
istar: A Web Platform for Large-Scale Protein-Ligand
Docking
Hongjian Li1*, Kwong-Sak Leung1, Pedro J. Ballester2*, Man-Hon Wong1

1 Department of Computer Science and Engineering, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 2 European Bioinformatics Institute,

Cambridge, United Kingdom

Abstract

Protein-ligand docking is a key computational method in the design of starting points for the drug discovery process. We
are motivated by the desire to automate large-scale docking using our popular docking engine idock and thus have
developed a publicly-accessible web platform called istar. Without tedious software installation, users can submit jobs using
our website. Our istar website supports 1) filtering ligands by desired molecular properties and previewing the number of
ligands to dock, 2) monitoring job progress in real time, and 3) visualizing ligand conformations and outputting free energy
and ligand efficiency predicted by idock, binding affinity predicted by RF-Score, putative hydrogen bonds, and supplier
information for easy purchase, three useful features commonly lacked on other online docking platforms like DOCK Blaster
or iScreen. We have collected 17,224,424 ligands from the All Clean subset of the ZINC database, and revamped our docking
engine idock to version 2.0, further improving docking speed and accuracy, and integrating RF-Score as an alternative
rescoring function. To compare idock 2.0 with the state-of-the-art AutoDock Vina 1.1.2, we have carried out a rescoring
benchmark and a redocking benchmark on the 2,897 and 343 protein-ligand complexes of PDBbind v2012 refined set and
CSAR NRC HiQ Set 24Sept2010 respectively, and an execution time benchmark on 12 diverse proteins and 3,000 ligands of
different molecular weight. Results show that, under various scenarios, idock achieves comparable success rates while
outperforming AutoDock Vina in terms of docking speed by at least 8.69 times and at most 37.51 times. When evaluated on
the PDBbind v2012 core set, our istar platform combining with RF-Score manages to reproduce Pearson’s correlation
coefficient and Spearman’s correlation coefficient of as high as 0.855 and 0.859 respectively between the experimental
binding affinity and the predicted binding affinity of the docked conformation. istar is freely available at http://istar.cse.
cuhk.edu.hk/idock.
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Introduction

Protein-ligand docking predicts the preferred conformation and

binding affinity of a small ligand as non-covalently bound to the

specific binding site of a protein. Docking can therefore be used

not only to determine whether a ligand binds, but also to

understand how it binds. The latter is subsequently important to

improve the potency and selectivity of binding. To date, there are

hundreds of docking programs [1,2]. The AutoDock series [3–5] is

the most cited docking software in the research community, with

over 5,000 citations according to Google Scholar. AutoDock has

contributed to the discovery of several drugs, including the first

clinically approved HIV integrase inhibitor [6]. Following its

initial release, several parallel implementations were developed

using either multithreading or computer cluster [7–9].

In 2009, AutoDock Vina [5] was released. As the successor of

AutoDock 4 [4], AutoDock Vina significantly improves the

average accuracy of the binding mode predictions while running

two orders of magnitude faster with multithreading [5]. It was

compared to AutoDock 4 on selecting active compounds against

HIV protease, and was recommended for docking large molecules

[10]. Its functionality of semi-flexible protein docking by enabling

flexibility of side-chain residues was evaluated on VEGFR-2 [11].

To further facilitate the usage of AutoDock Vina, auxiliary tools

were subsequently developed, including a PyMOL [12] plugin for

program settings and visualization [13], a bootable operating

system for computer clusters [14], a console application for virtual

screening on Windows [15], and a GUI for virtual screening on

Windows [16].

In 2011, inspired by AutoDock Vina, we developed idock 1.0

[17], a multithreaded virtual screening tool for flexible ligand

docking. idock introduces plenty of innovations, such as caching

receptor and grid maps in memory to permit efficient large-scale

docking, revised numerical model for much faster energy

approximation, and capability of automatic detection of inactive

torsions for dimensionality reduction. When benchmarked on

docking 10,928 drug-like ligands against HIV reverse transcrip-

tase, idock 1.0 achieved a speedup of 3.3 in terms of CPU time and

a speedup of 7.5 in terms of elapsed time on average compared to

AutoDock Vina, making idock one of the fastest docking software.

