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Abstract: Protein glycosylation is emerging as an important feature in bacteria. Protein glycosylation
systems have been reported and studied in many pathogenic bacteria, revealing an important
diversity of glycan structures and pathways within and between bacterial species. These systems
play key roles in virulence and pathogenicity. More recently, a large number of bacterial proteins have
been found to be glycosylated in gut commensal bacteria. We present an overview of bacterial protein
glycosylation systems (O- and N-glycosylation) in bacteria, with a focus on glycoproteins from gut
commensal bacteria, particularly Lactobacilli. These emerging studies underscore the importance of
bacterial protein glycosylation in the interaction of the gut microbiota with the host.
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1. Introduction

Protein glycosylation, i.e., the covalent attachment of a carbohydrate moiety onto a protein,
is a highly ubiquitous protein modification in nature, and considered to be one of the post-translational
modifications (PTM) targeting the most diverse group of proteins [1]. Although it was originally
believed to be restricted to eukaryotic systems and later to archaea, it has become apparent nowadays
that protein glycosylation is a common feature in all three domains of life. In fact, it is now
believed that at least 70% of eukaryotic and 50% of prokaryotic proteins are glycosylated by
post-translational modification [2]. Similar to eukaryotic glycosylation, bacterial glycoproteins can
be modified primarily on Asp (N-glycosylation) or Ser/Thr (O-glycosylation). However, in contrast
to eukaryotic glycosylation, where N-glycans are pre-assembled onto a lipid carrier before being
transferred onto the acceptor protein and O-glycans are synthesized directly onto the acceptor protein,
bacterial glycosylation is more diverse, both in terms of mechanisms and carbohydrate structures.
In addition, while glycosylation in Eukaryotes occurs co-, as well as post-translationally, glycosylation
in Prokaryotes is believed to occur post-translationally.

2. Overview of Protein Glycosylation in Prokaryotes

2.1. N-Glycosylation: The Campylobacter jejuni Paradigm

The first complete glycosylation system identified in bacteria, and indeed the best characterized
so far, is the one discovered in Campylobacter jejuni. C. jejuni harbors a protein glycosylation cluster (pgl)
of 13 genes [3,4] that are responsible for the glycosylation of various proteins [5]. These genes encode
(i) enzymes that synthesize bacilosamine (diNAcBac; 2,4-diacetamido-2,4,6-trideoxyglucose) found
at the reducing end of the glycan, (ii) glycosyltransferases (GTs) that are involved in the production
of the glycan {α-GalNAc-(1,4)- α-GalNAc-(1,4)- [β-Glc-(1,3)-]- α-GalNAc-(1,4)- α-GalNAc-(1,4)-
α-GalNAc-(1,3)-α-diNAcBac} on undecaprenol-phosphate, (iii) a transporter (PglK) that flips the
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glycan to the periplasm and (iv) an oligosaccharyl-transferase (PglB) that glycosylates the target
protein [3] (see Figure 1A).
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Homologous pgl clusters are also found in δ- and ε-proteobacteria, although they vary in terms
of their organization and number of GTs. For example, some Campylobacter and Helicobacter species
contain two putative copies of pglB whereas the pgl cluster in Helicobacter canadensis MIT 98-5491 is
spread across multiple loci [6].

The pgl system resembles the eukaryotic N-glycosylation pathway with regards to the glycan
synthesis onto a lipid carrier, the requirement for a flippase and the en bloc transfer of the glycan onto the
target protein. In addition, PglB glycosylates the acceptor protein at an Asp/Glu-Tyr-Asp-Xxx-Ser/Thr
motif, similar to that found in eukaryotic glycoproteins. PglB has been shown to have a relaxed
specificity towards the oligosaccharide it can transfer [7,8]. The nature of the monosaccharides does not
seem to restrict transfer, as heterologous expression of this N-glycosylation system in Escherichia coli has
been used to successfully modify proteins with eukaryotic-like glycans [9]. PglB can also accommodate
glycans of varying size, as shown in E. coli using O-antigen-derived glycans of various lengths [7].

Since this type of glycosylation takes place in the periplasm, and requires flipping of the
lipid-linked glycan across the inner membrane, this N-glycosylation system has not been identified or
predicted in Gram-positive species.

2.2. Alternative N-Glycosylation in β- and γ-Proteobacteria

In contrast to the “typical” N-glycosylation system found in Campylobacter and other δ- and
ε-proteobacteria, a different N-glycosylation system has been reported in β- and γ-proteobacteria.
In particular, the High Molecular Weight Protein 1 (HMW1), an adhesin in Haemophilus influenza (Hi),
was found to undergo N-glycosylation in the cytoplasm by HMW1C with one or two hexose (Hex)
molecules at over 30 glycosylation sites [10]. Uniquely, HMW1C can perform two distinct reactions,
i.e., create an N-glycosidic bond between the first Hex and the acceptor protein, and extend the glycan
by generating an O-glycosidic bond with a second Hex [11] (see Figure 1B). Although HMW1C-like
proteins are predicted to exist in many families of β- and γ-proteobacteria [12], it is still unknown if
they glycosylate more than one protein. HiHMW1C is involved in the glycosylation of HMW1 while
HMW1C-like GTs from Kingella kingae and Aggregatibacter aphrophilus were shown to glycosylate the
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trimeric autotransporters Knh and EmaA, respectively. HMW1, Knh and EmaA contain an extended
signal peptide of the Type V secretion system, as well as autotransporter-like domains. The HMW1C
homologue in Actinobacillus pleuropneumoniae is an exception, as it was shown to glycosylate two
trimeric autotransporter proteins instead of one [13], with one acceptor protein lacking the Type V
secretion system extended peptide. Regarding sugar specificity, HiHMW1C was shown to initiate
glycosylation with either glucose (Glc) or galactose (Gal), but further extension with Glc or Gal was
only observed when Glc was the monosaccharide at the reducing end [10]. In addition, ApHMW1C
was able to utilize UDP-Glc and UDP-Gal as sugar donors, as well as UDP-xylose and GDP-Glc,
in an in vitro assay [14]. Although HMW1 glycosylates proteins preferably at the consensus sequon
Asn-Xxx-Thr/Ser, different amino acids can be tolerated in the third position [11,14,15]. Recently,
the A. pleuropneumoniae glycosylation operon was used to add N-linked glycan consisting of 1–29 hexose
units onto an acceptor protein in E. coli, illustrating the potential biotechnological application of this
glycosylation system for glycoengineering [16].

2.3. N-Glycosylation in Mycoplasmas

While the family of enzymes involved in cytoplasmic N-glycosylation appears to be restricted
to limited classes of Gram-negative proteobacteria, similar glycosylation mechanisms cannot be
excluded from Gram-positive bacteria. In fact, evidence for N-glycosylation in mycoplasma species has
emerged. In a recent study, Asn and Gln residues outside of the N-glycosylation consensus sequence
were found to carry a single Hex in Mycoplasma pulmonis and Mycoplasma arthritis glycoproteins,
which could suggest a similar glycosylation mechanism to the one found in Haemophilus infuenzae [17].
However, no intracellular glycoproteins could be identified, suggesting that this process may take place
extracellularly. In addition, it was shown that the bacteria could use free oligosaccharides from the
growth media, without the need to synthesize glycans internally to use for protein glycosylation [17],
in support of this mechanism.

2.4. O-Glycosylation in Bacteria

Similar to Eukaryotes, bacteria also have mechanisms to perform O-glycosylation by modifying
protein targets with glycans on Ser or Thr residues, and, as with prokaryotic N-glycosylation, two
mechanisms have been identified: (i) en bloc transfer of a pre-assembled lipid-linked oligosaccharide,
and (ii) modification of the acceptor protein directly, by the sequential action of GTs [18] (see Figure 2).
The en bloc glycosylation mechanism follows a sequence similar to that of the N-glycosylation system,
i.e., the glycan is synthesized on undecaprenol phosphate, flipped over to the periplasmic space
and transferred onto the acceptor protein by the action of an O-oligosaccharyltransferase (O-OTase).
In sequential O-glycosylation, multiple GTs act directly onto the acceptor protein to extend the glycan,
using sugar nucleotides as donors.

2.5. En Bloc O-Glycosylation

Several Gram-negative species have been identified to harbor genes encoding O-OTase, including
Neisseria, Pseudomonas, Aeromonas and Burkholderia spp. [19]. The best studied example of en bloc
O-glycosylation is that of Neisseria gonorhoeae, where PglO, the active O-OTase, glycosylates multiple
proteins with an O-acetylated (OAc) glycan, OAc-Gal-Gal-diNAcBac (see Figure 2A) [20–22].

Often, O-OTases utilize lipid-linked glycans used in O-antigen biosynthesis [23], as with PilO from
Pseudomonas aeruginosa [24,25] or Francisella tularensis [26] for example. To do so, the O-antigen subunit
is built onto an undecaprenyl phosphate lipid carrier on the cytosolic side of the inner membrane,
as in the case of N-glycosylation, by the sequential action of a varying number of GTs. It is then
flipped across the membrane to the periplasmic space by the transmembrane flippase Wzx. At this
stage, the O-antigen polymerase Wzy forms a glycosidic bond to link two subunits together [27],
or the O-OTase uses the synthesized subunit to transfer the glycan onto a glycoprotein [23]. N.
gonorrhoeae glycoproteins were found to be modified in low-complexity regions (LCRs), rich in Ala,
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Ser and Pro residues [22], suggesting that some structural features may be recognized by O-OTases,
although no consensus sequence has been identified. Interestingly, two O-OTases were identified in
Acinetobacter baylyi ADP1, one being specific to pilin glycosylation, whereas the other one could target
several proteins [28].
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Protein O-glycosylation has also been confirmed in Neisseria elongata subsp. glycolytica [29],
a facultative pathogenic, oral bacterial species. However, while N. gnorrhoeae and Neisseria meningitides
bacteria [30] produce a diNacBac-Gal-Gal trisaccharide, by the subsequent action of PglA and
PglE, N. elongata lacks the genes encoding these enzymes, and instead uses other GTs to generate
diNacBac-Glc-di-N-acetyl-hexuronic acid (diNAcHexA)-HexNAc. The glycosylation process occurs in
the periplasm in an en bloc glycosylation manner.

