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in human-robot social influence

Joshua Zonca,1,3,* Anna Folsø,2 and Alessandra Sciutti1

SUMMARY

Humans are constantly influenced by others’ behavior and opinions. Of impor-
tance, social influence among humans is shaped by reciprocity: we follow more
the advice of someone who has been taking into consideration our opinions. In
the current work, we investigate whether reciprocal social influence can emerge
while interactingwith a social humanoid robot. In a joint task, a human participant
and a humanoid robot made perceptual estimates and then could overtly modify
them after observing the partner’s judgment. Results show that endowing the
robot with the ability to express and modulate its own level of susceptibility to
the human’s judgments represented a double-edged sword. On the one hand,
participants lost confidence in the robot’s competence when the robot was
following their advice; on the other hand, participants were unwilling to disclose
their lack of confidence to the susceptible robot, suggesting the emergence of
reciprocal mechanisms of social influence supporting human-robot collaboration.

INTRODUCTION

In the near future, robots will play a more and more important role in our society. In this regard, the domi-

nant paradigm in the field of human-robot interaction (HRI) has been shifting from the ambition of building

robots capable of autonomously accomplishing typical human tasks to the goal of designing robotic col-

laborators, which should be able to collaborate with humans in their everyday life. This ability would be

decisive in a wide range of contexts, including education, industry, and care giving, in which the robots

would assist human educators, workers, and operators in their activities. In order to achieve this goal, ro-

bots should be able to act as social entities on which human beings would rely on. Humans should be

willing to accept help from robots and follow their advice in collaborative scenarios, as they do with their

peers. This is not a trivial issue, since collaboration and cooperation, even among humans, are fragile pro-

cesses that entail the presence and the persistence of different environmental and relational conditions.

On the one hand, humans decide whether to follow others’ behavior or advice based on their competence,

which may be inferred by feedback on their reliability (De Martino et al., 2017; Park et al., 2017), confidence

(Bahrami et al., 2010, 2012; Koriat, 2012; Sniezek and Van Swol, 2001), expertise (Bonaccio and Dalal, 2010;

Boorman et al., 2013; Sniezek et al., 2004), and access to relevant information (Vélez and Gweon, 2019). On

the other hand, individuals’ reliance on peers follows inherently social and relational mechanisms entailing

social norms, which lead humans to conform to their peers in order to affiliate with them and control repu-

tation and self-image (Asch, 1951; Cialdini and Goldstein, 2014; Claidière andWhiten, 2012). In this regard,

one of the most important social norms sustaining the evolution and the maintenance of cooperation is

reciprocity (Nowak and Sigmund, 1998; Pfeiffer et al., 2005), which assumes that one’s tendency to coop-

erate is conditional upon cooperative behavior of others (Barta et al., 2011; Gouldner, 1960; Nowak, 2006;

Ohtsuki and Iwasa, 2004). Interestingly, recent evidence (Mahmoodi et al., 2018; Zonca et al., 2021a, 2021b)

has shown that reciprocity also regulates social influence and compliance with others’ judgments: people

tend to take more into consideration the advice of peers who have previously taken into account their own

opinion, even if, in principle, their susceptibility might signal incompetence or uncertainty.

Altogether, research in human-human interaction (HHI) highlights that, in social environments, individuals

constantly balance informational and normative considerations in order to behave efficiently and, at the

same time, preserve fruitful short- and long-term social relationships with their peers. Would this be the

case also in interaction with (social) robots? Answering this question is still difficult, since research on social

influence in HRI is rather limited. Research in HRI historically focused on the factors affecting humans’ reli-

ance on robots, which are conceptualized as mechanical agents performing actions or tasks, rather than
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intentional agents involved in symmetrical and reciprocal interactions. In this respect, numerous studies

have shown that the main determinant of reliance on robots (often referred to as ‘‘trust,’’ see Hancock

et al., 2020) is its performance (Billings et al., 2012; Flook et al., 2019; Hancock et al., 2011; van den Brule

et al., 2014; Wright et al., 2019). Humans tend to trust robots as long as they show reliable behavior, but

they rapidly lose confidence in its competence in presence of failures (Desai et al., 2012; Rossi et al.,

2017; Salomons et al., 2018), potentially leading to disuse of the robotic system (Lussier et al., 2007; Sanders

et al., 2011). In the last years, research in HRI has been focusing on the introduction of a social dimension in

human-machine interaction through the design of humanoid social robots, using HHI as behavioral model

(Sandini and Sciutti, 2018; Strohkorb and Scassellati, 2016). The assumption is that robots appearing and

behaving like humans might trigger the same types of emotional and behavioral reactions that are typically

observed in HHI. In fact, recent evidence has shown the emergence of pro-social attitudes toward social

robots (e.g., Connolly et al., 2020; Kahn et al., 2015; Kühnlenz et al., 2018; Siegel et al., 2009), which can

enhance human-robot collaboration (e.g., Admoni and Scassellati, 2017; Baraglia et al., 2017; Oliveira

et al., 2021; Terzio�glu et al., 2020). However, evidence of human-like relational mechanisms modulating

HRI is rather limited and context dependent. Compliance toward robots tends to emerge primarily on func-

tional tasks (i.e., tasks in which the robot has to fulfill a concrete goal through actions or quantitative judg-

ment) rather than social ones (i.e., judgments or decisions on social issues), as shown in recent studies (Gau-

diello et al., 2016; Ullman et al., 2021). Moreover, compliance is intrinsically tied with the uncertainty of the

task solution: individuals typically conform to robots only if they are unsure about the action to take (Hertz

and Wiese, 2018).

In sum, we have highlighted a fundamental difference between research in HRI and HHI: the former primar-

ily focuses on humans’ (functional) reliance on robots, which is determined by robots’ capabilities; the latter

constantly deals with normative and relational phenomenon (e.g., reciprocity) emerging between interact-

ing peers. The main thesis of the current work is that, if we aim at building robots that could actively collab-

orate with humans in their everyday life, HRIs cannot be simply treated as a unidirectional relationship

between a human agent and a task-oriented machine. Robots should identify us as living entities, try to

anticipate our goals and needs, and engage with us on a social level. In other words, robots should act

as social entities in bidirectional, reciprocal relationships with humans, especially in context in which robots

should assist individuals in need (e.g., elderly people, individuals with reduced mobility). In the current

study, we aim at enriching the study of social influence HRI by treating it as a relational and reciprocal pro-

cess. We developed a novel experimental paradigm in which we are not solely interested in how the per-

formance and the appearance of a robot can influence human reliance to robots. Indeed, we implemented

a scenario in which the robot itself can express its own level of susceptibility (i.e., its tendency to change its

opinion in favor of that of a human agent), paving the way for the (potential) emergence of reciprocal mech-

anisms of social influence, as already observed in recent studies in HHI (Mahmoodi et al., 2018; Zonca et al.,

2021a, 2021b). Our paradigm consisted of three different tasks. In the Perceptual inference task, partici-

pants made individual perceptual judgments. In the Social influence task, participants made the same

perceptual judgments and were told that either a humanoid robot iCub (Robot group) or a computer (Com-

puter group) was doing the same. The participants received trial-by-trial feedback revealing the judgment

performed by their partner. In each trial, after observing the agent’s response, they could modify their orig-

inal estimate by placing a final response between their own and their partner’s estimate (final decision). In

the Reciprocal social influence task, the task was the same but we alternated trials in which the final decision

was taken by the participant (decision turns) with others in which the final decisions were made by the

interacting agent (observation turns). The final decisions made by the agent in observation turns were

manipulated to express different levels of susceptibility toward the participants (Susceptible condition:

high susceptibility; Unsusceptible condition: low susceptibility). The partner’s perceptual estimates and

final decisions were controlled by the same algorithms in both the Robot and Computer groups. The par-

ticipants were told that the agent would see both their perceptual estimates and final decisions. However,

participants in the Robot group could not see their robotic partner during the tasks. In fact, we wanted the

participants to acquire knowledge about the robot’s behavior just by observing its (simulated) responses,

in order to have full control of the robot’s feedbacks and ensure the comparability with the Computer

group. By controlling and systematically modulating the agent’s level of susceptibility, we were able to

analyze how the participants reacted and dynamically adjusted their own level of reliance on the partner’s

judgments. Nevertheless, in the Robot group, we wanted the participants to perceive the robot as a social

and intentional agent, which was aware of the ongoing experiment with a human partner and could auton-

omously perform the joint task with them. To achieve this goal, participants in the Robot group, before

starting the experimental session, had an encounter with the robot, which was programmed to perform
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specific verbal and motor actions (for a detailed description, see paragraph ‘‘introducing participants to

the humanoid robot iCub’’ in the STAR Methods section).