Having released idock, we kept receiving docking requests from

our colleagues and collaborators. They are mostly biochemists and

pharmacologists, outsourcing the docking research to us after

discovering pharmaceutical protein targets for certain diseases of

therapeutic interest. Consequently, we had to grab the protein
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structure, do format conversion, define search space, set up

docking parameters, and keep running idock in batch for months.

Tedious enough, all the above work was done manually, resulting

in very low research productivity. In order to automate large-scale

protein-ligand docking using our idock, we have therefore

developed a web platform called istar.

A few online docking platforms already exist. DOCK Blaster

[18] investigates the feasibility of full automation of protein-ligand

docking. It utilizes DOCK [19] as the docking engine and ZINC

[20,21] as the ligand database. It also utilizes PocketPickker

(CLIPPERS) [22] for binding pocket identification. iScreen [23] is

a compacted web server for TCM (Traditional Chinese Medicine)

docking and followed by customized de novo drug design. It utilizes

PLANTS [24–26] as the docking engine and TCM@Taiwan [27]

as the ligand database. It also utilizes LEA3D [28] for de novo

ligand design. FORECASTER [29] is a web interface consisting of

a set of tools for the virtual screening of small molecules binding to

biomacromolecules (proteins, receptors, and nucleic acids). It

utilizes the flexible-target docking program FITTED [30] as

docking engine. Nevertheless, the above platforms neither support

fine-grained ligand selection based on molecular properties, nor be

able to monitor job progress in real time. They also lack

straightforward output of compound suppliers, a hurdle prevent-

ing users from purchasing high-rank compounds for further wet-

lab verification. We aim to address these obstacles on our istar

platform. Moreover, we strongly emphasize docking efficiency,

which we believe is the most crucial factor for public large-scale

docking platforms, so we try every endeavor to optimize our

docking engine idock. Furthermore, we adopt the robust RF-Score

[31] as a rescoring function for accurate prediction of binding

affinity.

Methods

In the following four subsections, we introduce our fast docking

engine idock, our accurate rescoring function RF-Score, our

modern web platform istar, and our experimental settings.

Docking Engine idock
The input to idock includes a rigid receptor, a set of flexible

ligands, and a cubic box, which is used to restrict the

conformational space to a particular binding site of the receptor.

The output from idock includes predicted conformations and their

predicted binding affinity.

idock consists of two core components, a scoring function to

predict binding affinity, and an optimization algorithm to explore

the conformational space. idock inherits the same scoring function

from AutoDock Vina. The idock score is made up of a

conformation-dependent part and a conformation-independent

part. The conformation-dependent part is a weighted sum of five

terms over all the pairs of atoms i and j that can move relative to

each other, excluding 1–4 interactions, i.e. atoms separated by

three consecutive covalent bonds. The sum is calculated from

equations (1) and (2) where ti and tj are the atom types of i and j

respectively, and rij is their interatomic distance with a cutoff at

rij = 8Å. The five terms are calculated from equations (3) to (7)

where dij is the surface distance calculated from equation (8) where

Rti
and Rtj

are the Van der Waals radii of ti and tj respectively. All

the units are in Å. The first three terms account for steric

interactions, the fourth term accounts for hydrophobic effect, and

the fifth term accounts for hydrogen bonding. Metal ions are

treated as hydrogen bond donors. The weighting coefficients are

derived from linear regression on the PDBbind [32,33] v2007

refined set (N = 1,300). The optimization algorithm attempts to

find the global minimum of e and other low-scoring conforma-

tions, which it then ranks.

e~
X
ivj

eij ð1Þ

eij~({0:035579) � Gauss1(ti,tj ,rij)

z ({0:005156) � Gauss2(ti,tj ,rij)

z (z0:840245) � Repulsion(ti,tj ,rij)

z ({0:035069) �Hydrophobic(ti,tj ,rij)

z ({0:587439) �HBonding(ti,tj ,rij) ð2Þ

Table 1. Comparison of 21 scoring functions on PDBbind
v2007 core set (N = 195).