Most of these systems have been studied in the context of flagellar or pili glycosylation,
however, recent studies have shown that the O-glycosylation systems in Burkholderia cenocepasia
and N. gonorrhoeae can target multiple proteins [22,31]. Similarly, PilO from Pseudomonas aeruginosa was
also found to target multiple proteins in E. coli, suggesting that it could glycosylate proteins other than
pillins in P. aeruginosa [32]. Interestingly, the flagellin from N. elongata was found to be unglycosylated,
in contrast to most flagellins studied to date [29].

2.6. O-Glycosylation by Sequential Action of Glycosyltransferases

In addition to the en bloc O-glycosylation systems, many bacteria encode enzymes that mediate
mucin-type O-glycosylation, where the acceptor protein is modified intracellularly by the direct action
of a GT, followed by extension of the glycan by the action of additional GTs. In its simplest form,
the acceptor protein is modified, at the glycosylation site, by a single monosaccharide, with no further
elongation of the glycan, as in the case of C. jejuni and Campylobacter coli flagellar glycosylation with
single pseudaminic (Pse) or legionaminic acid (Leg) or their derivatives, respectively. In both cases,
the genes encoding enzymes involved in the biosynthesis and subsequent transfer of the sugar onto
the protein are located downstream of the flaA flagellin gene [33,34].

Examples of this O-glycosylation mechanism have also been described in a range of Gram-positive
species. For example, strains of Clostridium botulinum glycosylate their flagella with a single hexuronic
acid or Leg derivative per glycosylation site [35]. In contrast, Clostridium difficile uses two, more
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complex glycans to carry out protein glycosylation of its flagella. Type A glycans are composed of
an O-GlcNAc modified with a Thr via a phosphodiester bond (Thr-P) and are synthesized by the
sequential action of three enzymes (CD240, CD242 and CD243) [36,37]. Type B glycans consist of
a β-O-GlcNAc, extended with two rhamnose (Rha) molecules, occasionally methylated, and capped
with a unique sulfonated peptidyl fucosamine [38,39]. Three enzymes are involved in the addition of
the monosaccharides onto the target protein, and an additional two enzymes synthesize the modified
fucosamine [39] (see Figure 2B). Bacillus antharacis and the closely related Bacillus cereus glycosylate
their spore protein with 3-O-Me-Rha-α-1,2-Rha-α-1,3-GalNAc, capped either with anthrose or cereose,
respectively, which are sugars characteristic for each strain [40]. A distinct glycosylation system is
found in Listeria monocytogenes, where the flagella is modified on several amino acids by a single
β-O-linked GlcNAc [41]. The glycosidic linkage formed is similar to that found in the C. difficile
glycosylation, but as the glycan is not further extended, it resembles the cytosolic O-GlcNAcylation
mechanism that is involved in signaling pathways [42].

2.7. The Accessory Secretion System SecA2 Glycosylation Pathway

Several pathogenic Gram-positive bacteria possess an auxiliary secretion system (SecA2),
in addition to the canonical SecA [43]. This system contains the necessary genes encoding proteins that
facilitate the expression, glycosylation and subsequent secretion of serine rich repeat (SRR) containing
proteins (SRRPs) [44]. The cluster contains variable number of GTs in different organisms; the best
studied system is that of Streptococcus parasanguinis [45–52] which shows some unique features, not
found in other glycosylation systems. In total, this cluster contains six GTs (see Figure 3). First,
glycosylation of Fap1, the SRRP in S. parasanguinis FW213, is initiated by the combined action of
two GTs, GtfA and GtfB. Please note that, in some studies, these have been referred to as Gtf1 and
Gtf2, but for consistency we will refer to the SecA2 priming GTs as GtfA and GtfB throughout the
review. These enzymes interact with the acceptor SRRP and with each other through a conserved
domain DUF1975 and mediate the addition of the reducing GlcNAc. GtfA acts as a GT, whereas
GtfB interacts with the acceptor protein as a chaperone [53,54]. GtfC, formerly annotated as sugar
nucleotide synthase-like protein (NSS), extends the glycan by adding a Glc unit. dGT1 contains two
distinct GT domains (DUF1792 in N-terminus, which is a recently described GT-D type GT-fold, and
a GT-A type GT-fold in C-terminus [49] and creates a branching point by adding a Glc and a GlcNAc
residue on Glc. GalT2 adds a Rha residue onto the second Glc and the glycosylation is completed by
the addition of a Glc residue onto GlcNAc by Gly [52].Int. J. Mol. Sci. 2018, 19, 136 6 of 18 
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Interestingly, secretion of SRRPs through the SecA2 system does not depend on the glycosylation
of SRR, but this modification blocks export through the canonical SecA system [46]. In addition,
defective glycosylation of SRRP also leads to impaired binding of the respective bacteria onto model
substrates and reduced virulence in mouse models [44,55,56].

3. Protein Glycosylation in Gut Commensal Bacteria

While protein glycosylation has been extensively studied in pathogens, underscoring the
importance of glycoproteins in virulence and pathogenicity (for a recent review, see [57], the nature
and function of protein glycosylation in gut commensal bacteria remains largely unexplored. However,
due to the recognized importance of the role played by the gut microbiota in health and disease,
the study of protein glycosylation in gut commensal bacteria is emerging as an expanding field
of research.

Various glycoproteins have been identified in Bacteroides fragilis, a dominant member of the
Bacteroidetes phylum considered to be a gut commensal bacterium. Most glycoproteins in cell
lysates were found to be fucosylated, as shown using the fucose-specific Aleuria aurantia lectin
(AAL). The bacteria could synthesize GDP-fucose from GDP-mannose, or acquire fucose (Fuc)
from the growth media and activate it with GDP, after phosphorylation (both phosphorylation and
subsequent activation are catalysed by Fkp) [58]. Affinity chromatography with AAL followed by
mass spectrometry (MS) analysis identified glycoproteins of various functions, including peptidases,
chaperones and proteins predicted to be involved in protein-protein interactions. All the identified
proteins were predicted to be periplasmic or associated with the bacterial outer membrane [59].
It was also found that glycosylation took place in the periplasm, which suggested an en bloc
glycosylation mechanism. Indeed, a gene cluster resembling a capsular polysaccharide (CPS)
biosynthesis cluster was identified, which lacked a polymerase gene [59]. After its deletion, the affinity
of the glycoproteins to AAL was lost, suggesting that this cluster plays a critical role in a general
O-glycosylation system and that this system is independent of the CPS biosynthesis pathway [59].
Using an antibody specific for the B. fragilis glycan against protein extracts of various Bacteroides
species, it was suggested that most of them, including Bacteroides thetaiotaomicron and Bacteroides ovatus,
produce similar glycans. No glycosylation was observed in Bacteroides vulgatus, suggesting either
a lack of glycosylation, or, more likely, a different glycan structure, as this bacterial species contains
a homologous glycosylation system [59]. Interestingly, even though no consensus sequence has been
identified for O-glycosylation, the B. fragilis O-OTase seems to be specific for the three-amino-acid
long sequon Asp-(Ser/Thr)-(Ala/Ile/Leu/Met/Thr/Val). Mutation of the first Asp led to a loss of
glycosylation in the proteins tested, and there was a clear requirement for an amino acid with at least
one methyl group in its side chain in the position following the glycosylation site [60]. Based on this
sequence, more than 1000 putative glycoproteins were identified in B. fragilis, and by introducing this
sequence into a putative α-fucosidase from B. fragilis, which does not carry a glycosylation motif and
naturally lack glycosylation, site-specific glycosylation was achieved in vivo [60].

Recently, SRRPs have also been reported to be glycosylated in Streptococcus salivarius, a pioneer
colonizer and commensal bacterium of the human gastrointestinal (GI) tract [61]. In contrast to other
Gram-positive bacteria which have a unique SRR glycoprotein-encoding gene (see above), S. salivarius
expresses three large and glycosylated surface-exposed proteins—SrpA, SrpB and SrpC—that show
characteristics of SRR glycoproteins and are secreted through the accessory SecA2 system. Two GTs,
GtfE and GtfF, encoded outside of the secA2 locus, unusually, perform the first step of the sequential
glycosylation process, which is crucial for SRRP activity. SrpA, SrpB and SrpC are the main factors
underlying the multifaceted adhesion of S. salivarius and, their glycosylation plays a major role in host
colonization [61].
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4. Protein Glycosylation in Lactobacillus

As Lactobacillus species have been extensively studied, owing to the importance of certain strains
as probiotics, evidence for protein glycosylation has recently emerged.

4.1. Lactobacillus Glycoproteins

Muramidases are the best characterized glycoproteins in Lactobacillus species. Acm2, the major
autolysin of Lactobacillus plantarum strain WCFS1, is a modular protein. Its catalytic domain is
surrounded by an O-glycosylated N-terminal region rich in Ala, Ser, and Thr (AST domain), which
is of low complexity and unknown function, and a C-terminal region composed of five SH3b
peptidoglycan binding domains (see Figure 4A. MS analysis showed that Acm2 is glycosylated
by single N-acetylhexoseamine (HexNAc) residues at more than 20 glycosylation sites, all found within
the AST domain [62]. This is in agreement with previous studies showing that O-glycosylation
occurs in low complexity regions [22,31,57]. By deleting the secretion signal peptide of Acm2,
Fredriksen et al. [62] showed that glycosylation occurs intracellularly and therefore precedes
secretion [62]. It was also shown that glycosylation partially inhibited the enzymatic activity of
Acm2 [63]. This was proposed to occur by interaction between the N-Acetylglucosamine (GlcNAc)
moieties of the AST domain with either the active site, or the SH3b motifs, which are responsible for
binding the GlcNAc-rich peptidoglycan layer [63]. Glycosylation also increased the resistance of the
AST domain against trypsin [63].