The goal of this study is 2-fold. On the one hand, we explored how signals of susceptibility coming from a

mechanical agent (robot or computer) have an impact on the willingness of the human partner to learn and

take advice from it. For instance, we can hypothesize that a susceptible partner (computer or robot) signals

uncertainty, which in turn may lead its partner(s) to rely less on its advice and help, as predicted by Bayesian

theories of social information aggregation (Behrens et al., 2008; Boorman et al., 2013; De Martino et al.,

2017). On the other hand, we investigated whether social influence during interaction with a social robot

(as opposed to an asocial human-computer interaction) may be modulated by social and normative mech-

anisms. In particular, we tested whether the robot’s susceptibility to the participant’s judgements could be

interpreted as a signal of a collaborative attitude during interaction, leading the participants themselves to

reciprocate the consideration received from the robot in order to sustain cooperation with its robotic part-

ner, following reciprocal processes typically intervening between human peers (Mahmoodi et al., 2018;

Zonca et al., 2021a, 2021b).

RESULTS

Perceptual inference task

In each trial of the Perceptual inference task (Figure 1A), participants saw two consecutive red disks appear-

ing for 200 ms on a visible horizontal line on a touch-screen tablet. The spatial distance between the two

disks represented the target stimulus. Participants were then asked to touch a point to the right of the sec-

ond disk to reproduce a segment matching the target stimulus length. No feedback about the accuracy of

the response was provided. As a result of the well-known phenomenon of central tendency in quantity

judgments (Hollingworth, 1910; Jazayeri and Shadlen 2010), participants’ estimates should gravitate to-

ward the mean magnitude of the visual stimuli (Figure 1B). Central tendency is an automatic perceptual

mechanism aiming at error minimization in presence of sensory uncertainty, which can be represented

by Bayesian models describing the mean magnitude of the stimulus history as a prior (Jazayeri and Shadlen

2010; Cicchini et al., 2012; Sciutti et al., 2014). Moreover, variability and uncertainty in perceptual estimation

should increase along with stimulus magnitude, leading to a higher reliance on the Bayesian prior (i.e.,

mean magnitude of the stimulus history) in perceptual adjustment for longer stimuli (Petzschner et al.,

2015). These mechanisms are expected to lead to a general underestimation of lengths (Figure 1B).

First, we quantified the effect of central tendency by computing the regression index, defined as the differ-

ence in slope between the identity line (i.e., veridical reproduction of stimuli) and the best linear fit of the

reproduced lengths. Therefore, a regression index approaching 1 reflects complete regression to the

mean, whereas a regression index approaching 0 expresses no effect of central tendency. To explore

the effect of central tendency within and across groups, we ran a linear regression with regression index

as dependent variable and group (Computer or Robot) as independent factor. Results reveal that the

regression index is significantly different from 0 in both groups (intercept, Computer group: B = 0.46,

t = 9.79, p < 0.001; Robot group: B = 0.38, t = 8.04, p < 0.001), with no significant interaction (Robot – Com-

puter: B = �0.08, t = �1.23, p = 0.223). Moreover, we tested the hypothesis that participants underesti-

mated lengths by running a linear regression with the difference between the mean of the reproduced

stimuli and the mean of actual stimulus distribution (= 12 cm) as dependent variable, and group and inde-

pendent factor. The results reveal a significant effect of underestimation in both groups (intercept,

Computer group: B = �1.52, t = �5.75, p < 0.001; Robot group: B = �0.92, t = �3.47, p < 0.001), with

no significant interaction (Robot – Computer: B = 0.60, t = 1.61, p = 0.113). Altogether, these results indi-

cate the presence of significant effects of central tendency and underestimation of the reproduced lengths

of similar magnitude in both experimental groups (Figure 1C).

Then we further tested the comparability of our two experimental groups by investigating the presence of a

between-group difference in terms of trial-by-trial estimation error, computed as the absolute difference

(in centimeters) between the estimated length and the actual stimulus length divided by the actual stimulus

length. This parameter is directly related to central tendency and underestimation of lengths and is partic-

ularly important because it directly expresses participants’ accuracy, which will have a fundamental role in

the analysis of the subsequent interactive tasks. Indeed, a between-group difference in perceptual accu-

racy in the Perceptual inference task could represent a confound factor for the analysis of social influence

and perceptual learning in human-robot and human-computer interactions. Nonetheless, results show that
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the two groups did not differ in terms of average estimation accuracy (mean estimation error, Computer

group: 0.20 G 0.05; Robot group: 0.19 G 0.06. Robot – Computer: Wilcoxon rank-sum test, z = 1.00, r =

0.14, h2 = 0.02, p = 0.318. Figure 1D).

Social influence task

In the Social influence task (Figure 2), in each trial, participants made their perceptual estimate as in the

Perceptual inference task and then observed the estimate (concerning the same stimulus) made by a part-

ner (robot in the Robot group, computer in the Computer group). This feedback consisted of a vertical line

A B

C D

Figure 1. Perceptual inference task

(A) Perceptual inference task. Participants saw two red disks appearing consecutively with a duration of 200 ms.

Participants had to touch a point, to the right of the second disk, in order to reproduce the stimulus length (s0), defined as

the distance between the first and the second disk (s).

(B) Expected perceptual phenomena in the Perceptual inference task. Owing to central tendency, participants could be

expected to underestimate long stimuli and overestimate short stimuli. Moreover, we expect the central tendency effect

to be stronger for long distances, leading to a general underestimation of themean of the reproduced length distribution

(M(S0)).
(C) Responses in the Perceptual inference task in the Computer and Robot groups. Gold (Computer group) and light

green (Robot group) dots represent participants’ reproduced lengths for each presented length. Orange (Computer

group) and dark green (Robot group) dots represent the participants’ mean reproduced length for each presented

stimulus. Orange and dark green lines represent the linear fit between the presented and reproduced lengths in the

Computer and Robot groups, respectively. Black lines represent the identity line (veridical reproduction). The pattern of

responses in both groups reflects the emergence of the perceptual mechanisms depicted in Figure 1B. In both groups,

the slope of the reproduced lengths is flatter than the identity line, indicating central tendency. Moreover, we observe

that the central tendency is markedly more pronounced for long stimuli, resulting in a general underestimation of the

presented visual stimuli.

(D) Average estimation error in the Computer and Robot groups. The two experimental groups are comparable in terms

of estimation error, which is computed as distance (in cm) from the correct response/stimulus length (ns: not significant,

Wilcoxon rank-sum test). The dotted line represents the average estimation error of the computer algorithm acting as the

participants’ partner in both the Computer and Robot groups in the Social influence task (see next paragraph). All

participants show a higher mean estimation error than the computer algorithm. Error bars represent between-subject

standard error of the mean, and gold/green dots indicate individuals’ mean estimation error. ns: not significant, Wilcoxon

rank-sum test.
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indicating the exact location of the partner’s estimate on the tablet. Afterward, participants were asked to

make a final decision by choosing any position between their own and the partner’s response. Participants

were incentivized to be as accurate as possible in both perceptual estimates and final decisions (see the

paragraph ‘‘overview: participants and procedure’’ in the STAR Methods). Participants were also told

that their partner could see their final decisions. The shift from their own estimate to that of the partner

(divided by the distance between the two estimates) has been used as an index of influence from the part-

ner, which expressed the relative weight assigned by participants to either their own or the partner’s esti-

mate. At the end of the task, participants evaluated (1–10) their own and the other agent’s accuracy in

perceptual estimation to obtain a subjective measure of perceived competence.

First, it is important to highlight that participants’ accuracy in terms of perceptual estimates was remarkably

lower than that of their partner in both experimental groups (Wilcoxon rank-sum test on estimation error.

Computer group: z = 6.06, r = 0.86, h2 = 0.73, p < 0.001; Robot group: z = 6.06, r = 0.86, h2 = 0.73, p < 0.001.