Scoring function Rp Rs SD

RF-Score 0.774 0.762 1.59

ID-Score 0.753 0.779 1.63

SVR-Score 0.726 0.739 1.70

X-Score::HMScore 0.644 0.705 1.83

DrugScoreCSD 0.569 0.627 1.96

SYBYL::ChemScore 0.555 0.585 1.98

AutoDock Vina 0.554 0.608 1.98

idock 0.546 0.612 1.99

DS::PLP1 0.545 0.588 2.00

GOLD::ASP 0.534 0.577 2.02

SYBYL::G-Score 0.492 0.536 2.08

DS::LUDI3 0.487 0.478 2.09

DS::LigScore2 0.464 0.507 2.12

GlideScore-XP 0.457 0.435 2.14

DS::PMF 0.445 0.448 2.14

GOLD::ChemScore 0.441 0.452 2.15

SYBYL::D-Score 0.392 0.447 2.19

DS::Jain 0.316 0.346 2.24

GOLD::GoldScore 0.295 0.322 2.29

SYBYL::PMF-Score 0.268 0.273 2.29

SYBYL::F-Score 0.216 0.243 2.35

Pearson’s correlation coefficient Rp , Spearman’s correlation coefficient Rs and
standard deviation SD of the difference between predicted and experimental
binding affinity on PDBbind v2007 core set (N = 195). The scoring functions are
sorted in the descending order of Rp . RF-Score, AutoDock Vina and idock rank

1st, 7th and 8th respectively in terms of Pearson’s correlation coefficient Rp . RF-

Score, ID-Score, SVR-Score and X-Score are the only scoring functions whose
training set do not overlap with the PDBbind v2007 core set. The statistics for
AutoDock Vina and idock are reported in this study and the statistics for the
other 19 scoring functions are collected from [31,45,46,48].
doi:10.1371/journal.pone.0085678.t001
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Gauss1(ti,tj ,rij)~e
{(dij=0:5)2 ð3Þ

Gauss2(ti,tj ,rij)~e
{((dij{3)=2)2 ð4Þ

Repulsion(ti,tj ,rij)~
d2

ij if dijv0

0 if dij§0
ð5Þ

Hydrophobic(ti,tj ,rij)~

1 if dijƒ0:5

1:5{dij if 0:5vdijv1:5

0 if dij§1:5

ð6Þ

HBonding(ti,tj ,rij)~

1 if dijƒ{0:7

dij=({0:7) if{0:7vdijv0

0 if dij§0

ð7Þ

dij~rij{(Rti
zRtj

) ð8Þ

The conformation-dependent part can be seen as the sum of

inter-molecular and intra-molecular contributions. Hence equa-

tion (1) can be rewritten into equation (9) where einter is the

summation over all the heavy atom pairs between receptor and

ligand, and eintra is the summation over all the non 1–4 heavy

atom pairs of ligand.

e~einterzeintra ð9Þ

The conformation-independent part penalizes einter for ligand

flexibility. The predicted free energy of the kth conformation for
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Figure 1. Pairwise correlations of experimental binding affinity and predicted binding affinity by RF-Score, AutoDock Vina and
idock on the PDBbind v2012 refined set (N = 2,897). Values are in pKd or pKi unit. The three scoring functions are all trained on the PDBbind
v2007 refined set (N = 1,300). Rp = 0.765, Rs = 0.755, RMSE = 1.26, SD = .26 for RF-Score, Rp = 0.466, Rs = 0.464, RMSE = 1.74, SD = 1.74 for Vina,
and Rp = 0.451, Rs = 0.453, RMSE = 1.75, SD = .75 for idock.
doi:10.1371/journal.pone.0085678.g001
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output, denoted as e , is calculated from equation (10) where k is

the subscript for conformation, ek is the conformation-dependent

score of the kth conformation calculated from equation (1), eintra,1

is the eintra of the first, i.e. lowest-scoring conformation, NActTors is

the number of active torsions and NInactTors is the number of

inactive torsions of the ligand. Note that eintra,1, rather than eintra,k,

is subtracted in order to preserve the ranking.