Similar to Acm2, the major secreted protein 1 (Msp1) is a muramidase found to be glycosylated in
Lactobacillus rhamnosus GG [64]. It has a predicted molecular weight (MW) of 48 kDa, but was found
to migrate at 75 kDa on SDS-PAGE and interact with Concanavalin A (ConA), a lectin specific for
mannose (Man) and Glc residues. Msp1 shows low complexity, as it consists of 23% Ala residues.
Monosaccharide composition analysis of Msp1 confirmed the presence of Man, in agreement with
ConA affinity to Msp1 [64]. As reported for Acm2, the glycosylation of Msp1 protected the protein
against proteases. However, in contrast to Acm2, glycosylation of Msp1 did not affect the hydrolytic
activity of the enzyme or its ability to activate the Akt signaling pathway in Caco-2 cells [64].

Interestingly, a muramidase from Lactobacillus buchneri CD034, belonging to family 25 of glycoside
hydrolases (GH25) according to CAZy classification, and its homologue from L. buchneri NRRL
B-30929 were also found to be glycosylated, with glycans consisting of eight glucose units, in a low
complexity region [65].

Cell surface proteins (adhesins or lectins) play key roles in the adhesion of gut bacteria to the
host tissue, especially the gut epithelium and mucus layer, by interacting with host proteins or
glycoconjugates. These include (i) moonlighting proteins with various roles in the bacterial physiology
(sometimes they also lack the signal peptide necessary for secretion), (ii) surface appendages such as
pili and flagella, as well as (iii) specialized surface adhesins that bind to host tissue [66] (Figure 4A).
Many of these proteins have been shown to be glycosylated (see Table 1).
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(F) Serine rich repeat proteins. The white hexagons represent the glycans found on the proteins.
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Table 1. Summary of the main glycoproteins identified and characterized in Lactobacillus species.

Protein Organism Glycan Method * Reference

Msp1 L. rhamnosus GG Man-containing Pro-Q Emerald stain, Lectin
affinity (WB, AFM) MS [64]

SpaCBA L. rhamnosus GG Man and
Fuc-containing Lectin affinity (AFM, WB, ELLA) [67]

FliC1/FliC2 L. agilis uncharacterized PAS-stain [68]

SlpB/N
L. buchneri CD034,
L. buchneri NRRL

B-30929
Glc1–Glc7 MS [65]

LbGH25B/N
Putative

glycosyl-hydrolase

L. buchneri CD034,
L. buchneri NRRL

B-30929
Glc8 MS [65]

Slp L. kefir uncharacterized PAS stain [69]

Acm2 L. plantarum WCFS1 GlcNAc MS, lectin affinity (WB) [62]

DnaK L. plantarum WCFS1 GlcNAc1,
GlcNAc1Hex1

MS [70]

Lp_2162
(muropeptidase) L. plantarum WCFS1 GlcNAc1 MS [70]

Lp_2260 L. plantarum WCFS1 GlcNAc1 MS [70]

Lp_1643 (mucus
binding protein) L. plantarum WCFS1 GlcNAc1 MS [70]

PdhC L. plantarum WCFS1 GlcNAc1 MS [70]

FtsY L. plantarum WCFS1 GlcNAc1 MS [70]

Lp_2793 L. plantarum WCFS1 GlcNAc1 MS [70]

FtsK1 L. plantarum WCFS1 GlcNAc1 MS [70]

Lp_3421
(muropeptidase) L. plantarum WCFS1 GlcNAc1,

GlcNAc1Hex1
MS [70]

FtsZ L. plantarum WCFS1 GlcNAc1 MS [70]

* Abbreviations: WB, western blot, AFM, atomic force microscopy, MS, mass spectrometry, PAS, periodic acid/Schiff,
ELLA, Enzyme-linked lectin assay.

Pili and flagella are large polymeric proteins that form long surface structures which are involved
in bacterial adhesion. Although rare in Gram-positive bacteria, pili have been identified in L. rhamnosus
GG, where they confer binding to mucus [71] and are predicted to exist in other Lactobacillus species,
based on genomics analyses [72]. In L. rhamnosus GG, these are composed of the three-protein
complex SpaCBA, which is assembled by a pilin-specific sortase [73] (see Figure 4B). The SpaCBA
proteins have been involved in adhesion to intestinal epithelial cells (IEC) and in the attenuation
of proinflammatory responses from these cells [74]. Atomic force spectroscopy (AFM) of the pili
using functionalized tips with lectins specific for Man and Fuc suggested the presence of these two
monosaccharides, in contrast to the glycosylation analysis of L. rhamnosus GG Msp1, which only
detected the presence of Man residues and no Fuc. Furthermore, the glycosylated pili were shown
to interact with dendritic cells (DCs) via the DC-SIGN (Dendritic Cell-Specific Intercellular adhesion
molecule-3-Grabbing Non-integrin) lectin, an important receptor of the immune system that recognizes
primarily high-mannose structures, and induce the expression of the anti-inflammatory cytokine IL-10,
as well as IL-6 and IL-12p35 [67]. Flagellar proteins have been extensively studied in pathogens such
as enteropathogenic and enterohemorrhagic E. coli and Campylobacter sp. where they have been shown
to be important components of adhesion to host tissue [75,76]. Only a few Lactobacillus species have
the genetic potential to produce flagella which can induce pro-inflammatory responses by the host [77].
These were recently characterized in a motile strain of Lactobacillus agilis and shown to be glycosylated
by periodic acid/Schiff (PAS) staining [68] (see Figure 4C), but the nature of glycosylation was not
investigated further.
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Surface Layer Proteins (Slps) comprise the majority of the bacterial surface protein load and
play key roles in aggregation and binding to mucus or the extracellular matrix (ECM) [69,72]. Slps
are expressed by many bacterial species and form a two-dimensional (2-D) layer that surrounds
the bacterial cells [78]. In Gram-positive bacteria, Slps are found attached onto components of the
peptidoglycan (PG) layer, such as (lipo)teichoic acids or neutral polysaccharides [79] (see Figure 4D).
In Lactobacillus species, these proteins usually consist of a C-terminal carbohydrate-binding domain,
used for attachment of the protein onto the cell wall, and a self-assembly N-terminal domain that
forms the 2D layer [80]. Although glycosylated Slps from Lactobacillus helveticus ATCC12046 [81] and
L. plantarum 41021/252 [82] had been shown to be detected by PAS staining, Lactobacillus Slps were
generally considered to be non-glycosylated [69]. However, recent studies of Lactobacillus kefir [69],
Lactobacillus acidophilus [83] and Lactobacillus buchneri [65] strains revealed more glycosylated S-layer
proteins. SlpA in L. acidophilus NCFM was found to be glycosylated with glycans containing Man and
Fuc, as shown by AFM experiments with specific lectins [83]. Similar to SpaCBA pili from L. rhamnosus
GG, SlpA from L. acidophilus NCFM induced the production of IL-10 from DC, by interacting with
DC-SIGN [83]. MS analysis of SlpA from L. buchneri CD034 showed that the protein is glycosylated on
serine residues in the sequon Ser-Ser-Ala-Ser-Ser-Ala-Ser-Ser-Ala, consistent with previous reports
for O-glycosylation in low complexity and AST-rich regions [22,31,62]. The glycans found on each
glycosylation site consisted of 7 residues of α1–6 linked Glc on average. It was also suggested that
glycosylation occurs extracellularly, as no glycosylated SlpA was found in the cytosolic fraction [65].
Since this glycosylation profile is similar to the one reported for the GH25 muramidases from these
strains (see above), it is possible that SlpA and the muramidases are modified by the same glycosylation
system [65]. Screening of various L. kefir strains showed that Slp glycosylation is conserved within this
species [69], but the nature of the glycan or the glycosylation mechanism remain unexplored.

Mucus Binding proteins (MUBs) containing Mub repeats have been identified primarily in lactic
acid bacteria [72] and are more common in those colonizing the GI tract [84]. MUB from L. reuteri
ATCC 53608 is one of the best characterized examples of mucus adhesins in commensal bacteria [85].
MUB presents a C-terminal LPxTG anchoring motif, and an N-terminal secretion signal peptide.
It is a high molecular weight protein that consists of six type 1 Mub (Mub1) repeats and eight type
2 Mub repeats (Mub2), based on sequence homology (see Figure 4E). Each repeat is divided into two
domains, a mucin binding (MucBP) domain and an immunoglobulin binding (Ig-binding protein)
domain [84,86]. The Mub repeats mediate binding to mucin glycans, through interactions with
terminal sialic acid [86,87], and immunoglobulins [84]. MUB has the shape of a long, fiber-like
structure, of around 180 nm in length [88], and forms appendices similar to pili found in pathogenic
and, more rarely, other commensal bacterial species. However, it has been shown by force spectroscopy,
that in contrast to many pathogenic adhesins which show binding capacity at the N-terminal tip,
the particular structural organization of MUB maximizes interactions with the mucin glycan receptors
through its long and linear multi-repeat structure [87]. This multivalent binding is in agreement with
the location/confinement of commensal bacteria within the outer mucus layer in the large bowel.
In addition, MUB from L. reuteri ATCC53608 was recently shown to interact with DC-SIGN, leading to
increased levels of pro-inflammatory cytokines and CD83 [89]. This lectin recognition in addition to its
aberrant electrophoretic mobility [85], suggests that MUB may be glycosylated. Proteins containing
one or more copies of MucBPs have been identified across most Lactobacillus species, as well as proteins
containing Mub repeats [66,88]. MS analysis of surface proteins in L. plantarum WCFS1 revealed
proteins carrying O-GlcNAc residues as shown for Acm2, including a mucus binding protein, similar
to MUB from L. reuteri ATCC 53608, and therefore probably involved in adhesion of the bacteria to the
host surface [70].
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4.2. Protein Glycosylation Pathways in Lactobacillus

The best studied example of protein glycosylation pathway in Lactobacillus is from L. plantarum
WCFS1, where a general glycosylation system has been described [90]. In addition to the
well-characterized glycosylated Acm2 muramidase (see above), MS analysis of surface proteins
in L. plantarum WCFS1 revealed numerous proteins carrying O-GlcNAc residues, including DnaK,
a chaperone involved in protein folding, PdhC, which is involved in the anaerobic metabolism of
Lactobacilli, as well as a mucus binding protein [70] (Table 1). The glycosylation mechanism in
L. plantarum WCFS1 is similar to the initiating glycosylation pathway of SRRPs in pathogens, where
two GTs, named as Gtf1 and Gtf2 in L. plantarum (originally named GtfA and GtfB, but referred to as
Gtf1 and Gtf2 here, so as to avoid confusion with the SecA2 specific GTs), are involved in the addition
of a single HexNAc molecule on the glycosylation site of the acceptor proteins [90]; deletion of either
of these genes led to a loss of recognition of the glycoproteins by the wheat germ agglutinin (WGA)
lectin. This suggests that both enzymes are required for protein glycosylation and that the added
sugar is most likely GlcNAc. These two enzymes contain a DUF1975 in N-terminus which probably
mediates the interaction between the two GTs and the target proteins and a GT domain in C-terminus,
suggesting a similar mode of action to the SecA2 specific GtfA and GtfB (see above).