Results significant at the Bonferroni-corrected threshold for two comparisons). Participants’ estimation er-

ror was comparable across experimental groups (Wilcoxon rank-sum test, z = 1.04, r = 0.15, h2 = 0.02, p =

0.299). Moreover, participants’ estimation error was not different from that observed in the Perceptual

inference task in both groups (Wilcoxon signed-rank test on estimation error. Computer group: z =

0.040, r = 0.01, h2 = 0.00, p = 0.968; Robot group: z = �0.740, r = 0.10, h2 = 0.01, p = 0.459. Figure 3A),

suggesting that the partner’s perceptual estimate was not used as a feedback for learning. The observed

inability to use the partner as a valuable information source for learning is indeed linked to a marked distor-

tion in the participants’ perception of their own and others’ performance. Specifically, participants were not

able to recognize the higher accuracy of the partner, since their performance ratings were even higher for

own accuracy (Computer group: 6.28G 1.10; Robot: 6.4G 1.08) than their partner’s one (Computer group:

5.52 G 1.64; Robot group: 6.24 G 1.90). See Figure 3C).

In linewith the observed overestimation of own performance and underestimation of the partner’s one, analysis

of participants’ final decisions reveals that participants took into account the partner’s response much less than

their own estimate (Average influence, Computer group: 0.26 G 0.13; Robot group: 0.35 G 0.16. Wilcoxon

A

B

Figure 2. Social influence task and Reciprocal social influence task

(A) Experimental task. In both the Social influence task and Reciprocal social influence task, initially participants had to

reproduce the lengths of visual stimuli, as in the Perceptual inference task. Participants were told that the very same

stimuli would have been presented also to their partner (other agent: OA), which was a humanoid robot in the Robot

group and a computer in the Computer group. Participants were told that the partner would choose a point to reproduce

the length of the presented stimulus. After the participants’ estimate, the partner’s simulated estimate was shown and

then one of the two agents had the opportunity to make a final decision by choosing any position between own and

partner’s estimates. The index of influence (i) was defined as the adjustment toward the partner (a) divided by the distance

between the two agents’ responses (d).

(B) Experimental design. In the Social influence task, participants made final decisions in all trials. In the Reciprocal social

influence task, in half of the trials (decision turns) participants performed the same task with the same partner and made

final decisions. Decision turns were alternated with observation turns, in which the partner made the final decision, while

participants could not revise their estimate. We manipulated the partner’s final decisions across two experimental

conditions to express two different levels of susceptibility toward participants’ responses (Susceptible: high influence;

Unsusceptible: low influence).
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signed rank-test, null hypothesis: average influence=0.5.Computergroup: z=4.29, r=0.86,h2=0.74,p<0.001;

Robot group: z = 3.51, r = 0.70,h2 = 0.49, p < 0.001. Results significant at the Bonferroni-corrected threshold for

two comparisons). Participants’ average influencewas significantly correlatedwith performance ratings (i.e., self

A B

C D

Figure 3. Results of the Social influence task

(A) Estimation error across Perceptual inference task and Social influence task. We plot the difference between estimation

error in the Social influence task and the Perceptual inference task, highlighting the absence of learning effects between

the two tasks in both the Robot and Computer groups. Error bars represent between-subject standard error of the mean,

and gold/green dots indicate individuals’ mean estimation error. ns: not significant, Wilcoxon signed-rank test.

(B) Influence as a function of agents’ response distance. For the purpose of this graph, first we calculated the standard

deviation of participants’ estimates for each stimulus length. Then, for each stimulus, we grouped trials based on the

distance of the partner’s estimate from the partner’s one using the standard deviation of the participant’s estimates of

that stimulus as unit of measurement. We used nine distance ranges with a step of 0.05 SDs. For instance, we grouped in

the first distance range all trials in which the distance from the partner’ estimate was less than 0.05 SDs (considering 1 SD

as the standard deviation of the participants’ estimates of the current stimulus). The next range included distances

ranging from 0.05 to 0.1 SDs, and so on. Then, for each distance range, we calculated the average standardized

participant’s influence and finally we averaged these indices across participants. Influence was standardized to express

within-subject variation of influence as a function of the distance from the partner’s response, taking into account

individuals’ level of influence. Gold and green lines represent linear fits in the two groups. The statistics (B and p) reported

in the figure refer to the (unstandardized) coefficients and the p values of model 1 (supplemental information, model 1,

Table S1), which investigates the relationship between influence and agents’ response distance across groups. **p < 0.05,

group*distance interaction effect on influence in model 1.

(C) Influence and subjective performance assessment. Mean influence plotted as a function of individual performance

rating (self – other) in the Social influence task. Gold and green lines represent linear fits in Computer and Robot

conditions, respectively. Gold and green triangles on the x axis indicate mean ratings for the Computer and Robot

groups, respectively. The scatterplot reports results of Spearman correlations (r and p value) in both groups.

(D) Influence in robot and computer partners. Bar plot of mean influence in the Computer and Robot groups. Error bars

represent between-subject standard error of the mean. Participants in both groups relied more on their own estimate

than on that of the partner (influence <0.5, p < 0.001, Wilcoxon signed-rank test). Influence was higher in the Robot than in

the Computer group. *p < 0.05, Wilcoxon rank-sum test.
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– other rating. Spearman correlation, Computer group: rho =�0.66, p < 0.001; Robot group:�0.58, p = 0.002.

Results significant at theBonferroni-corrected threshold for two comparisons; Figure 3C), revealing that final de-

cisions strongly depended on the perceived competence of the partner. Interestingly, we observed that partic-

ipants in the Robot group were more influenced by their partner than participants in the Computer group

(Wilcoxon rank-sum test of average influence, z = �1.99, r = 0.28, h2 = 0.08, p = 0.047; Figure 3D). Altogether,

these findings suggest that participants in both groups, in the absence of direct or indirect feedback revealing

the accuracy of the two agents, overestimated their own ability and underestimated that of the partner, which

preventedparticipants from learning and led to low reliance on its judgments. This effect wasmorepronounced

when participants believed the partner to be a computer rather than a robot.

Then we investigated whether within-subject modulation of social influence was linked to the perceived

reliability of the partner’s feedback. We tested the relationship between influence and distance from the

partner’s response, which was the only feedback available to participants for inferring own and other’s

performance. We ran a mixed-effect linear regression with influence as dependent variable and group,

distance, and their interactions as independent variables, with subject as random effect (supplemental in-

formation, model 1, Table S1). Results show an effect of distance on influence in both Computer (B =�0.44,

z = �12.33, p < 0.001) and Robot (B = �0.30, z = �9.36, p < 0.001) groups: more specifically, participants’

influence significantly decreased with the increase of the distance between the two estimates (Figure 3B).

On the one hand, this effect suggests that participants’ influence was modulated by the perceived

reliability of the current partner’s feedback; on the other hand, it reveals that the weight assigned to the

partner’s judgment was weighted less and less as the discrepancy between the two interacting partners

increased. We highlight that the effect is significantly stronger when participants believed they were inter-

acting with a computer (interaction effect, B = 0.14, z = 2.87, p = 0.004), suggesting that susceptibility to the

computer partner decreased faster (as a function of agents’ response distance) than that to the robot

partner.

Reciprocal social influence task

The Reciprocal social influence task (Figure 2) consisted of two different types of experimental trial: in de-

cision turns, the task was identical to the Social influence task and the participant took the final decision

after observing the partner’s estimate. As in the Social influence task, participants were told that their part-

ner could observe both their perceptual estimates and final decisions and were incentivized to be as accu-

rate as possible in both perceptual estimates and final decisions. In observation turns, the partner itself

(robot or computer) made the final decision and the participant could just observe the partner’s choice.

Decision and observation turns were continuously alternated along the task. In observation turns, the sus-

ceptibility of the agent toward the participant’s estimates (i.e., the influence index in its final decisions) was

manipulated in two different conditions (Susceptible: high influence; Unsusceptible: low influence. See

paragraph ‘‘agents’ final decisions in the reciprocal social influence task’’ in the STAR Methods for a

detailed description of the relevant algorithms). We aimed at analyzing if participants’ influence was

affected by the influence shown by the partner. In this respect, we highlight that participants’ performance

ratings (self – other) in the Reciprocal social influence task conditions depended on the partner’s level of

influence in the current condition (B = 1.75, z = 3.70, p < 0.001; supplemental information, model 2, Table

S2). This result reveals that providing feedback about the partner’s susceptibility did have an impact on the

perceived reliability of the partner.