~
ek{eintra,1

1z0:05846 � (NActTorsz0:5 �NInactTors)
ð10Þ

On one hand, in order to fast evaluate eij , idock precalculates all

its possible values. Note that eij is essentially a function of three

variables, namely ti, tj , and rij , which have known lower and

upper bounds. There are 15 heavy atom types implemented in

idock, the pair of ti and tj can thus have 120 ( = 15*16/2) different

combinations. Since rij is cut off at 8Å, idock uniformly samples

16,384 points in the range [0, 8] and precalculates their eij from

equation (2). Subsequently, given a combination of ti, tj and rij ,

idock approximates the true value of eij by table lookup rather

than linear interpolation as used in AutoDock Vina.

On the other hand, in order to fast evaluate einter, idock

precalculates all its possible values by building grid maps. A grid

map of atom type t is constructed by placing virtual probe atoms of

atom type t along the X, Y, Z dimensions of the search box at a

certain granularity. The einter value of these probe atoms are

precalculated from equation (2). Subsequently, given a sampled

conformation, idock approximates the true values of einter of ligand

heavy atoms by table lookup rather than linear interpolation as

used in AutoDock Vina. In fact, when we profiled AutoDock Vina,

its linear interpolation of the 8 nearest corner probe atoms turned

out to be a performance bottleneck because it involves 8 readings,

12 subtractions, 24 multiplications, and 7 additions. The grid

granularity is hard-coded to be a coarse value of 0.375Å in

AutoDock Vina, while in idock it is exposed as a program option

for users to adjust accordingly and has a default fine value of

0.15625Å.

Likewise in AutoDock Vina, idock also uses Broyden-Fletcher-

Goldfarb-Shanno (BFGS) [34] Quasi-Newton method for local

optimization. In each BFGS iteration, a conformational mutation

and a line search are taken, with each sampled conformation being

accepted according to the Metropolis criterion. The number of

iterations correlates to the complexity of the ligand regarding

number of heavy atoms and number of torsions. BFGS

approximates the inverse Hessian matrix, i.e. it uses not only the

pK
5

10

0 5 10

Corr:

0.801

Corr:

0.595

Corr:

0.597

RFScore

4

6

8

10

2 4 6 8 10

Corr:

0.684

Corr:

0.682

Vina

2.5

5

7.5

10

0 2.5 5 7.5 10

Corr:

0.992

idock

2.5

5

7.5

10

0 2.5 5 7.5 10

Figure 2. Pairwise correlations of experimental binding affinity and predicted binding affinity by RF-Score, AutoDock Vina and
idock on the CSAR NRC HiQ Set 24Sept2010 (N = 343). Values are in pKd or pKi unit. The three scoring functions are all trained on the PDBbind
v2007 refined set (N = 1,300). Rp = 0.801, Rs = 0.795, RMSE = 1.34, SD = 1.34 for RF-Score, Rp = 0.595, Rs = 0.612, RMSE = 1.79, SD = 1.79 for Vina,
and Rp = 0.597, Rs = 0.613, RMSE = 1.79, SD = 1.79 for idock.
doi:10.1371/journal.pone.0085678.g002
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value of the scoring function but also its gradient, which are the

derivatives of the scoring function with respect to the position,

orientation and torsions of the ligand. Although both programs

share similar optimization algorithms, their internal implementa-

tions differ. In idock, the BFGS local optimization stops if and only

if no appropriate step length can be obtained by line search, thus

increasing the probability of finding optimal local minimums.

More optimization runs with fewer number of BFGS iterations are

executed, better balancing high conformational diversity and short

execution time.

idock introduces a novel feature that can automatically detect

and deactivate certain torsions which are activated in the input file

but indeed have no impact on the overall scoring, such as hydroxyl

group – OH, amine group – NH2 or methyl group – CH3,

because they only rotate the hydrogens and thus have no

contributions to the idock score. idock is capable of re-classifying

them as inactive torsions during parsing, thus reducing the

dimension of variables to optimize in subsequent BFGS iterations.

idock encapsulates many more improvements. Please refer to its

change log for a complete list of new features and bugfixes.

