
increased the CPA inhibitory effect on fEPSPs. Therefore, the
removal of endogenous adenosine by ADA would unmask the
sGC-mediated effect of CPA on fEPSPs. Indeed, to detect the
facilitatory action of adenosine A1 receptor agonists on cGMP
formation it is also necessary to add ADA to the incubation
medium (Serpa et al., 2014). However, some actions of ADA on
the A1 receptor may be independent of endogenous adenosine
removal. In fact, previous studies showed that extracellular ADA
binds to adenosine A1 receptors, increasing its affinity toward
agonists, thus acting as a co-stimulatory molecule to facilitate
specific signaling events, independently from its enzymatic
activity (reviewed in Franco et al., 2005). Interestingly the
dampening of the CPA effect on synaptic transmission by NOS
blockade did not required the presence of ADA. On the other
hand, the dampening of the CPA effect by NOS blockade was
stronger in females than in males, while the dampening of
the CPA effect by blockade of sGC, in the presence of ADA,
didn’t depend on gender. These results suggest that the NOS-
mediated inhibition of synaptic transmission by adenosine A1
receptor might not involve exclusively activation of sGC by NO.
In fact both sGC-mediated and sGC-independent inhibition of
glutamate release by NO from hippocampal nerve terminals has
been described (Sequeira et al., 1999).

It is known for a long time that A1 receptors inhibit
synaptic transmission at the hippocampus by activating Gi/o
proteins. This effect of adenosine A1 receptor is primarily

consequence of presynaptic inhibition of neurotransmitter
release. One of the mechanisms by which adenosine A1
receptor inhibits neurotransmitter release involves reduction
of Ca2+ entry trough N-type calcium channels (Wu and
Saggau, 1994), while a decrease of cAMP levels does not
seems to mediate the A1 receptor-dependent inhibition of
neurotransmitter release (see Fredholm and Dunwiddie, 1988).
However, blockade of N-type calcium channels only partially
attenuates the inhibitory effect of A1 receptor on synaptic
transmission, suggesting that other mechanisms might be
involved (Fredholm and Dunwiddie, 1988). On the other
hand, activation of p38 MAPK by adenosine A1 receptors has
also been shown to be involved in the inhibitory activity of
A1 receptors on synaptic transmission (Brust et al., 2006).
Interestingly, both activation of p38 MAPK (Browning et al.,
2000) and N-type calcium channels (D’Ascenzo et al., 2002) by
cGMP-dependent mechanisms has been described. If inhibition
of neurotransmission by adenosine A1 receptors-mediated
stimulation of NOS/sGC/PKG pathway involves N-type channels
inhibition and/or p38 MAPK activation or constitutes another
parallel mechanism mediating the presynaptic inhibitory effect
of adenosine A1 receptors on synaptic transmission in the
hippocampus, is an interesting issue and deserves future
investigation.

CONCLUSION

The present work shows that blocking the NOS/sGC/PKG
signaling pathway dampens adenosine A1 receptor-mediated
inhibition of synaptic transmission, revealing that control of
synaptic activity by adenosine A1 receptors partially depends on
activation of the cGMP signaling cascade, which may operate
in a concerted way with other A1 receptor coupled pathways to
fine-tune neuronal excitability.
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