First, we tested whether the partner’s feedback promoted or disrupted participants’ learning (Figure 4). We

compared participants’ estimation error in Susceptible and Unsusceptible conditions with that observed in

the Social influence task, which will serve as a ‘‘Baseline’’ condition. We ran amixed-effects model with trial-

by-trial estimation error as dependent variable, experimental group (Computer or Robot) and experi-

mental condition (Susceptible, Unsusceptible and Baseline) and their interactions as predictors and a

random effect on the intercept at the subject level (supplemental information, model 3, Table S3). Results

reveal a significant learning effect (i.e., decrease in estimation error) in the Computer group in both

conditions (Susceptible – Baseline: B = �0.02, z = �2.75, p = 0.006; Unsusceptible – Baseline: B = �0.02,

z = �2.67, p = 0.008). Interaction effects reveal that the effect of learning in the Computer group was

more pronounced than in the Robot group (Susceptible – Baseline, Robot – Computer: B = 0.03, z =

4.00, p < 0.001; Unsusceptible – Baseline, Robot – Computer: B = 0.02, z = 2.90, p = 0.004). In fact,

we do not observe an effect of learning for the Robot group in the Unsusceptible condition (Unsusceptible –

Baseline: B = 0.01, z = 1.43, p = 0.154) and we even observe a significant increase in estimation error in the
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Susceptible condition in the Robot group (Susceptible – Baseline: B = 0.02, z = 2.91, p = 0.004). The latter

effect was explained by a significant relationship between deterioration of performance in the Susceptible

condition and increase in the discrepancy between own and agent’s performance ratings in the same

condition, which was present in the Robot group but not in the Computer group (linear regression, effect

of ratings in the Robot group: B = �0.04, t = �4.01, p < 0.001; effect of ratings in the Computer group:

B = 0.00, t = 0.27, p = 0.785; interaction effect, Computer – Robot: B = 0.04, t = 3.00, p = 0.004).

We also analyzed changes in terms of distance from the partner’s response to understand whether the

learning patterns observed in the two groups were related to a systematic shift in the response distribution

toward (or away from) that of the partner across tasks and conditions. Therefore, we ran the same model of

the previous analysis using trial-by-trial response distance (normalized by the current stimulus length) as

dependent variable (supplemental information, model 4, Table S4). Results confirm that the learning ef-

fects in the Computer group were accompanied by a decrease in the distance from the partner’s response

(Susceptible – Baseline: B =�0.01, z =�2.30, p = 0.021; Unsusceptible – Baseline: B =�0.02, z =�3.42, p =

0.001). Interaction effects reveal that the effects observed in the Computer group were more pronounced

than in the Robot group (Susceptible – Baseline, Robot – Computer: B = 0.03, z = 3.61, p < 0.001; Unsus-

ceptible – Baseline, Robot – Computer: B = 0.03, z = 3.35, p = 0.001). Indeed, we do not see an effect of

response distance for the Robot group in the Unsusceptible condition (Unsusceptible – Baseline: B =

0.01, z = 1.32, p = 0.188) and we observe a significant increase in response distance in the Susceptible con-

dition in the Robot group (Susceptible – Baseline: B = 0.02, z = 2.80, p = 0.005). Taken together, these re-

sults suggest that participants in the Computer group did use the partner’s susceptibility feedback as a

learning signal that helped them in improving their perceptual performance, whereas participants in the

Robot group interpreted their partner’s susceptibility as evidence of its incompetence, which disrupted so-

cial learning and led to a deterioration of behavioral performance when the susceptibility expressed by the

partner was high.

Then we analyzed participants’ final decisions to test whether the presence of feedback about the partner’s

susceptibility shaped the participants’ expressed susceptibility to their partner’s judgments (Figure 4). A

first hypothesis is that results of participants’ final decisions, which express an overt signal of susceptibility

to the human partner, mirror the learning effects observed in Reciprocal social influence task, which in turn

represent a covert signal of participants’ reliance on the partner’s judgments linked to its perceived

competence. More specifically, participants in the Computer group, who used the feedback on the

Figure 4. Results of the Reciprocal social influence task

Bar plots of mean estimation error (left panel) and mean influence (right panel) depending on experimental group

(Computer or Robot) and experimental condition (Susceptible or Unsusceptible). All measures were compared with the

‘‘baseline’’ level of estimation error and influence expressed in the Social influence task. For example, the first blue bar in

the left panel refers to the mean estimation error in the Susceptible condition of the Reciprocal social influence task minus

the mean estimation error in the Social influence task, in the Computer group. Error bars represent between-subject

standard error of the mean. ***p < 0.001, **p < 0.01, ns: not significant, mixed-effects model (model 4 for the ‘‘perceptual

learning" analysis, model 5 for the ‘‘Social influence’’ analysis. See supplemental information for the model specifications

and their complete results in Tables S4 and S5).
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partner’s susceptibility as a feedback supporting learning, should increase their level of influence in their

final decisions. Conversely, participants in the Robot condition should decrease their influence level in

the Susceptible condition, whereas they should not change their level of influence in the Unsusceptible

condition. We ran a mixed-effects model with trial-by-trial influence in decision trials as dependent vari-

able, experimental group (Computer or Robot), and experimental condition (Susceptible, Unsusceptible

and Baseline) and their interactions as predictors and a random effect on the intercept at the subject

level (supplemental information, model 5, Table S5). In the Computer group, results indeed reveal a

significant increase of influence in both conditions (Susceptible – Baseline: B = 0.03, z = 2.95, p = 0.003;

Unsusceptible – Baseline: B = 0.04, z = 4.74, p < 0.001), in line with the previously observed learning effects.

We also observe a significant interaction with the Robot group in both conditions (Susceptible – Baseline,

Robot – Computer: B = �0.03, z = �2.41, p = 0.016; Unsusceptible – Baseline, Robot – Computer: B =

�0.03, z = �2.31, p = 0.021), revealing that the effect of influence was more pronounced in the Computer

group. In fact, we do not observe any effect of condition in the Robot group (Susceptible – Baseline: B =

�0.00, z =�0.46, p = 0.644; Unsusceptible – Baseline: B = 0.01, z = 1.48, p = 0.140). This latter result reveals

an inconsistency between the observed covert decrease in susceptibility toward the susceptible robot part-

ner, as signaled by the detrimental effect in terms of participants’ perceptual learning, and the lack of an

equivalent decrease in the overt susceptibility to the robot expressed through the final decisions. We may

interpret this inconsistency by assuming that the susceptible robot, showing a high level of susceptibility to

the participant, conveys a socially positive signal that is taken into consideration by the participants them-

selves in their final decisions. In particular, the participant, despite the loss of confidence in the robot

competence, is not willing to anti-reciprocate the consideration received from the robot by explicitly

decreasing the magnitude of the perceptual adjustments in their final decisions.

In order to better characterize these effects of reciprocity in the Robot group, we also looked at the direct

differences between Susceptible and Unsusceptible conditions in model 5. In this regard, previous results

in dyadic HHIs (Mahmoodi et al., 2018; Zonca et al., 2021b) have revealed that humans take more into ac-

count the judgment of a peer if the latter has taken into account their opinion (i.e., participants show higher

influence in the Susceptible than in the Unsusceptible condition), in line with a normative effect of reci-

procity. Nonetheless, results of model 5 show that the level of reciprocity observed in HHI does not emerge

in either the Computer group (Susceptible – Unsusceptible: B =�0.02, z =�1.55, p = 0.121) or in the Robot

group (Susceptible – Unsusceptible: B = �0.02, z = �1.68, p = 0.093), with no interaction between the two

groups (Susceptible – Unsusceptible, Robot – Computer: B = �0.00, z = �0.09, p = 0.927).

In this regard, the effect of reciprocity observed in human dyadic and triadic relationships (Mahmoodi et al.,

2018; Zonca et al., 2021a) has been linked to the desire of maintaining influence over the interacting part-

ner, given the positive reward signal provided by a high level of consideration received from them. There-

fore, we tested whether this phenomenon could explain the effects of reciprocity observed in the Robot

group. We explored this hypothesis by introducing, at the end of the Reciprocal social influence task, an

additional experimental block (i.e., Final block) in which participants were explicitly told that they would

perform 11 observation turns in a row followed by 11 decision trials in a row. Importantly, participants

were informed that the experiment would finish after the 11 decision trials. If, during the Reciprocal social

influence task, participants’ level of influence was indeed modulated by a mechanism of reciprocation

directed to maintain influence over the partner, we should observe a decrease in participants’ influence

in the Final block, where there is no expectation of future interactions with the partner. To explore this hy-

pothesis, we compared influence in the Final block with influence in the preceding main experimental

block: these two blocks indeed coincide in terms of behavior of the agent but differ in the prospect of future

interactions with the active partner. Results of a mixed-effect model (supplemental information,

model 6, Table S6) show a significant drop in participants’ influence in the Final block in the Robot group

(B = � 0.034, z = � 2.45, p = 0.014), which was absent in the Computer group (B = � 0.016, z = � 1.14, p =

0.255). However, the interaction term was not significant (B = 0.018, z = 0.93, p = 0.354), which prevents us

from drawing conclusions on the role of the nature of the partner on participants’ behavior in the Final

block.