Scoring Function RF-Score
RF-Score [31] is a member of a new class of scoring functions

that use non-parametric machine learning approach to predict

binding affinity in an entirely data-driven manner. RF-Score has

been rigorously shown [31,35] to perform better than 16 classical

scoring functions in ranking protein-ligand complexes according to

predicted binding affinity. It has also been shown to be useful in

the discovery of new molecular scaffolds in antibacterial hit

identification [36].

RF-Score is the first application of Random Forests [37] to

predicting protein-ligand binding affinity. In RF-Score, each

feature comprises the number of occurrences of a particular

protein-ligand atom type pair interacting within a certain distance

range. Four common atom types for the protein (i.e. C,N,O,S) and

nine common atom types for the ligand (i.e. C,N,O,F,P,S,Cl,Br,I)

constitute a vector of 36 features, and the distance cutoff is chosen

to be as sufficiently large as 12Å to implicitly capture solvation

effects.

The original version of RF-Score [31] is trained on PDBbind

v2007 refined set less the core set (N = 1,105). It grows each binary

tree using the CART algorithm [38] without pruning from a

bootstrap sample of the training data. It selects the best split at

each node of the tree from a typically small number of randomly

chosen features, and stops splitting a node with no more than 5

samples. The prediction from an individual tree is the arithmetic

mean of its samples in the traversed leaf node. The performance of

RF-Score does not vary significantly with the number of trees

beyond a certain threshold, so we subscribe to the common

practice of using 500 as a sufficiently large number of trees. The

final prediction is the arithmetic mean of the individual predictions

of all the trees in the forest.

We have re-trained the RF-Score on PDBbind v2012 refined set

(N = 2,897) for prospective prediction purpose, and integrated it

into our istar platform as an alternative option to re-score

predicted conformations. We have also implemented a consensus

score as the average effect of idock score and RF-Score.

Mathematically speaking, equations (11) to (13) relate equilibrium

constant Keq and dissociation constant Kd with Gibbs free energy

G, where R is gas constant (R~1:9858775|10{3kcal=mol)

and T is absolute temperature.

G~{RT ln Keq ð11Þ

Kd~
1

Keq

ð12Þ

pKd~{ log10 Kd ð13Þ

Assuming T~298:15K at room temperature, plugging equa-

tions (12) and (13) into (11) yields

pKd~{0:73349480509:DG ð14Þ

Equation (14) transforms the predicted free energy output by

idock in kcal=mol into binding affinity in pKd unit. The consensus

score is thus defined in equation (15) so that it directly reflects the

predicted potency in pKd unit.

Table 2. Redocking success rates.