This analysis also identified a HexNAc-Hex moiety on γ-D-glutamate-meso-diaminopimelate
muropeptidase, which suggests that either the GlcNAc residues can be further extended by the action
of other GTs, or that there is an additional glycosylation system in L. plantarum [70]. In addition to
WGA, Dolichos biflorus agglutinin, a lectin specific for α-GalNAc, and Lens culinaris lectin, which is
specific for α-mannose, were also shown to interact with L. plantarum proteins [90]. This would also
suggest the presence of additional glycosylation system(s). However, deletion of four other putative
GTs (including one with a DUF1975), similar to GtfA from S. parasanguinis in L. plantarum WCFS1 did
not lead to any changes in the recognition of the proteins by these lectins [90].

Analysis of protein glycosylation in L. rhamnosus GG revealed that the heterotrimeric pili and
Msp1, are glycosylated. However, information on the protein glycosylation pathway of this strain is
limited. While L. rhamnosus GG contains a pair of putative glycosyltransferases containing a DUF1975,
these have not been experimentally assessed for their involvement in glycosylation of either Msp1 or
the SpaCBA pilin.

To date, secA2 clusters have been identified in the genomes of various Lactobacillus species [91].
This accessory secretion system is dedicated to the glycosylation and secretion of SRRPs. The secretion
system typically consists of two translocases, SecA2 and SecY2, three accessory Sec system proteins
(asp1–3), and a variable number of GTs, ranging between three to seven (see Figure 5).

The various SRRPs are divided into distinct subdomains: a cleavable and unusually long signal
peptide which, in some cases, is followed by an alanine-serine-threonine rich (AST) motif, a short serine
rich repeat region, a binding region (also known as “basic region” due to its unusual composition
of basic amino acids), a second and much larger serine rich repeat region, and a cell wall anchoring
motif [92]. In L. reuteri strains, the cluster has only been found in isolates of murine or porcine origins,
and it appears to be absent from isolates of human origin [91,93]. The cluster in the murine isolate
L. reuteri 100-23 is crucial for adhesion of the bacteria to the forestomach epithelium of the murine GI
tract, as shown by colonization experiments in mice with L. reuteri 100-23 and mutants lacking putative
adhesins [94]. Mutants lacking the secA2 gene showed defective adhesion, whereas mutants lacking srr
showed the most reduced colonization, compared to other putative adhesins tested [94]. However,
the nature of SRRP glycosylation in Lactobacillus strains has not yet been reported at the protein level.
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are not part of the SecA2 machinery.

5. Conclusions

Host-microbe interactions in the gut influence the outcome of pathogenic infection or commensal
colonization and are thus key to gut homeostasis. Although the importance of protein glycosylation
is now widely acknowledged in pathogens, more effort is needed to gain a better understanding of
glycosylation in our resident gut bacteria. Glycoproteins in particular are an under-studied, potentially
crucial factor underpinning bacteria-host interactions including adhesion, biofilm formation and
immune response. Glycosylation increases protein diversity and structure, and, as such, significantly
impacts on the function of the resulting glycoprotein including the ability for some bacteria to co-
or auto-aggregate. Recent advances in new structural and analytic tools, glycomics, will facilitate
further investigations into novel bacterial glycan structures and characterization of glycosylation
pathways in major gut commensal bacteria. Such knowledge is required to understand the role of
protein glycosylation in determining the fate of bacteria–host interactions and to fully exploit the
increasing range of bacterial molecules involved in the development of novel therapeutic approaches
(drugs and biomarkers) targeting the microbiome.

Acknowledgments: The authors gratefully acknowledge the support of the Biotechnology and Biological Sciences
Research Council (BBSRC) Institute Strategic Programme for The Gut Health and Food Safety (BB/J004529/1).
Dimitrios Latousakis acknowledges a Ph.D. studentship with financial support from IFR/QIB Extra.

Author Contributions: Nathalie Juge and Dimitrios Latousakis wrote the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.



Int. J. Mol. Sci. 2018, 19, 136 13 of 18

References

1. Bastos, P.A.D.; da Costa, J.P.; Vitorino, R. A glimpse into the modulation of post-translational modifications
of human-colonizing bacteria. J. Proteom. 2017, 152, 254–275. [CrossRef] [PubMed]

2. Dell, A.; Galadari, A.; Sastre, F.; Hitchen, P. Similarities and differences in the glycosylation mechanisms in
prokaryotes and eukaryotes. Int. J. Microbiol. 2010, 2010, 148178. [CrossRef] [PubMed]

3. Kelly, J.; Jarrell, H.; Millar, L.; Tessier, L.; Fiori, L.M.; Lau, P.C.; Allan, B.; Szymanski, C.M. Biosynthesis of the
N-linked glycan in Campylobacter jejuni and addition onto protein through block transfer. J. Bacteriol. 2006,
188, 2427–2434. [CrossRef] [PubMed]

4. Linton, D.; Dorrell, N.; Hitchen, P.G.; Amber, S.; Karlyshev, A.V.; Morris, H.R.; Dell, A.; Valvano, M.A.;
Aebi, M.; Wren, B.W. Functional analysis of the Campylobacter jejuni N-linked protein glycosylation pathway.
Mol. Microbiol. 2005, 55, 1695–1703. [CrossRef] [PubMed]

5. Young, N.M.; Brisson, J.-R.; Kelly, J.; Watson, D.C.; Tessier, L.; Lanthier, P.H.; Jarrell, H.C.; Cadotte, N.;
St Michael, F.; Aberg, E.; et al. Structure of the N-linked glycan present on multiple glycoproteins in the
Gram-negative bacterium, Campylobacter jejuni. J. Biol. Chem. 2002, 277, 42530–42539. [CrossRef] [PubMed]

6. Nothaft, H.; Scott, N.E.; Vinogradov, E.; Liu, X.; Hu, R.; Beadle, B.; Fodor, C.; Miller, W.G.; Li, J.; Cordwell, S.J.;
et al. Diversity in the protein N-glycosylation pathways within the Campylobacter genus. Mol. Cell. Proteom.
2012, 11, 1203–1219. [CrossRef] [PubMed]

7. Feldman, M.F.; Wacker, M.; Hernandez, M.; Hitchen, P.G.; Marolda, C.L.; Kowarik, M.; Morris, H.R.;
Dell, A.; Valvano, M.A.; Aebi, M. Engineering N-linked protein glycosylation with diverse O antigen
lipopolysaccharide structures in Escherichia coli. Proc. Natl. Acad. Sci. USA 2005, 102, 3016–3021. [CrossRef]
[PubMed]

8. Schwarz, F.; Huang, W.; Li, C.; Schulz, B.L.; Lizak, C.; Palumbo, A.; Numao, S.; Neri, D.; Aebi, M.; Wang, L.-X.
A combined method for producing homogeneous glycoproteins with eukaryotic N-glycosylation. Nat. Chem.
Biol. 2010, 6, 264–266. [CrossRef] [PubMed]

9. Valderrama-Rincon, J.D.; Fisher, A.C.; Merritt, J.H.; Fan, Y.-Y.; Reading, C.A.; Chhiba, K.; Heiss, C.;
Azadi, P.; Aebi, M.; DeLisa, M.P. An engineered eukaryotic protein glycosylation pathway in Escherichia coli.
Nat. Chem. Biol. 2012, 8, 434–436. [CrossRef] [PubMed]

10. Grass, S.; Lichti, C.F.; Townsend, R.R.; Gross, J.; St Geme, J.W. The Haemophilus influenzae HMW1C protein is
a glycosyltransferase that transfers hexose residues to asparagine sites in the HMW1 adhesin. PLoS Pathog.
2010, 6, e1000919. [CrossRef] [PubMed]

11. Gross, J.; Grass, S.; Davis, A.E.; Gilmore-Erdmann, P.; Townsend, R.R.; St Geme, J.W. The Haemophilus
influenzae HMW1 adhesin is a glycoprotein with an unusual N-linked carbohydrate modification. J. Biol. Chem.
2008, 283, 26010–26015. [CrossRef] [PubMed]

12. McCann, J.R.; St Geme, J.W. The HMW1C-like glycosyltransferase—An enzyme family with a sweet tooth
for simple sugars. PLoS Pathog. 2014, 10, e1003977. [CrossRef] [PubMed]

13. Naegeli, A.; Neupert, C.; Fan, Y.-Y.; Lin, C.-W.; Poljak, K.; Papini, A.M.; Schwarz, F.; Aebi, M.
Molecular analysis of an alternative N-glycosylation machinery by functional transfer from Actinobacillus
pleuropneumoniae to Escherichia coli. J. Biol. Chem. 2014, 289, 2170–2179. [CrossRef] [PubMed]

14. Naegeli, A.; Michaud, G.; Schubert, M.; Lin, C.-W.; Lizak, C.; Darbre, T.; Reymond, J.-L.; Aebi, M. Substrate
specificity of cytoplasmic N-glycosyltransferase. J. Biol. Chem. 2014, 289, 24521–24532. [CrossRef] [PubMed]

15. Rempe, K.A.; Spruce, L.A.; Porsch, E.A.; Seeholzer, S.H.; Nørskov-Lauritsen, N.; St Geme, J.W.
Unconventional N-linked glycosylation promotes trimeric autotransporter function in kingella kingae
and Aggregatibacter aphrophilus. MBio 2015, 6, e01206-15. [CrossRef] [PubMed]