DISCUSSION

Recent studies on human social behavior have shown that social influence among peers is modulated by

reciprocity: we tend to rely more on others’ opinions if others take into consideration our ideas (Mah-

moodi et al., 2018; Zonca et al., 2021a, 2021b; Zonca et al., 2021a). Conversely, research in HRI has
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historically conceptualized human-robot relationships as unidirectional, treating them as human-machine

interactions in which humans’ reliance on robots depends (almost) exclusively on their performance. We

are persuaded that reciprocity may play a role in the emergence of (mutual) social influence also in hu-

man-robot collaboration. Therefore, we designed a novel experimental paradigm, composed of three

different tasks, meant to investigate the emergence of mechanisms of reciprocal social influence in

HRI. In the Perceptual inference task participants had to make perceptual judgments individually. In

the Social influence task, participants made the same perceptual inferences but, in each trial, they could

also observe the estimate of another agent (a humanoid social robot in the Robot group, a computer in

the Computer group). The estimates of the two agents were systematically controlled and identical

across groups. In each trial, participants were then asked to make a final decision by selecting a position

between the two responses, trying to maximize accuracy. The shift from their own original estimate to

that of the partner has been used as an index of influence from the partner. Results reveal that, in

both groups, participants did not realize that their own accuracy was markedly lower than their partner’s

one: the average level of influence was generally low (i.e., <0.5) and rapidly decreased as the distance

from the other’s estimate increased, highlighting the presence of egocentric distortions in competence

assessment, as commonly observed in HHI (e.g., Morin et al., 2021; Yaniv, 2004; Yaniv and Kleinberger,

2000). Moreover, their performance did not improve with respect to the Perceptual inference task, sug-

gesting that the partner’s feedback was not used as a valuable signal for perceptual learning. These find-

ings shed new light on humans’ disposition toward the advices of mechanical agents in the context of

perceptual estimation. In the absence of feedback about own and other’s performance, participants

were not able to attribute a correct weight to the partner’s advices, suggesting that humans may neces-

sarily need empirical evidence about robots’ and computers’ performance to rely on their (perceptual)

judgments in a joint task, as in the case of social influence among peers. Interestingly, participants’ sus-

ceptibility to the partner’s judgment was significantly higher in the Robot group than in the Computer

group, although their task-related competences were identical. This result underlines the importance

of prior beliefs and dispositions about the nature and the capabilities of mechanical agents in deter-

mining reliance on them (Kaniarasu et al., 2013; Xu and Dudek, 2016).

Then we investigated whether and how the susceptibility to the computer or robot partner varied in context

of reciprocal social influence (Reciprocal social influence task). Participants in both the Computer and

Robot groups alternated trials in which they personally had to make the final decision (decision turns)

with trials in which the final decision was made by the partner (observation turns). We systematically manip-

ulated the level of influence of the partner in two different conditions (Susceptible: high susceptibility; Un-

susceptible: low susceptibility) and analyzed participants’ behavior in decision turns by comparing choices

in Susceptible and Unsusceptible conditions with behavior shown in the Social influence task.

First, results of the Computer group reveal a significant effect of learning in both conditions of the Recip-

rocal social influence task compared with the Social influence task. This suggests that receiving information

about the current level of susceptibility of the computerized agent led participants to increase their general

level of confidence in the accuracy of the computer, eliciting learning processes. In line with this interpre-

tation, participants in the Computer group did also increase the level of influence expressed in their final

decisions in both conditions of the Reciprocal social influence task. We hypothesize that participants may

have started to rely more on the feedback of the computer algorithm owing to its tendency to variably bal-

ance own and others’ perceptual judgments based on an internal weighting model. The exposure to this

decision strategy may have led the participants to reinforce the idea that a balance between own and part-

ner’s divergent estimation patterns could improve the final performance. Nonetheless, our results highlight

that these effects did not overturn the egocentric discounting observed in the Social influence task: partic-

ipants still relied more on their own perceptual judgments than those of the partner, even if the latter was

more accurate than them.

Contrary to the learning effects observed in the Computer group, participants in the Robot group did not

benefit from the feedback about the robot’s susceptibility in terms of perceptual learning. Their perfor-

mance even deteriorated in the Susceptible condition, when the robot was relying heavily on participants’

estimates in its final decisions. This result indicates that the susceptible robot conveyed a signal of uncer-

tainty or incompetence, leading to a re-calibration of the human’s perceived reliability of the robot in the

presence of response discrepancy. The subsequent loss of confidence in the robot’s competence is consis-

tent with the idea that humans, although possessing relatively high prior confidence in robotic technology,

easily lose confidence in its contingent capacity if they receive evidence signaling unreliability or

ll
OPEN ACCESS

10 iScience 24, 103424, December 17, 2021

iScience
Article



uncertainty, or in the presence of mistakes or failures (Desai et al., 2012; Salomons et al., 2018). One of the

novel contributions of the current paper lies in the observation that the degree of reliance on the help of a

robot can be modulated, in turn, by the reliance of the robot itself on its human partner. Although in some

contexts robots’ vulnerability and susceptibility may generate positive emotional responses (Strohkorb

Sebo et al., 2018), our results highlight how interaction with a susceptible robot may lead to detrimental

consequences in terms of confidence in the robot’s competence and, consequently, in individuals’ reliance

on its help and advice. This is particularly important if we consider that, in our task, the robot’s performance

was much higher than that of participants, meaning that its help would have been a valuable tool for behav-

ioral improvement. These findings indicate that transparency is needed to correctly interpret behavior and

capabilities of a robotic system and prevent underreliance and disuse from the user (Lee and See, 2004;

Ososky et al., 2014; Parasuraman and Manzey, 2010; Wang et al., 2015; Złotowski et al., 2016). Moreover,

these results are in line with research in collective and social decision-making showing that humans’ sus-

ceptibility to information provided by others depends on the relative confidence of the interacting partners

and on the possibility to communicate their level of confidence accurately to each other (Bahrami et al.,

2010, 2012; Koriat, 2012).

We have shown that relational and normative effects of reciprocal social influence did emerge in the Robot

group. In particular, results revealed that the observed implicit loss of confidence in the robot’s competence

(i.e., disuse of its feedback for learning purposes) was not accompanied by a decrease in the participants’

explicit susceptibility to the robot, as overtly expressed during their final decisions (that were observed

by the robot itself). A possible explanation of this effect is that participants were not willing to reveal a

loss of confidence in a humanoid robot’s competence that was relying heavily on theparticipants’ estimates.

Previous research on social influence among human peers (Mahmoodi et al., 2018; Zonca et al., 2021a,

2021b) has suggested that showing some level of susceptibility toward a partner may send a pro-social

signal to the partner itself, since receiving consideration from peers is processed by the human brain as a

positive reward (Hertz et al., 2017), whereas being ignored represents a negative reward (Eisenberger

et al., 2003). In this context, taking into account the opinions of others (and not ignoring them) is perceived

as a social norm (Mahmoodi et al., 2018). In line with this view, if the HRI assumes a value on the social level, it

is possible that humans can be pleased, in some measure, by the influence exerted over the robot. In other

words, individuals who have been recently pleased by the robot may feel the urge of behaving nicely with it

or, at least, abstaining from revealing a loss of confidence in the robot’s abilities, as commonly observed in

human-human cooperative settings (Bartlett andDeSteno, 2006; Berns et al., 2010). Our findings are consis-

tent with recent evidence revealing the emergence of pro-social attitudes toward robots in adults (Connolly

et al., 2020; Kahn et al., 2015; Kühnlenz et al., 2018; Siegel et al., 2009) and children (Beran et al., 2011;

Chernyak andGary, 2016;Martin et al., 2020; Zaga et al., 2017).Moreover, they canprovide apro-social inter-

pretation of recent results revealing over-trust with the instructions of faulty or unreliable robots (Aroyo

et al., 2018, 2021; Robinette et al., 2016; Salem et al., 2015).