PDBbind
v2012

PDBbind
v2011 CSAR NRC HiQ

Condition idock Vina idock Vina idock Vina

RMSD1 = RMSDmin 49% 53% 47% 54% 59% 71%

RMSD2 = RMSDmin 15% 16% 16% 14% 18% 13%

RMSD3 = RMSDmin 8% 7% 8% 8% 4% 4%

RMSD4 = RMSDmin 6% 6% 6% 5% 7% 3%

RMSD5 = RMSDmin 5% 4% 5% 5% 3% 1%

RMSD6 = RMSDmin 5% 3% 5% 4% 3% 3%

RMSD7 = RMSDmin 4% 4% 5% 4% 2% 2%

RMSD8 = RMSDmin 5% 3% 4% 3% 3% 2%

RMSD9 = RMSDmin 4% 3% 4% 3% 1% 2%

RMSD1 ,0.5 Å 10% 12% 11% 12% 20% 21%

RMSD1 ,1.0 Å 26% 31% 29% 31% 45% 47%

RMSD1 ,1.5 Å 43% 47% 45% 47% 61% 67%

RMSD1 ,2.0 Å 56% 60% 57% 59% 71% 75%

RMSD1 ,2.5 Å 61% 65% 62% 65% 75% 79%

RMSDmin ,0.5 Å 12% 15% 14% 15% 27% 26%

RMSDmin ,1.0 Å 35% 40% 39% 40% 60% 55%

RMSDmin ,1.5 Å 61% 65% 64% 65% 82% 84%

RMSDmin ,2.0 Å 72% 79% 74% 78% 88% 92%

RMSDmin ,2.5 Å 77% 85% 80% 84% 91% 94%

Redocking success rates of idock and AuoDock Vina on the PDBbind v2012
refined set (N = 2,897), the PDBbind v2011 refined set (N = 2,455), and the CSAR
NRC HiQ Set 24Sept2010 (N = 343) under various conditions regarding the
RMSD (Root Mean Square Deviation) values between the crystal and docked
conformations. By default, both programs output 9 predicted conformations
per ligand. RMSDi(i~1,2,:::,9) refers to the RMSD value between the crystal
conformation and the ith docked conformation, i.e. the one with the ith highest
predicted binding affinity, while RMSDmin refers to the RMSD value between
the crystal conformation and the closest docked conformation, i.e. the one with
the minimum RMSD value. RMSDmin~ min

i
RMSDi (i~1,2,:::,9). In

conclusion, idock has a slightly higher conformation generation error than
AutoDock Vina.
doi:10.1371/journal.pone.0085678.t002
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ConsensusScore~0:5|({0:73349480509:idockScore

zRFScore)
ð15Þ

Web Platform istar
Figure S1 shows the overall architecture of istar. On our istar

website, the first section displays summary of existing jobs and the

second section allows new job submission. A job comprises

compulsory fields and optional fields. Compulsory fields include a

receptor in PDB format, a search space defined by a cubic box, a

brief description about the job, and an email to receive completion

notification. Optional fields include nine ligand filtering condi-

tions. The nine ligand filtering conditions are molecular weight,

partition coefficient xlogP, apolar desolvation, polar desolvation,

number of hydrogen bond donors, number of hydrogen bond

acceptors, topological polar surface area tPSA, net charge, and

number of rotatable bonds. These nine molecular descriptors are

directly retrieved from our data source, i.e. the ZINC database

[20,21], in which the nine descriptors are already precalculated.

Note that although molecular mass in Dalton unit may be a more

appropriate descriptor than molecular weight in g/mol unit, we

stick to the latter in order to maintain consistency with ZINC, in

which the g/mol unit is used for molecular weight.

We have collected 17,224,424 ligands at pH 7 in mol2 format

from versions 2012–04–26 and 2013–01–10 of the All Clean

subset the ZINC database [20,21] with explicit permission of its

major developer and maintainer. The All Clean subset is

constituted by applying strict filtering rules (http://blaster.

docking.org/filtering), e.g. aldehydes and thiols have been

removed. We have then converted the entire 17 million ligands

in batch into PDBQT format as used by idock and the AutoDock

series. The huge number of 17 million ligands should be sufficient

in most cases. In case users need to screen their own ligand

libraries, at present we recommend them run idock locally on their

computers. We may consider allowing users to upload customized

ligand libraries under certain constraints in future releases of istar.

0
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Figure 3. Impact of number of rotatable bonds of the ligand on the success rates of idock and AutoDock Vina benchmarked on
PDBbind v2012 core set (N = 201). Very often the RMSD of 2.0Å is regarded as the positive control for correct bound structure prediction. Out
the 201 cases, there are 109 and 114 successful cases for idock and AutoDock Vina respectively. The average number of rotatable bonds of the ligand
in successful cases are 7.52 and 7.30 respectively for idock and AutoDock Vina. The average number of rotatable bonds of the ligand in unsuccessful
cases are 10.36 and 10.82 respectively for idock and AutoDock Vina. Docking a ligand with no greater than 10 rotatable bonds has a higher chance to
succeed.
doi:10.1371/journal.pone.0085678.g003
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istar supports ligand selection by desired molecular properties in

a fine-grained manner and previewing the number of ligands to

dock in real time (Figure S2). Users can move the nine sliders to

filter ligands in the form of closed intervals. Only the ligands

satisfying all the nine filtering conditions will be docked. Because

of the relationship of logical and, in order to nullify a specific

filtering condition, one may expand its closed interval to cover the

entire possible range. We have set up default values of the lower

and upper bounds of the nine molecular properties for novices to

get started easily.

istar supports monitoring job progress in real time (Figure S3).