16. Cuccui, J.; Terra, V.S.; Bossé, J.T.; Naegeli, A.; Abouelhadid, S.; Li, Y.; Lin, C.W.; Vohra, P.; Tucker, A.W.;
Rycroft, A.N.; et al. The N-linking glycosylation system from Actinobacillus pleuropneumoniae is required for
adhesion and has potential use in glycoengineering. Open Biol. 2017, 7, 160212. [CrossRef] [PubMed]

17. Daubenspeck, J.M.; Jordan, D.S.; Simmons, W.; Renfrow, M.B.; Dybvig, K. General N-and O-linked
glycosylation of lipoproteins in mycoplasmas and role of exogenous oligosaccharide. PLoS ONE 2015,
10, e0143362. [CrossRef] [PubMed]

18. Tan, F.Y.Y.; Tang, C.M.; Exley, R.M. Sugar coating: Bacterial protein glycosylation and host-microbe
interactions. Trends Biochem. Sci. 2015, 40, 342–350. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.jprot.2016.11.005
http://www.ncbi.nlm.nih.gov/pubmed/27888141
http://dx.doi.org/10.1155/2010/148178
http://www.ncbi.nlm.nih.gov/pubmed/21490701
http://dx.doi.org/10.1128/JB.188.7.2427-2434.2006
http://www.ncbi.nlm.nih.gov/pubmed/16547029
http://dx.doi.org/10.1111/j.1365-2958.2005.04519.x
http://www.ncbi.nlm.nih.gov/pubmed/15752194
http://dx.doi.org/10.1074/jbc.M206114200
http://www.ncbi.nlm.nih.gov/pubmed/12186869
http://dx.doi.org/10.1074/mcp.M112.021519
http://www.ncbi.nlm.nih.gov/pubmed/22859570
http://dx.doi.org/10.1073/pnas.0500044102
http://www.ncbi.nlm.nih.gov/pubmed/15703289
http://dx.doi.org/10.1038/nchembio.314
http://www.ncbi.nlm.nih.gov/pubmed/20190762
http://dx.doi.org/10.1038/nchembio.921
http://www.ncbi.nlm.nih.gov/pubmed/22446837
http://dx.doi.org/10.1371/journal.ppat.1000919
http://www.ncbi.nlm.nih.gov/pubmed/20523900
http://dx.doi.org/10.1074/jbc.M801819200
http://www.ncbi.nlm.nih.gov/pubmed/18621734
http://dx.doi.org/10.1371/journal.ppat.1003977
http://www.ncbi.nlm.nih.gov/pubmed/24722584
http://dx.doi.org/10.1074/jbc.M113.524462
http://www.ncbi.nlm.nih.gov/pubmed/24275653
http://dx.doi.org/10.1074/jbc.M114.579326
http://www.ncbi.nlm.nih.gov/pubmed/24962585
http://dx.doi.org/10.1128/mBio.01206-15
http://www.ncbi.nlm.nih.gov/pubmed/26307167
http://dx.doi.org/10.1098/rsob.160212
http://www.ncbi.nlm.nih.gov/pubmed/28077594
http://dx.doi.org/10.1371/journal.pone.0143362
http://www.ncbi.nlm.nih.gov/pubmed/26599081
http://dx.doi.org/10.1016/j.tibs.2015.03.016
http://www.ncbi.nlm.nih.gov/pubmed/25936979


Int. J. Mol. Sci. 2018, 19, 136 14 of 18

19. Schäffer, C.; Messner, P. Emerging facets of prokaryotic glycosylation. FEMS Microbiol. Rev. 2017, 41, 49–91.
[CrossRef] [PubMed]

20. Aas, F.E.; Vik, A.; Vedde, J.; Koomey, M.; Egge-Jacobsen, W. Neisseria gonorrhoeae O-linked pilin glycosylation:
Functional analyses define both the biosynthetic pathway and glycan structure. Mol. Microbiol. 2007, 65,
607–624. [CrossRef] [PubMed]

21. Hartley, M.D.; Morrison, M.J.; Aas, F.E.; Børud, B.; Koomey, M.; Imperiali, B. Biochemical characterization of
the O-linked glycosylation pathway in Neisseria gonorrhoeae responsible for biosynthesis of protein glycans
containing N,N′-diacetylbacillosamine. Biochemistry 2011, 50, 4936–4948. [CrossRef] [PubMed]

22. Vik, A.; Aas, F.E.; Anonsen, J.H.; Bilsborough, S.; Schneider, A.; Egge-Jacobsen, W.; Koomey, M. Broad
spectrum O-linked protein glycosylation in the human pathogen Neisseria gonorrhoeae. Proc. Natl. Acad.
Sci. USA 2009, 106, 4447–4452. [CrossRef] [PubMed]

23. Cuccui, J.; Wren, B.W. Bacteria like sharing their sweets. Mol. Microbiol. 2013, 89, 811–815. [CrossRef]
[PubMed]

24. DiGiandomenico, A.; Matewish, M.J.; Bisaillon, A.; Stehle, J.R.; Lam, J.S.; Castric, P. Glycosylation of
Pseudomonas aeruginosa 1244 pilin: Glycan substrate specificity. Mol. Microbiol. 2002, 46, 519–530. [CrossRef]
[PubMed]

25. Horzempa, J.; Dean, C.R.; Goldberg, J.B.; Castric, P. Pseudomonas aeruginosa 1244 pilin glycosylation: Glycan
substrate recognition. J. Bacteriol. 2006, 188, 4244–4252. [CrossRef] [PubMed]

26. Balonova, L.; Mann, B.F.; Cerveny, L.; Alley, W.R.; Chovancova, E.; Forslund, A.-L.; Salomonsson, E.N.;
Forsberg, A.; Damborsky, J.; Novotny, M.V.; et al. Characterization of protein glycosylation in Francisella
tularensis subsp. holarctica: Identification of a novel glycosylated lipoprotein required for virulence.
Mol. Cell. Proteom. 2012, 11, M111–015016. [CrossRef] [PubMed]

27. Samuel, G.; Reeves, P. Biosynthesis of O-antigens: Genes and pathways involved in nucleotide sugar
precursor synthesis and O-antigen assembly. Carbohydr. Res. 2003, 338, 2503–2519. [CrossRef] [PubMed]

28. Harding, C.M.; Nasr, M.A.; Kinsella, R.L.; Scott, N.E.; Foster, L.J.; Weber, B.S.; Fiester, S.E.; Actis, L.A.;
Tracy, E.N.; Munson, R.S.; et al. Acinetobacter strains carry two functional oligosaccharyltransferases, one
devoted exclusively to type IV pilin, and the other one dedicated to O-glycosylation of multiple proteins.
Mol. Microbiol. 2015, 96, 1023–1041. [CrossRef] [PubMed]

29. Anonsen, J.H.; Vik, Å.; Børud, B.; Viburiene, R.; Aas, F.E.; Kidd, S.W.A.; Aspholm, M.; Koomey, M.
Characterization of a unique tetrasaccharide and distinct glycoproteome in the O-linked protein glycosylation
System of Neisseria elongata subsp. glycolytica. J. Bacteriol. 2015, 198, 256–267. [CrossRef] [PubMed]

30. John, C.M.; Liu, M.; Phillips, N.J.; Yang, Z.; Funk, C.R.; Zimmerman, L.I.; Griffiss, J.M.; Stein, D.C.; Jarvis, G.A.
Lack of lipid A pyrophosphorylation and functional lptA reduces inflammation by Neisseria commensals.
Infect. Immun. 2012, 80, 4014–4026. [CrossRef] [PubMed]

31. Lithgow, K.V.; Scott, N.E.; Iwashkiw, J.A.; Thomson, E.L.S.; Foster, L.J.; Feldman, M.F.; Dennis, J.J. A general
protein O-glycosylation system within the Burkholderia cepacia complex is involved in motility and virulence.
Mol. Microbiol. 2014, 92, 116–137. [CrossRef] [PubMed]

32. Qutyan, M.; Henkel, M.; Horzempa, J.; Quinn, M.; Castric, P. Glycosylation of pilin and nonpilin protein
constructs by Pseudomonas aeruginosa 1244. J. Bacteriol. 2010, 192, 5972–5981. [CrossRef] [PubMed]

33. Zampronio, C.G.; Blackwell, G.; Penn, C.W.; Cooper, H.J. Novel glycosylation sites localized in Campylobacter
jejuni flagellin FlaA by liquid chromatography electron capture dissociation tandem mass spectrometry.
J. Proteome Res. 2011, 10, 1238–1245. [CrossRef] [PubMed]

34. Zebian, N.; Merkx-Jacques, A.; Pittock, P.P.; Houle, S.; Dozois, C.M.; Lajoie, G.A.; Creuzenet, C.
Comprehensive analysis of flagellin glycosylation in Campylobacter jejuni NCTC 11168 reveals incorporation
of legionaminic acid and its importance for host colonization. Glycobiology 2016, 26, 386–397. [CrossRef]
[PubMed]

35. Twine, S.M.; Paul, C.J.; Vinogradov, E.; McNally, D.J.; Brisson, J.-R.; Mullen, J.A.; McMullin, D.R.; Jarrell, H.C.;
Austin, J.W.; Kelly, J.F.; et al. Flagellar glycosylation in Clostridium botulinum. FEBS J. 2008, 275, 4428–4444.
[CrossRef] [PubMed]