Nevertheless, we acknowledge that the normative effects of reciprocity observed in the Robot group in the

current work are qualitatively and quantitatively different from those observed in HHI. Using a similar exper-

imental design consisting of a dyadic interaction between a participant and an alleged human partner,

Mahmoodi et al. (2018) have shown that participants’ influence was significantly higher when the partner

had shown high susceptibility (Susceptible condition) than when the partner had shown low susceptibility

to the participant’s judgments (Unsusceptible condition). These findings can be explained by a normative

effect of reciprocity, whereas they are inconsistent with a decision-making model that takes into account

only informational factors such as confidence, uncertainty, and information reliability. However, in our

task, participants interacting with either a computer or a robot did not rely more on the partner’s judgments

in the Susceptible condition (rather, participants in both groups show a non-significant trend in the oppo-

site direction). This result confirms that social influence in human-computer and human-robot scenarios is

primarily modulated by the perception of the agent’s competence and performance (Billings et al., 2012;

Hancock et al., 2011, 2020; van den Brule et al., 2014; Wright et al., 2019). It is clear, and perhaps not

surprising, that the social and normative value underlying human-robot relationships, similarly to that un-

derlying general human-machine interactions, is qualitatively different from that observed in human peer

relationships. This fundamental difference may be grounded in different factors. First, human participants

may be less concerned about the well-being of a robot, since they do not believe that their behavior may

cause negative consequences for the robot itself. Second, participants might not attribute social value and

motives to the robot’s behavior: for instance, the robot’s susceptibility in the Reciprocal social influence

task may be (mostly) interpreted as evidence of the robot’s uncertainty rather than a pro-social signal.
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Third, participants may not believe that their own behavior would have an impact on the behavior of the

robot. In this regard, studies on human-human social influence (Mahmoodi et al., 2018; Zonca et al.,

2021a) have suggested that reciprocity of social influence between human peers may emerge because

of the desire to maintain their influence over a partner by controlling their own behavior. This phenomenon

assumes that people tend to act pro-socially in response to others’ pro-social acts because they believe

that this may preserve their relational status and the associated reward (Campbell-Meiklejohn et al.,

2010; Hertz et al., 2017; Izuma and Adolphs, 2013). However, results of the Final block, in which we manip-

ulated participants’ expectation of future interactions with either the computer or the robotic partner, did

not reveal a clear effect of experimental group on the modulation of participants’ susceptibility depending

on the knowledge of future interactions with the partner. One hypothesis is that the normative phenomena

underlying human-robot reciprocity, in our experimental setting, are not relevant enough to lead partici-

pants to use reciprocity instrumentally, in order to obtain consideration from the robot.

It must be noted that participants did not receive any information about the motives driving the behavior

of the robot (and the computer). Therefore, participants’ susceptibility expressed a genuine reaction to

the perceived capabilities and motives underlying the behavior of their interacting partner. However, it is

unclear how reciprocity (and, in general, pro-social behavior) can emerge when interacting with mechan-

ical agents without transparent goals, motives, and desires. For instance, the emergence of a strong ef-

fect of reciprocity in HRI would require humans to know that robots are aware of social norms and may

comply with them to achieve successful collaboration or please their human partner(s). In this sense,

transparency about the purposes underlying the behavior of a robotic system may be crucial in promot-

ing human-robot collaboration (Ososky et al., 2014). Our results indicate the need of more integrated

models of HRI that treat the robot as an intentional agent with its own goals, motives, and desires (Bossi

et al., 2020; Man and Damasio, 2019; Sciutti et al., 2013; Thellman et al., 2017; Wiese et al., 2017; Ziemke,

2020). Building an incorrect model of the capabilities and the purposes driving the behavior of the ro-

botic system may determine its misuse or disuse (Ososky et al., 2013) or impede the establishment of

successful human-robot collaboration.

Altogether, our results reveal that social influence in HRI does not follow the strict normative constraints

observed in HHI (Mahmoodi et al., 2018; Zonca et al., 2021a, 2021b). Nonetheless, they reveal that the inter-

action with social robots is significantly different from that observed with simple computer algorithms, both

on informational and social levels. These findings stress the importance of a bidirectional view of HRI, which

does not focus exclusively on robots’ appearance and capabilities but also focuses on the relational dy-

namics intervening during interaction. In this regard, we highlight that recent cognitive architectures

have been paving the way for a more relational and reciprocal view of HRI, for instance, in the study of hu-

man-robot trust (Vinanzi et al., 2019, 2021). Robots should not just behave reliably but also possess the abil-

ity to correctly interpret the relational and social signals expressed by their human partner(s) and know how

to react dynamically to preserve or improve collaboration. These abilities may be crucial in the design of

robotic agents that could effectively act as collaborative companions in contexts such as healthcare (Rob-

inson et al., 2014), rehabilitation (Kellmeyer et al., 2018), elderly people assistance (Frennert and Östlund,

2014), and education (Basoeki et al., 2013; Belpaeme et al., 2018).

Limitations of the study

We acknowledge that the current work did non entail a physical interaction with the robot during the joint

experimental tasks in the Robot group. On the one hand, this guaranteed complete comparability with the

Computer group, ruling out potential confounds linked to implicit motor feedback arising from robot’s

movements, which would have affected the perception of the robot’s competence. On the other hand,

this experimental choice implies caution in the generalization of our findings to other types of (physical)

HRI. Extensive research in HRI (e.g., Connolly et al., 2020; Kahn et al., 2015; Kühnlenz et al., 2018; Terzio�glu

et al., 2020) has shown that the physical presence of a (social) robot with human-like behavior may trigger

emotional and empathic reactions in human participants. We hypothesize that, in the presence of specific

physical, motor, or verbal cues coming from a robot, the effects of reciprocity observed in the current work

might be either amplified or reduced following pro-social or anti-social signals. In this regard, we also

acknowledge that the modalities of the encounter with the robot (before starting the experimental session)

may have affected our results. In particular, the meeting with iCub consisted of a simple, scripted speech of

the robot and did not entail a free interaction with the robot with a dynamic dialogue or affective compo-

nents. The encounter with iCub aimed at ensuring that the participant believed that the robot was an
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intentional agent that knew about the presence of the participant (i.e., by enabling head/gaze following)

and the upcoming joint task. We did not create a particular social bound between the robot and the partic-

ipant, since we aimed at studying the effect of the belief on the nature of the partner (robot or computer) in

modulating the emergence of social influence effects with a perfectly controlled experimental setting. How-

ever, we believe that the social effects observed in the current study may be amplified or even canceled de-

pendingon the social attitudeof the robot in the introductory phase, or by the use of a priming task involving

social dimensions like cooperativeness or competitiveness. Future studies may explore the impact of so-

cially relevant, embodied signals generated by social robots on reciprocal social influence during HRI.

Furthermore, our study of reciprocal human-robot social influence was applied to a functional, quantitative

perceptual task. Researchers should be careful in generalizing our findings to experiments involving deci-

sions or opinions on social issues. Recent evidence has shown an increased reliance on robots in functional

rather than social tasks (Gaudiello et al., 2016; Ullman et al., 2021). Indeed, differences between the

perceived robot’s competence in functional and social tasks may have an impact on the emergence of

reciprocal mechanisms of social influence in HRI.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the Lead Con-

tact, Joshua Zonca (joshua.zonca@iit.it).

Materials availability

No materials were newly generated for this paper.

Data and code availability

d Datasets supporting analyses and figures included in the current study are available in a dedicated OSF

repository. Accession numbers are listed in the key resources table.

d Codes used to implement the behavior of the robot, generate figures and support results are available in

a dedicated OSF repository. Accession numbers are listed in the key resources table.