We have composed a timer to automatically fetch and report the

latest job progress every second without page refresh. Users can

thus have a rough estimation in advance of how long the jobs will

take and when the jobs will complete. This feature is particularly

handy when the jobs are long running, which is usually the case of

large-scale docking.

istar outputs verbose information in PDBQT format (Fig-

ure S4). The first REMARK line describes the ZINC ID,

molecular weight (g/mol), partition coefficient xlogP, apolar

desolvation (kcal/mol), polar desolvation (kcal/mol), number of

hydrogen bond donors, number of hydrogen bond acceptors,

topological polar surface area tPSA (
2
), net charge, and number

of rotatable bonds of a selected ligand. The second REMARK line

describes the SMILES representation. The third REMARK line

describes the number of suppliers followed by their names, which

conform to the nomenclature as used by ZINC. The subsequent

REMARK lines describe the free energy and ligand efficiency

predicted by idock, putative hydrogen bonds, binding affinity

predicted by RF-Score, and consensus score in pKd or pKi unit.

Columns 71 to 76 of the ATOM lines describe the predicted free

energy of each atom. The individual atom contribution to the

overall score facilitates the detection of protein-ligand interaction

hotspots, and thus assists in de novo ligand design.

At the moment, we have deployed a machine with Intel Xeon

W3520 @ 2.66 GHz and 8GB DDR3 SDRAM to run the web

server, and two identical virtual machines with Intel Xeon E5620

@ 2.40 GHz and 8GB DDR3 SDRAM to run the idock daemons,

resulting in a docking speed of about one second per ligand. We

have mounted a 2TB hard disk into our network file system to

store docking jobs and results.
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Figure 4. Impact of number of metal ions in the binding site on the success rates of idock and AutoDock Vina benchmarked on
PDBbind v2012 core set (N = 201). Out the 201 cases, there are 158, 31 and 12 cases in which there are 0, 1 and 2 metal ions respectively in the
binding site. Very often the RMSD of 2.0Å is regarded as the positive control for correct bound structure prediction. For idock, the success rates are
0.58, 0.39 and 0.42 when there are 0, 1 and 2 metal ions respectively in the binding site. For AutoDock Vina, they are 0.60, 0.42 and 0.50 respectively.
Docking a ligand with no metal ions in the binding site has a higher chance to succeed.
doi:10.1371/journal.pone.0085678.g004
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Experimental Settings
We evaluated and compared idock686_64 v2.0 and AutoDock

Vina686 v1.1.2 from the perspectives of rescoring, redocking and

execution time on three datasets, which are PDBbind [32,33],

CSAR [39,40] and ZINC [20,21].

Datasets. The PDBbind v2012 dataset contains a diverse

collection of experimentally determined structures carefully

selected from PDB (Protein Data Bank) [41,42]. For each

complex, the experimental binding affinity (either dissociation

constant Kd , inhibition constant Ki, or half maximal inhibitory

concentration IC50) is manually collected from its primary

literature reference, thus resulting in the general set of 9,308

complexes, with 7,121 being protein-ligand complexes. Out of

them, the complexes with a resolution of 2.5Å or better, with

known Kd or Ki values, and with ligand containing merely the

common heavy atoms (i.e. C, N, O, F, P, S, Cl, Br, I) are filtered to

constitute the refined set of 2,897 complexes. These complexes are

then clustered by protein sequence similarity using BLAST at a

cutoff of 90%, and for each of the 67 resulting clusters with at least

five complexes, the three complexes with the highest, median and

lowest binding affinity are selected to constitute the core set of 201

complexes, whose experimental binding affinity spans 10 pKd or

pKi units.