36. Faulds-Pain, A.; Twine, S.M.; Vinogradov, E.; Strong, P.C.R.; Dell, A.; Buckley, A.M.; Douce, G.R.; Valiente, E.;
Logan, S.M.; Wren, B.W. The post-translational modification of the Clostridium difficile flagellin affects motility,
cell surface properties and virulence. Mol. Microbiol. 2014, 94, 272–289. [CrossRef] [PubMed]

http://dx.doi.org/10.1093/femsre/fuw036
http://www.ncbi.nlm.nih.gov/pubmed/27566466
http://dx.doi.org/10.1111/j.1365-2958.2007.05806.x
http://www.ncbi.nlm.nih.gov/pubmed/17608667
http://dx.doi.org/10.1021/bi2003372
http://www.ncbi.nlm.nih.gov/pubmed/21542610
http://dx.doi.org/10.1073/pnas.0809504106
http://www.ncbi.nlm.nih.gov/pubmed/19251655
http://dx.doi.org/10.1111/mmi.12328
http://www.ncbi.nlm.nih.gov/pubmed/23844892
http://dx.doi.org/10.1046/j.1365-2958.2002.03171.x
http://www.ncbi.nlm.nih.gov/pubmed/12406226
http://dx.doi.org/10.1128/JB.00273-06
http://www.ncbi.nlm.nih.gov/pubmed/16740931
http://dx.doi.org/10.1074/mcp.M111.015016
http://www.ncbi.nlm.nih.gov/pubmed/22361235
http://dx.doi.org/10.1016/j.carres.2003.07.009
http://www.ncbi.nlm.nih.gov/pubmed/14670712
http://dx.doi.org/10.1111/mmi.12986
http://www.ncbi.nlm.nih.gov/pubmed/25727908
http://dx.doi.org/10.1128/JB.00620-15
http://www.ncbi.nlm.nih.gov/pubmed/26483525
http://dx.doi.org/10.1128/IAI.00506-12
http://www.ncbi.nlm.nih.gov/pubmed/22949553
http://dx.doi.org/10.1111/mmi.12540
http://www.ncbi.nlm.nih.gov/pubmed/24673753
http://dx.doi.org/10.1128/JB.00007-10
http://www.ncbi.nlm.nih.gov/pubmed/20833803
http://dx.doi.org/10.1021/pr101021c
http://www.ncbi.nlm.nih.gov/pubmed/21158479
http://dx.doi.org/10.1093/glycob/cwv104
http://www.ncbi.nlm.nih.gov/pubmed/26582606
http://dx.doi.org/10.1111/j.1742-4658.2008.06589.x
http://www.ncbi.nlm.nih.gov/pubmed/18671733
http://dx.doi.org/10.1111/mmi.12755
http://www.ncbi.nlm.nih.gov/pubmed/25135277


Int. J. Mol. Sci. 2018, 19, 136 15 of 18

37. Twine, S.M.; Reid, C.W.; Aubry, A.; McMullin, D.R.; Fulton, K.M.; Austin, J.; Logan, S.M. Motility and
flagellar glycosylation in Clostridium difficile. J. Bacteriol. 2009, 191, 7050–7062. [CrossRef] [PubMed]

38. Bouché, L.; Panico, M.; Hitchen, P.; Binet, D.; Sastre, F.; Faulds-Pain, A.; Valiente, E.; Vinogradov, E.; Aubry, A.;
Fulton, K.; et al. The Type B flagellin of hypervirulent Clostridium difficile is modified with novel sulfonated
peptidylamido-glycans. J. Biol. Chem. 2016, 291, 25439–25449. [CrossRef] [PubMed]

39. Valiente, E.; Bouché, L.; Hitchen, P.; Faulds-Pain, A.; Songane, M.; Dawson, L.F.; Donahue, E.; Stabler, R.A.;
Panico, M.; Morris, H.R.; et al. Role of glycosyltransferases modifying type B flagellin of emerging
hypervirulent clostridium difficile lineages and their impact on motility and biofilm formation. J. Biol. Chem.
2016, 291, 25450–25461. [CrossRef] [PubMed]

40. Maes, E.; Krzewinski, F.; Garenaux, E.; Lequette, Y.; Coddeville, B.; Trivelli, X.; Ronse, A.; Faille, C.;
Guerardel, Y. Glycosylation of BclA glycoprotein from Bacillus cereus and Bacillus anthracis exosporium
is domain-specific. J. Biol. Chem. 2016, 291, 9666–9677. [CrossRef] [PubMed]

41. Schirm, M.; Kalmokoff, M.; Aubry, A.; Thibault, P.; Sandoz, M.; Logan, S.M. Flagellin from Listeria
monocytogenes is glycosylated with beta-O-linked N-acetylglucosamine. J. Bacteriol. 2004, 186, 6721–6727.
[CrossRef] [PubMed]

42. Hart, G.W.; Slawson, C.; Ramirez-Correa, G.; Lagerlof, O. Cross talk between O-GlcNAcylation and
phosphorylation: Roles in signaling, transcription, and chronic disease. Annu. Rev. Biochem. 2011, 80,
825–858. [CrossRef] [PubMed]

43. Prabudiansyah, I.; Driessen, A.J.M. The Canonical and accessory Sec system of gram-positive bacteria.
Curr. Top. Microbiol. Immunol. 2017, 404, 45–67. [CrossRef] [PubMed]

44. Lizcano, A.; Sanchez, C.J.; Orihuela, C.J. A role for glycosylated serine-rich repeat proteins in gram-positive
bacterial pathogenesis. Mol. Oral Microbiol. 2012, 27, 257–269. [CrossRef] [PubMed]

45. Bu, S.; Li, Y.; Zhou, M.; Azadin, P.; Zeng, M.; Fives-Taylor, P.; Wu, H. Interaction between two putative
glycosyltransferases is required for glycosylation of a serine-rich streptococcal adhesin. J. Bacteriol. 2008, 190,
1256–1266. [CrossRef] [PubMed]

46. Chen, Q.; Sun, B.; Wu, H.; Peng, Z.; Fives-Taylor, P.M. Differential roles of individual domains in selection of
secretion route of a Streptococcus parasanguinis serine-rich adhesin, Fap1. J. Bacteriol. 2007, 189, 7610–7617.
[CrossRef] [PubMed]

47. Peng, Z.; Wu, H.; Ruiz, T.; Chen, Q.; Zhou, M.; Sun, B.; Fives-Taylor, P. Role of gap3 in Fap1 glycosylation,
stability, in vitro adhesion, and fimbrial and biofilm formation of Streptococcus parasanguinis.
Oral Microbiol. Immunol. 2008, 23, 70–78. [CrossRef] [PubMed]

48. Zhang, H.; Zhou, M.; Yang, T.; Haslam, S.M.; Dell, A.; Wu, H. A new helical binding domain mediates
a unique glycosyltransferase activity of a bifunctional protein. J. Biol Chem. 2016, 291, 22106–22117. [CrossRef]
[PubMed]

49. Zhang, H.; Zhu, F.; Yang, T.; Ding, L.; Zhou, M.; Li, J.; Haslam, S.M.; Dell, A.; Erlandsen, H.; Wu, H. The
highly conserved domain of unknown function 1792 has a distinct glycosyltransferase fold. Nat. Commun.
2014, 5, 4339. [CrossRef] [PubMed]

50. Zhou, M.; Zhu, F.; Dong, S.; Pritchard, D.G.; Wu, H. A novel glucosyltransferase is required for glycosylation
of a serine-rich adhesin and biofilm formation by Streptococcus parasanguinis. J. Biol. Chem. 2010, 285,
12140–12148. [CrossRef] [PubMed]

51. Zhu, F.; Erlandsen, H.; Ding, L.; Li, J.; Huang, Y.; Zhou, M.; Liang, X.; Ma, J.; Wu, H. Structural and functional
analysis of a new subfamily of glycosyltransferases required for glycosylation of serine-rich streptococcal
adhesins. J. Biol. Chem. 2011, 286, 27048–27057. [CrossRef] [PubMed]

52. Zhu, F.; Zhang, H.; Yang, T.; Haslam, S.M.; Dell, A.; Wu, H. Engineering and dissecting the glycosylation
pathway of a streptococcal serine-rich repeat adhesin. J. Biol. Chem. 2016, 291, 27354–27363. [CrossRef]
[PubMed]

53. Chen, Y.; Seepersaud, R.; Bensing, B.A.; Sullam, P.M.; Rapoport, T.A. Mechanism of a cytosolic
O-glycosyltransferase essential for the synthesis of a bacterial adhesion protein. Proc. Natl. Acad. Sci. USA
2016, 113, E1190–E1199. [CrossRef] [PubMed]

54. Shi, W.-W.; Jiang, Y.-L.; Zhu, F.; Yang, Y.-H.; Shao, Q.-Y.; Yang, H.-B.; Ren, Y.-M.; Wu, H.; Chen, Y.; Zhou, C.-Z.
Structure of a novel O-linked N-acetyl-D-glucosamine (O-GlcNAc) transferase, GtfA, reveals insights into the
glycosylation of pneumococcal serine-rich repeat adhesins. J. Biol. Chem. 2014, 289, 20898–20907. [CrossRef]
[PubMed]

http://dx.doi.org/10.1128/JB.00861-09
http://www.ncbi.nlm.nih.gov/pubmed/19749038
http://dx.doi.org/10.1074/jbc.M116.749481
http://www.ncbi.nlm.nih.gov/pubmed/27758867
http://dx.doi.org/10.1074/jbc.M116.749523
http://www.ncbi.nlm.nih.gov/pubmed/27703012
http://dx.doi.org/10.1074/jbc.M116.718171
http://www.ncbi.nlm.nih.gov/pubmed/26921321
http://dx.doi.org/10.1128/JB.186.20.6721-6727.2004
http://www.ncbi.nlm.nih.gov/pubmed/15466023
http://dx.doi.org/10.1146/annurev-biochem-060608-102511
http://www.ncbi.nlm.nih.gov/pubmed/21391816
http://dx.doi.org/10.1007/82_2016_9
http://www.ncbi.nlm.nih.gov/pubmed/27154227
http://dx.doi.org/10.1111/j.2041-1014.2012.00653.x
http://www.ncbi.nlm.nih.gov/pubmed/22759311
http://dx.doi.org/10.1128/JB.01078-07
http://www.ncbi.nlm.nih.gov/pubmed/18083807
http://dx.doi.org/10.1128/JB.00748-07
http://www.ncbi.nlm.nih.gov/pubmed/17766425
http://dx.doi.org/10.1111/j.1399-302X.2007.00401.x
http://www.ncbi.nlm.nih.gov/pubmed/18173801
http://dx.doi.org/10.1074/jbc.M116.731695
http://www.ncbi.nlm.nih.gov/pubmed/27539847
http://dx.doi.org/10.1038/ncomms5339
http://www.ncbi.nlm.nih.gov/pubmed/25023666
http://dx.doi.org/10.1074/jbc.M109.066928
http://www.ncbi.nlm.nih.gov/pubmed/20164186
http://dx.doi.org/10.1074/jbc.M110.208629
http://www.ncbi.nlm.nih.gov/pubmed/21653318
http://dx.doi.org/10.1074/jbc.M116.752998
http://www.ncbi.nlm.nih.gov/pubmed/28039332
http://dx.doi.org/10.1073/pnas.1600494113
http://www.ncbi.nlm.nih.gov/pubmed/26884191
http://dx.doi.org/10.1074/jbc.M114.581934
http://www.ncbi.nlm.nih.gov/pubmed/24936067