METHOD DETAILS

Overview: participants and procedure

We collected data from 50 participants (22 females, mean age: 34.96, SD: 13.13). All participants completed

the entire experimental paradigm, which included three different tasks that were performed in this exact or-

der: Perceptual inference task, Social influence task and Reciprocal social influence task. Half of the partic-

ipants were assigned to theComputer group, whereas the other half were assigned to the Robot group. The

difference between the two groups lies in the participants’ belief about the nature of the interacting partner

in both the Social influence task and the Reciprocal social influence task: a humanoid robot iCub (Robot

group) or a computer (Computer group). In fact, feedback concerning the partner’s behavior in both groups

was controlledby the same computer algorithms. Participants in the Robot group could not see their robotic

partner while performing the tasks, but had the possibility to meet it before starting the experimental tasks

(see the next paragraph ‘‘introducing participants to the humanoid robot iCub’’). Afterwards, participants in

the Robot groupwere conducted in a new room to perform the experimental tasks. Participants in the Com-

puter group underwent the same experimental paradigm as the one assigned to the Robot condition, but

they did not meet the robot before the start of the experimental protocol and they were simply told they

would interact with a computer. In both conditions, the experimental paradigm was carried out in a dimly

lit room, to ensure an optimal visibility of the stimuli on the screen. Participants seated in front of a wide

touch-screen tablet (43.69 3 24.07 cm), at a distance that allowed participants to see the visual stimuli,

receive feedback from their partner and reach the screen to make decisions. In order to allow participants

to respond with high spatial accuracy, we provided a touch-pen with an ultrathin tip. Before beginning the

experimental tasks, written instructions were given and participants were allowed to ask questions.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Processed datasets and figure codes Open Science Framework repository https://osf.io/3yhua/?view_only=

54c5ed45f41c4ed1955ecfba85e6ccfa

Software and Algorithms

Robot’s custom script Open Science Framework repository https://osf.io/3yhua/?view_only=

54c5ed45f41c4ed1955ecfba85e6ccfa

YARP YARP: Yet Another Robot Platform https://www.yarp.it/latest/

Other

iCub 2 humanoid robot Istituto Italiano di Tecnologia https://icub.iit.it/
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Participants were told that their reimbursement would be calculated based on their performance and, in

particular, on the accuracy of both their initial and final estimates (i.e., final decisions) in both tasks. The

accuracy of the partner was not supposed to have an impact on participants’ outcomes, and vice versa. How-

ever, everyone received themaximum amount (15 euros) at the end of the experiment, following the guide-

lines of the Italian Institute of Technology and the local ethics committee concerning the application of a fair

reimbursement for voluntary participation in experimental research. The final debriefing revealed that all

participants, during the experiment, believed that their final reimbursement would be affected by their per-

formance. Eventually, we extensively debriefed participants about the experimental procedures, the

reasons underlying the modality of reimbursement and the goals of our research, in accordance with the

relevant ethical guidelines. The study was approved by the local ethics committee (Azienda Sanitaria Locale

Genovese N.3, protocol: IIT_wHiSPER) and all participants gave informed consent.

INTRODUCING PARTICIPANTS TO THE HUMANOID ROBOT ICUB

In order to investigate the processes of reciprocal social influence during an interaction with a social robot,

we needed a robot that could exhibit human-like and social-like behavior. Therefore, we chose to use the

humanoid robot iCub, which is an open source humanoid robot for research in embodied cognition and

artificial intelligence (Metta et al., 2008, 2010).

The robot possesses 53 actuated degrees of freedom that permit human-like movement of the head, arms,

hands, waist and legs. It is endowed with sensors and actuators allowing it to produce controlled, fine-

grained actions and direct its attention towards objects and individuals. It also has LEDs mounted behind

the face panel, to represent mouth and eyebrows, which enable it to produce facial expressions and simu-

late lip motion during speech. Thanks to such features, iCub is capable of showing human-like appearance

and behavior (Metta et al., 2008; Tsagarakis et al., 2007) and be perceived as an intentional agent (Bossi

et al., 2020; Sciutti et al., 2013; Thellman et al., 2017; Wiese et al., 2017; Ziemke, 2020) that is aware of

the surrounding environment and autonomously generates actions to fulfill specific goals. For the purposes

of the current experiment, we aimed at conveying the impression that the robot could 1) act as a social and

intentional agent, which was aware of the presence of the participant and knew about the upcoming joint

experiment and 2) physically perform the same task that participants would face in their experimental

session.

To accomplish these goals, participants in the Robot group had a short meeting with iCub before starting

the experiment. One experimenter accompanied the participant in the room with iCub, while another

experimenter controlled the robot from the sidelines. The robot performed a series of predetermined ac-

tions through a custom-made script (see key resource table) running in the YARP environment (Metta

et al., 2006). The researcher that controlled the robot on the sidelines managed the timing of the robot ac-

tions to simulate a natural interaction with the human participant. Before the arrival of the participant, iCub

was placed in front of a touch-screen tablet. The tablet was identical to the one that participants would use

during their experimental session. Once the participant had been introduced in the room, iCub turned to-

ward them saying hello with its voice and waving its hand. The participant was conducted in front of the

robot, so that iCub could track their face and direct its attention towards them. Then the robot introduced

itself and informed the participant that they would play a game together, while continuing to look at the

participant and follow their head movements. These actions aimed at signaling to the participant that

iCub was aware of their presence and knew that would interact with the participant in the upcoming exper-

iment. Eventually, iCub said goodbye to the participant and turned towards the tablet, announcing that it

was ready to play. In order to give the impression that iCub was able to observe stimuli on the touch-screen

tablet and reach it with its hand to perform the task, it also leaned forward andmoved its right arm and hand

in the direction of the tablet, pointing in the direction of the screen with its right index, as if it was ready to

touch the screen. At this point, the participant was accompanied in another room to start the experimental

session.

TASKS DESCRIPTION

Perceptual inference task

In each trial (Figure 1A), participants were presented with two consecutive light flashes (red disks of 0.57 cm

of diameter, duration 200 ms) appearing on a visible horizontal white line crossing the whole screen at

its central height. The first disk was positioned at a variable distance from the left border of the screen
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(0.6–6.6 cm). After its disappearance and an inter-stimulus interval of 200 ms, a second disk appeared at a

variable distance to its right. We defined the distance between the first and the second disk as the target

stimulus length (s). The target stimulus length was randomly selected from 11 different sample distances

(min: 8 cm, max: 16 cm, step: 0.8 cm). Participants were then asked to touch a point on the visible line,

to the right of the second disk, in order to reproduce a segment (connecting the second and the third

disk) matching the target stimulus length. Right after the touch of the screen, a third red disk appeared

in the selected position. No feedback about the accuracy of the response was provided. The task consisted

of 66 trials after which participants were asked to evaluate from 1 to 10 the accuracy of their perceptual

estimates.

Social influence task

At the beginning of each trial, participants made perceptual inferences in the same way as in the Perceptual

inference task. The position of their selection was then marked with a vertical red line and the word YOU.

Participants were told that, during this interval, the other agent (computer in the Computer group or robot

in the Robot group) would see the same stimulus and would estimate its length. Then the other agent’s

estimate was shown along with the word PC or ICUB (depending on the experimental group) in blue (Fig-

ure 2). Importantly, the partner’s feedback was always shown after the participant’s decision (2.50–2.75 sec-

onds after the participant’s response) to prevent participants from being influenced by the estimate of their

partner in their estimation process. Participants were informed about the presence of a delay in the appear-

ance of the partner’s feedback, in order to prevent participants to make inferences about the accuracy of

the partner’s responses based on its reaction times. Participants were not informed about the actual

magnitude of this delay, which was chosen to appear credible also in the Robot condition, where the part-

ner was likely to require some seconds to make a physical response on the touch-screen tablet.

Right after the partner’s estimate, participants were asked tomake a final decision by choosing any position

between their previous response and the agent’s response. In this way, participants’ final decisions ex-

pressed the relative weight assigned to the judgment of the two interacting partners. However, partici-

pants were simply instructed to be as accurate as possible in both decisions and told that their accuracy

in both decisions would affect their final score and reimbursement. After the participant’s final decision,

a green dot and a vertical green line with the word FINAL appeared in the position selected by the partic-

ipant. Participants were told that their partner could see the position of both their initial perceptual esti-

mates and their final decisions. The task consisted of 66 trials divided in three blocks by two brief pauses.

The position of all the three responses (participant’s estimate, partner’s estimate and final decision) re-

mained on screen for 1 s.

At the end of the task, participants evaluated (1–10) their own and the other agent’s accuracy in in the

perceptual estimates (ignoring the perceived accuracy of the final decision).

Reciprocal social influence task

The Reciprocal social influence task (Figure 2) was similar to the Social influence task, with the difference

that, in half of the trials, the final decision was taken by the counterpart (computer or robot). The task con-

sisted of two types of alternating turns, which prescribed the identity of the agent who would have taken

the final decision. In decision turns, the participant made their perceptual estimate, then observed the

response of the partner and eventually the participant had to take the final decision, as in the previous

task. Participants were told that the other agent could observe both their perceptual inferences and final

decisions. In observation turns, the participant made their estimate, then observed that of the partner and

eventually observed the final decision made by the partner, which occurred 3.75–4.50 seconds after the

appearance of the agent’s original estimate. In the observation turns, participants could just observe the

counterpart’s final decisions and could not modify their estimates themselves. After feedback on the part-

ner’s final decision, the position of every response was kept visible on the screen for 1 s. Participants were

instructed to be as accurate as possible in all the decisions they personally had to make, including both

perceptual estimates and final decisions, and that the accuracy of all responses would contribute to their

final score and their reimbursement.