Int. J. Mol. Sci. 2018, 19, 136 16 of 18

55. Lizcano, A.; Babu, R.A.S.; Shenoy, A.T.; Saville, A.M.; Kumar, N.; D’Mello, A.; Hinojosa, C.A.; Gilley, R.P.;
Segovia, J.; Mitchell, T.J.; et al. Transcriptional organization of pneumococcal psrP-secY2A2 and impact of
GtfA and GtfB deletion on PsrP-associated virulence properties. Microbes Infect. 2017, 19, 323–333. [CrossRef]
[PubMed]

56. Mistou, M.-Y.; Dramsi, S.; Brega, S.; Poyart, C.; Trieu-Cuot, P. Molecular dissection of the secA2 locus of
group B Streptococcus reveals that glycosylation of the Srr1 LPXTG protein is required for full virulence.
J. Bacteriol. 2009, 191, 4195–4206. [CrossRef] [PubMed]

57. Valguarnera, E.; Kinsella, R.L.; Feldman, M.F. Sugar and spice make bacteria not nice: Protein glycosylation
and its influence in pathogenesis. J. Mol. Biol. 2016, 428, 3206–3220. [CrossRef] [PubMed]

58. Coyne, M.J.; Reinap, B.; Lee, M.M.; Comstock, L.E. Human symbionts use a host-like pathway for surface
fucosylation. Science 2005, 307, 1778–1781. [CrossRef] [PubMed]

59. Fletcher, C.M.; Coyne, M.J.; Villa, O.F.; Chatzidaki-Livanis, M.; Comstock, L.E. A general O-glycosylation
system important to the physiology of a major human intestinal symbiont. Cell 2009, 137, 321–331. [CrossRef]
[PubMed]

60. Fletcher, C.M.; Coyne, M.J.; Comstock, L.E. Theoretical and experimental characterization of the scope of
protein O-glycosylation in Bacteroides fragilis. J. Biol. Chem. 2011, 286, 3219–3226. [CrossRef] [PubMed]

61. Couvigny, B.; Lapaque, N.; Rigottier-Gois, L.; Guillot, A.; Chat, S.; Meylheuc, T.; Kulakauskas, S.; Rohde, M.;
Mistou, M.-Y.; Renault, P.; et al. Three glycosylated serine-rich repeat proteins play a pivotal role in adhesion
and colonization of the pioneer commensal bacterium, Streptococcus salivarius. Environ. Microbiol. 2017, 19,
3579–3594. [CrossRef] [PubMed]

62. Fredriksen, L.; Mathiesen, G.; Moen, A.; Bron, P.A.; Kleerebezem, M.; Eijsink, V.G.H.; Egge-Jacobsen, W. The
major autolysin Acm2 from Lactobacillus plantarum undergoes cytoplasmic O-glycosylation. J. Bacteriol. 2012,
194, 325–333. [CrossRef] [PubMed]

63. Rolain, T.; Bernard, E.; Beaussart, A.; Degand, H.; Courtin, P.; Egge-Jacobsen, W.; Bron, P.A.; Morsomme, P.;
Kleerebezem, M.; Chapot-Chartier, M.-P.; et al. O-glycosylation as a novel control mechanism of
peptidoglycan hydrolase activity. J. Biol. Chem. 2013, 288, 22233–22247. [CrossRef] [PubMed]

64. Lebeer, S.; Claes, I.J.J.; Balog, C.I.A.; Schoofs, G.; Verhoeven, T.L.A.; Nys, K.; von Ossowski, I.; de Vos, W.M.;
Tytgat, H.L.P.; Agostinis, P.; et al. The major secreted protein Msp1/p75 is O-glycosylated in Lactobacillus
rhamnosus GG. Microb. Cell Fact. 2012, 11, 15. [CrossRef] [PubMed]

65. Anzengruber, J.; Pabst, M.; Neumann, L.; Sekot, G.; Heinl, S.; Grabherr, R.; Altmann, F.; Messner, P.;
Schäffer, C. Protein O-glucosylation in Lactobacillus buchneri. Glycoconj. J. 2014, 31, 117–131. [CrossRef]
[PubMed]

66. Juge, N. Microbial adhesins to gastrointestinal mucus. Trends Microbiol. 2012, 20, 30–39. [CrossRef] [PubMed]
67. Tytgat, H.L.P.; van Teijlingen, N.H.; Sullan, R.M.A.; Douillard, F.P.; Rasinkangas, P.; Messing, M.; Reunanen, J.;

Satokari, R.; Vanderleyden, J.; Dufrêne, Y.F.; et al. Probiotic gut microbiota isolate interacts with dendritic
cells via glycosylated heterotrimeric Pili. PLoS ONE 2016, 11, e0151824. [CrossRef] [PubMed]

68. Kajikawa, A.; Midorikawa, E.; Masuda, K.; Kondo, K.; Irisawa, T.; Igimi, S.; Okada, S. Characterization of
flagellins isolated from a highly motile strain of Lactobacillus agilis. BMC Microbiol. 2016, 16, 49. [CrossRef]
[PubMed]

69. Mobili, P.; de los Ángeles Serradell, M.; Trejo, S.A.; Avilés Puigvert, F.X.; Abraham, A.G.; De Antoni, G.L.
Heterogeneity of S-layer proteins from aggregating and non-aggregating Lactobacillus kefir strains.
Antonie Leeuwenhoek 2009, 95, 363–372. [CrossRef] [PubMed]

70. Fredriksen, L.; Moen, A.; Adzhubei, A.A.; Mathiesen, G.; Eijsink, V.G.H.; Egge-Jacobsen, W. Lactobacillus
plantarum WCFS1 O-linked protein glycosylation: An extended spectrum of target proteins and modification
sites detected by mass spectrometry. Glycobiology 2013, 23, 1439–1451. [CrossRef] [PubMed]

71. Nikolic, M.; López, P.; Strahinic, I.; Suárez, A.; Kojic, M.; Fernández-García, M.; Topisirovic, L.; Golic, N.;
Ruas-Madiedo, P. Characterisation of the exopolysaccharide (EPS)-producing Lactobacillus paraplantarum
BGCG11 and its non-EPS producing derivative strains as potential probiotics. Int. J. Food Microbiol. 2012,
158, 155–162. [CrossRef] [PubMed]

72. Sengupta, R.; Altermann, E.; Anderson, R.C.; McNabb, W.C.; Moughan, P.J.; Roy, N.C. The role of cell surface
architecture of lactobacilli in host-microbe interactions in the gastrointestinal tract. Mediat. Inflamm. 2013,
2013, 237921. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.micinf.2017.04.001
http://www.ncbi.nlm.nih.gov/pubmed/28408270
http://dx.doi.org/10.1128/JB.01673-08
http://www.ncbi.nlm.nih.gov/pubmed/19395494
http://dx.doi.org/10.1016/j.jmb.2016.04.013
http://www.ncbi.nlm.nih.gov/pubmed/27107636
http://dx.doi.org/10.1126/science.1106469
http://www.ncbi.nlm.nih.gov/pubmed/15774760
http://dx.doi.org/10.1016/j.cell.2009.02.041
http://www.ncbi.nlm.nih.gov/pubmed/19379697
http://dx.doi.org/10.1074/jbc.M110.194506
http://www.ncbi.nlm.nih.gov/pubmed/21115495
http://dx.doi.org/10.1111/1462-2920.13853
http://www.ncbi.nlm.nih.gov/pubmed/28695648
http://dx.doi.org/10.1128/JB.06314-11
http://www.ncbi.nlm.nih.gov/pubmed/22081384
http://dx.doi.org/10.1074/jbc.M113.470716
http://www.ncbi.nlm.nih.gov/pubmed/23760506
http://dx.doi.org/10.1186/1475-2859-11-15
http://www.ncbi.nlm.nih.gov/pubmed/22297095
http://dx.doi.org/10.1007/s10719-013-9505-7
http://www.ncbi.nlm.nih.gov/pubmed/24162649
http://dx.doi.org/10.1016/j.tim.2011.10.001
http://www.ncbi.nlm.nih.gov/pubmed/22088901
http://dx.doi.org/10.1371/journal.pone.0151824
http://www.ncbi.nlm.nih.gov/pubmed/26985831
http://dx.doi.org/10.1186/s12866-016-0667-x
http://www.ncbi.nlm.nih.gov/pubmed/27001290
http://dx.doi.org/10.1007/s10482-009-9322-y
http://www.ncbi.nlm.nih.gov/pubmed/19306111
http://dx.doi.org/10.1093/glycob/cwt071
http://www.ncbi.nlm.nih.gov/pubmed/24000282
http://dx.doi.org/10.1016/j.ijfoodmicro.2012.07.015
http://www.ncbi.nlm.nih.gov/pubmed/22858135
http://dx.doi.org/10.1155/2013/237921
http://www.ncbi.nlm.nih.gov/pubmed/23576850


Int. J. Mol. Sci. 2018, 19, 136 17 of 18

73. Kankainen, M.; Paulin, L.; Tynkkynen, S.; von Ossowski, I.; Reunanen, J.; Partanen, P.; Satokari, R.;
Vesterlund, S.; Hendrickx, A.P.A.; Lebeer, S.; et al. Comparative genomic analysis of Lactobacillus rhamnosus
GG reveals pili containing a human- mucus binding protein. Proc. Natl. Acad. Sci. USA 2009, 106,
17193–17198. [CrossRef] [PubMed]

74. Lebeer, S.; Claes, I.; Tytgat, H.L.P.; Verhoeven, T.L.A.; Marien, E.; von Ossowski, I.; Reunanen, J.; Palva, A.;
Vos, W.M.; de Keersmaecker, S.C.J.D.; et al. Functional analysis of Lactobacillus rhamnosus GG pili in relation
to adhesion and immunomodulatory interactions with intestinal epithelial cells. Appl. Environ. Microbiol.
2012, 78, 185–193. [CrossRef] [PubMed]

75. Erdem, A.L.; Avelino, F.; Xicohtencatl-Cortes, J.; Girón, J.A. Host protein binding and adhesive properties of
H6 and H7 flagella of attaching and effacing Escherichia coli. J. Bacteriol. 2007, 189, 7426–7435. [CrossRef]
[PubMed]

76. Guerry, P. Campylobacter flagella: Not just for motility. Trends Microbiol. 2007, 15, 456–461. [CrossRef]
[PubMed]

77. Neville, B.A.; Forde, B.M.; Claesson, M.J.; Darby, T.; Coghlan, A.; Nally, K.; Ross, R.P.; O’Toole, P.W.
Characterization of pro-inflammatory flagellin proteins produced by Lactobacillus ruminis and related motile
Lactobacilli. PLoS ONE 2012, 7, e40592. [CrossRef] [PubMed]

78. Hynönen, U.; Palva, A. Lactobacillus surface layer proteins: Structure, function and applications.
Appl. Microbiol. Biotechnol. 2013, 97, 5225–5243. [CrossRef] [PubMed]

79. Sleytr, U.B.; Schuster, B.; Egelseer, E.-M.; Pum, D. S-layers: Principles and applications. FEMS Microbiol. Rev.
2014, 38, 823–864. [CrossRef] [PubMed]

80. Avall-Jääskeläinen, S.; Palva, A. Lactobacillus surface layers and their applications. FEMS Microbiol. Rev.
2005, 29, 511–529. [CrossRef] [PubMed]

81. Mozes, N.; Lortal, S. X-ray photoelectron spectroscopy and biochemical analysis of the surface of Lactobacillus
helveticus ATCC 12046. Microbiology 1995, 141, 11–19. [CrossRef]

82. Möschl, A.; Schäffer, C.; Sleytr, U.B.; Messner, P.; Christian, R.; Schulz, G. Characterization of the S-Layer
Glycoproteins of Two Lactobacilli. In Advances in Bacterial Paracrystalline Surface Layers; Beveridge, T.J.,
Koval, S.F., Eds.; Springer: Boston, MA, USA, 1993; pp. 281–284.

83. Konstantinov, S.R.; Smidt, H.; de Vos, W.M.; Bruijns, S.C.M.; Singh, S.K.; Valence, F.; Molle, D.; Lortal, S.;
Altermann, E.; Klaenhammer, T.R.; et al. S layer protein A of Lactobacillus acidophilus NCFM regulates
immature dendritic cell and T cell functions. Proc. Natl. Acad. Sci. USA 2008, 105, 19474–19479. [CrossRef]
[PubMed]

84. MacKenzie, D.A.; Tailford, L.E.; Hemmings, A.M.; Juge, N. Crystal structure of a mucus-binding protein
repeat reveals an unexpected functional immunoglobulin binding activity. J. Biol. Chem. 2009, 284,
32444–32453. [CrossRef] [PubMed]

85. Roos, S.; Jonsson, H. A high-molecular-mass cell-surface protein from Lactobacillus reuteri 1063 adheres to
mucus components. Microbiology 2002, 148, 433–442. [CrossRef] [PubMed]

86. Etzold, S.; Kober, O.I.; Mackenzie, D.A.; Tailford, L.E.; Gunning, A.P.; Walshaw, J.; Hemmings, A.M.; Juge, N.
Structural basis for adaptation of lactobacilli to gastrointestinal mucus. Environ. Microbiol. 2014, 16, 888–903.
[CrossRef] [PubMed]

87. Gunning, A.P.; Kavanaugh, D.; Thursby, E.; Etzold, S.; MacKenzie, D.A.; Juge, N. Use of Atomic Force
Microscopy to Study the Multi-Modular Interaction of Bacterial Adhesins to Mucins. Int. J. Mol. Sci. 2016,
17, 1854. [CrossRef] [PubMed]

88. Etzold, S.; Juge, N. Structural insights into bacterial recognition of intestinal mucins. Curr. Opin. Struct. Biol.
2014, 28, 23–31. [CrossRef] [PubMed]

89. Bene, K.P.; Kavanaugh, D.W.; Leclaire, C.; Gunning, A.P.; MacKenzie, D.A.; Wittmann, A.; Young, I.D.;
Kawasaki, N.; Rajnavolgyi, E.; Juge, N. Lactobacillus reuteri surface mucus adhesins upregulate inflammatory
responses through interactions with innate C-type lectin receptors. Front. Microbiol. 2017, 8, 321. [CrossRef]
[PubMed]

90. Lee, I.-C.; van Swam, I.I.; Tomita, S.; Morsomme, P.; Rolain, T.; Hols, P.; Kleerebezem, M.; Bron, P.A. GtfA and
GtfB are both required for protein O-glycosylation in Lactobacillus plantarum. J. Bacteriol. 2014, 196, 1671–1682.
[CrossRef] [PubMed]

http://dx.doi.org/10.1073/pnas.0908876106
http://www.ncbi.nlm.nih.gov/pubmed/19805152
http://dx.doi.org/10.1128/AEM.06192-11
http://www.ncbi.nlm.nih.gov/pubmed/22020518
http://dx.doi.org/10.1128/JB.00464-07
http://www.ncbi.nlm.nih.gov/pubmed/17693516
http://dx.doi.org/10.1016/j.tim.2007.09.006
http://www.ncbi.nlm.nih.gov/pubmed/17920274
http://dx.doi.org/10.1371/journal.pone.0040592
http://www.ncbi.nlm.nih.gov/pubmed/22808200
http://dx.doi.org/10.1007/s00253-013-4962-2
http://www.ncbi.nlm.nih.gov/pubmed/23677442
http://dx.doi.org/10.1111/1574-6976.12063
http://www.ncbi.nlm.nih.gov/pubmed/24483139
http://dx.doi.org/10.1016/j.fmrre.2005.04.003
http://www.ncbi.nlm.nih.gov/pubmed/15935509
http://dx.doi.org/10.1099/00221287-141-1-11
http://dx.doi.org/10.1073/pnas.0810305105
http://www.ncbi.nlm.nih.gov/pubmed/19047644
http://dx.doi.org/10.1074/jbc.M109.040907
http://www.ncbi.nlm.nih.gov/pubmed/19758995
http://dx.doi.org/10.1099/00221287-148-2-433
http://www.ncbi.nlm.nih.gov/pubmed/11832507
http://dx.doi.org/10.1111/1462-2920.12377
http://www.ncbi.nlm.nih.gov/pubmed/24373178
http://dx.doi.org/10.3390/ijms17111854
http://www.ncbi.nlm.nih.gov/pubmed/27834807
http://dx.doi.org/10.1016/j.sbi.2014.07.002
http://www.ncbi.nlm.nih.gov/pubmed/25106027
http://dx.doi.org/10.3389/fmicb.2017.00321
http://www.ncbi.nlm.nih.gov/pubmed/28326063
http://dx.doi.org/10.1128/JB.01401-13
http://www.ncbi.nlm.nih.gov/pubmed/24532775


Int. J. Mol. Sci. 2018, 19, 136 18 of 18

91. Wegmann, U.; MacKenzie, D.A.; Zheng, J.; Goesmann, A.; Roos, S.; Swarbreck, D.; Walter, J.; Crossman, L.C.;
Juge, N. The pan-genome of Lactobacillus reuteri strains originating from the pig gastrointestinal tract.
BMC Genom. 2015, 16, 1023. [CrossRef] [PubMed]

92. Rigel, N.W.; Braunstein, M. A new twist on an old pathway—Accessory secretion systems. Mol. Microbiol.
2008, 69, 291–302. [CrossRef] [PubMed]

93. Frese, S.A.; Benson, A.K.; Tannock, G.W.; Loach, D.M.; Kim, J.; Zhang, M.; Oh, P.L.; Heng, N.C.K.; Patil, P.B.;
Juge, N.; et al. The evolution of host specialization in the vertebrate gut symbiont Lactobacillus reuteri.
PLoS Genet. 2011, 7, e1001314. [CrossRef] [PubMed]

94. Frese, S.A.; Mackenzie, D.A.; Peterson, D.A.; Schmaltz, R.; Fangman, T.; Zhou, Y.; Zhang, C.; Benson, A.K.;
Cody, L.A.; Mulholland, F.; et al. Molecular characterization of host-specific biofilm formation in a vertebrate
gut symbiont. PLoS Genet. 2013, 9, e1004057. [CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1186/s12864-015-2216-7
http://www.ncbi.nlm.nih.gov/pubmed/26626322
http://dx.doi.org/10.1111/j.1365-2958.2008.06294.x
http://www.ncbi.nlm.nih.gov/pubmed/18544071
http://dx.doi.org/10.1371/journal.pgen.1001314
http://www.ncbi.nlm.nih.gov/pubmed/21379339
http://dx.doi.org/10.1371/journal.pgen.1004057
http://www.ncbi.nlm.nih.gov/pubmed/24385934
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Overview of Protein Glycosylation in Prokaryotes 
	N-Glycosylation: The Campylobacter jejuni Paradigm 
	Alternative N-Glycosylation in - and -Proteobacteria 
	N-Glycosylation in Mycoplasmas 
	O-Glycosylation in Bacteria 
	En Bloc O-Glycosylation 
	O-Glycosylation by Sequential Action of Glycosyltransferases 
	The Accessory Secretion System SecA2 Glycosylation Pathway 

	Protein Glycosylation in Gut Commensal Bacteria 
	Protein Glycosylation in Lactobacillus 
	Lactobacillus Glycoproteins 
	Protein Glycosylation Pathways in Lactobacillus 

	Conclusions 
	References