The partner’s final decisions were manipulated during the task in order to express two different types of

behavior: in the Susceptible condition, the agent (computer or robot) was highly influenced by the partic-

ipant’s response, whereas in theUnsusceptible condition the agent tended to confirm its own first response
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and was much less influenced by the participant’s response (for a detailed description of these algorithms,

see the next paragraph ‘‘Agents’ behavior’’). Participants were not informed about the existence of these

two different conditions. The presentation of Susceptible and Unsusceptible conditions followed a within-

subject block design. The order of presentation of the two different blocks was counterbalanced across

participants. Each of the two blocks consisted of 66 trials (33 decision turns and 33 observation turns),

divided in three sub-blocks by two brief pauses.

Between the two main experimental blocks (Susceptible and Unsusceptible), we introduced a Transition

block consisting of 22 trials characterized by a smooth transition in the behavior of the algorithmic agent

in order to make the observed behavioral change appear more natural and gradual (see the paragraph

‘‘transition and final blocks’’ of the STAR Methods).

At the end of these 154 trials (Susceptible, Transition and Unsusceptible block), we added 22 trials charac-

terized by a different alternation of turns (Final block): first participants faced 11 observation turns in a row,

and eventually they underwent 11 decision turns in a row. Participants were informed about this change in

the order of turns only at the beginning of the Final block and were informed that the experiment would

finish after the 11 decision turns. We introduced the Final block to test whether participants would have

changed their level of susceptibility to the partner if they did not expect future interactions with it.

The task consisted of a total of 176 trials. Participants were told that for the entire length of the task,

including the Final block, their partner could observe both their initial and final responses. During the

task there were pauses every 22 trials. In three of these pauses, participants were asked to evaluate from

1 to 10 their own and the other agent’s accuracy in terms of perceptual estimation, without considering

the final decisions. In addition they were asked to estimate how much the other agent would value the par-

ticipants’ accuracy (from 1 to 10). Specifically, participants were asked to rate accuracies once during the

Susceptible block (in the last pause of the same block, after 44 susceptible trials), once right after the Tran-

sition block, and once during the Unsusceptible block (in the last pause of the block, after 44 unsusceptible

trials).

AGENTS’ BEHAVIOR

Agents’ perceptual estimates

The simulated perceptual estimates of the interacting agent (computer or robot) were based on the same

probabilistic algorithm. In each trial, the position of its perceptual estimate was randomly chosen from a

Gaussian distribution centered at the correct response (SD: 1.52 cm). The algorithm was not characterized

by central tendency effects, since the distribution of its perceptual estimates was centered on the correct

response. The standard deviation of the response error distribution was chosen to maintain a balance be-

tween variability, credibility and accuracy of response. Indeed, the standard deviation of the response dis-

tribution of the algorithm was set to be 25% lower than the observed standard deviation of participants’

perceptual inferences, as estimated in a pilot study. Our goal was to prevent participants from recurrently

observing extremely high discrepancies between the two responses, which would have highly affected the

perceived reliability of their partner. Nonetheless, we also considered the possibility that few participants

could be extremely accurate in their perceptual estimates. In this scenario, the participant and partner

would have selected close responses very often, impeding to observe variability in participants’ final esti-

mates. Therefore, in half of the instances in which the algorithm’s sampled estimate was rather close to that

of the participant (i.e., d < 0.5 cm), the algorithm re-sampled a new estimate from the distribution (i.e., until

d > 0.5 cm).

This response distribution was used for all perceptual estimates in the Perceptual inference task, in the So-

cial influence task and in the Reciprocal social influence task.

Agents’ final decisions in the reciprocal social influence task

In the Reciprocal social influence task, the agent (computer or robot) made final decisions in the observa-

tion turns. In this regard, we implemented two distinct types of behavior in two different experimental con-

ditions (Susceptible and Unsusceptible). These two conditions were implemented in two consecutive

experimental blocks, interleaved by a Transition block (see the next paragraph, ‘‘transition and final

blocks’’). The distributions of the final responses in the two different conditions were systematically manip-

ulated in terms of influence (i.e., shift towards the participant’s estimate in the final decision) of the agent.
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This could range from 0 to 1, where an influence of 1 refers to a final decision coinciding with the partici-

pant’s perceptual estimate and an influence of 0 corresponds to a final decision coinciding with the agent’s

own estimate.

On average, the agents’ influence in participants was 0.64 (within-subject SD = 0.26, between-subject SD =

0.04) and 0.18 (within-subject SD = 0.16, between-subject SD = 0.02) in Susceptible and Unsusceptible con-

ditions, respectively. More specifically, in the Susceptible condition trial-by-trial influence was chosen with

a probability of 0.45 from a uniform distribution in the interval [0.75, 1], with a probability of 0.35 randomly

from a uniform distribution in the interval [0.5, 0.75], with a probability of 0.15 randomly from a uniform dis-

tribution in the interval [0.25, 0.5] and with a probability of 0.05 randomly from a uniform distribution in the

interval [0, 0.25]. In the Unsusceptible condition the agent’s level of influence in each trial was chosen with a

probability of 0.80 from a uniform distribution in the interval [0, 0.25], with a probability of 0.15 randomly

from a uniform distribution in the interval [0.25, 0.5] and with a probability of 0.05 randomly from a uniform

distribution in the interval [0.5, 0.75].

These intervals and distributions were chosen to balance variability and credibility of the agents’ final de-

cisions. On the one hand, we wanted participants to believe that the agent was dynamically adjusting its

level of influence based on informational and normative considerations and that their final decisions

were not pre-determined for experimental purposes. On the other hand, we wanted to ensure that partic-

ipants could detect the change of behavior of the agent across Susceptible and Unsusceptible conditions.

These algorithms were tested in a pilot study, where participants, in the final debriefing, confirmed that

they spotted the partner’s behavioral switch and that they did not perceive the partner’s behavior as

implausible or pre-programmed.

Between the two main experimental blocks (Susceptible and Unsusceptible), we introduced a smooth tran-

sition in the behavior of the agent (computer or robot). Concerning the transition from the Susceptible to

the Unsusceptible block, the other agent’s influence in the 11 observation turns was chosen twice from a

uniform distribution in the interval [0.75, 1], then twice from a uniform distribution in the interval [0.5,

0.75], then three times from a uniform distribution in the interval [0.25, 0.5] and eventually four times

from a uniform distribution in the interval [0, 0.25], in this exact order. Conversely, in the transition from

the Unsusceptible to the Susceptible block, the trial-by-trial magnitude of the partner’s influence was cho-

sen from the same distributions, but it was presented in the opposite order, moving sequentially from the

interval [0, 0.25] to the interval [0.75, 1].

The Final block included 11 observation turns in which the partner’s trial-by-trial influence was picked from

the same probabilistic distribution of the last condition faced in the Reciprocal social influence task.

QUANTIFICATION AND STATISTICAL ANALYSIS

Most of the analyses reported in this work focus on examining the variation of dependent variables related

to social influence (i.e., influence, estimation error) as a function of exogenous experimental factors (i.e.,

experimental groups, experimental conditions) and endogenous predictors (i.e., distance from other

agent’s response, performance ratings). First, we used mixed-effect models on trial-by-trial data with

random effects at the subject level. In all the models of the paper, random effects have been applied to

the intercept to adjust for the baseline level of influence of each subject andmodel intra-subject correlation

of repeated measurements. Specification and results of each model have been described in detail in the

supplemental information. Moreover, throughout the paper we also directly compared individual variables

(e.g., influence, estimation error, performance ratings) across experimental conditions and groups. Since

these individual variables occasionally show some degree of skewness and, in some conditions, show a

violation of the normality distribution assumption, we used non-parametric tests (Wilcoxon signed-rank

test; Wilcoxon rank-sum test) through the entire paper for consistency. All tests are two-tailed and report

z statistic, p. value and effect sizes (r, h2). For the same reason, we used non-parametric correlation tests

(Spearman’s rank correlation). The formulas used for the calculation of the effect sizes can be found in Co-

hen (2008) and Fritz et al. (2012): r = Z/ON (total number of observations); h2 = Z2/N. Figures use asterisks to

express the significance of the relevant statistical tests (***p < 0.001, **p < 0.01, *p < 0.05, ns: not signif-

icant). Error bars in all the figures represent between-subject standard error of the mean. All analyses

include the entire sample of 50 subjects and all trials of the three experimental tasks.
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