The CSAR (Community Structure Activity Resource) NRC

HiQ Set 24Sept2010 contains 343 diverse protein-ligand com-

plexes selected from existing PDB [41,42] entries which have

binding affinity (Kd or Ki) in Binding MOAD [43,44], augmented

with entries from PDBbind [32,33]. Their binding affinity spans

12 pKd units.

The ZINC database contains over 21 million purchasable small

molecules in popular MOL2 and SDF formats.

Benchmarks. In the rescoring benchmark, we evaluated the

capability of RF-Score, AutoDock Vina and idock of predicting

the binding affinity as close to the experimental binding affinity as

possible given a crystal protein-ligand complex. We compared

their rescoring performance to 18 other scoring functions on the

PDBbind v2007 core set (N = 195). The test set was then extended

to two larger datasets, i.e. the PDBbind v2012 [32,33] refined set

(N = 2,897) and the CSAR NRC HiQ Set 24Sept2010 (N = 343)

[39,40] to enable a more comprehensive comparison.

In the redocking benchmark, we evaluated the capability of

AutoDock Vina and idock of docking a randomized ligand
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Figure 5. Scatter plot of the lowest idock score of the 9 docked
conformations output by idock against the experimental
binding affinity on PDBbind v2012 core set (N = 201) in the
redocking benchmark. Values are in pKd or pKi unit. Rp = 0.502,
Rs = 0.530, RMSE = 1.31, SD = 1.32.
doi:10.1371/journal.pone.0085678.g005
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Figure 6. Scatter plot of the highest RF-Score of the 9 docked
conformations output by idock against the experimental
binding affinity on PDBbind v2012 core set (N = 201) in the
redocking benchmark. The RF-Score was re-trained on PDBbind
v2012 refined set (N = 2,897) for prospective prediction purpose. Values
are in pKd or pKi unit. Rp = 0.815, Rs = 0.817, RMSE = 0.75, SD = 0.76.
doi:10.1371/journal.pone.0085678.g006
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Figure 7. Scatter plot of the RF-Score of the first docked
conformation against the experimental binding affinity on
PDBbind v2012 core set (N = 201) in the redocking benchmark.
The RF-Score was re-trained on PDBbind v2012 refined set (N = 2,897)
for prospective prediction purpose. Values are in pKd or pKi unit.
Rp = 0.855, Rs = 0.859, RMSE = 0.73, SD = 0.73.
doi:10.1371/journal.pone.0085678.g007

istar: A Web Platform for Protein-Ligand Docking

PLOS ONE | www.plosone.org 8 January 2014 | Volume 9 | Issue 1 | e85678



conformation back to its crystal conformation as close as possible.

We used the PDBbind v2012 [32,33] refined set (N = 2,897), the

PDBbind v2011 refined set (N = 2,455), and the CSAR NRC HiQ

Set 24Sept2010 (N = 343) [39,40], because they are the latest

versions and contain the largest number of high-quality and diverse

protein-ligand structures. We wrote a script to automatically define

the search box first by finding the smallest cubic box that covers the

entire ligand and then by extending the box by 10Å in all the three

dimensions. Note that the 2rio entry of PDBbind contains two

strontium ions, which are supported by idock but not by AutoDock

Vina, we manually removed them before invoking AutoDock Vina.

Both programs were also evaluated on the PDBbind v2012 core set

(N = 201) in order to find potential impact factors on their

performance. We used root mean square deviation RMSD to

measure the closeness between two conformations. The lower the

RMSD is, the closer the two conformations are. Usually the RMSD
value is calculated between the crystal conformation and the docked

conformation. Very often the RMSD of 2.0Å is regarded as the

positive control for correct bound structure prediction.

In the execution time benchmark, we collected 12 diverse

proteins from the PDB (Protein Data Bank) database [41,42], and

1000 ligands with a molecular weight of 200–300 g/mol, 1000

ligands with a molecular weight of 300–400 g/mol, and 1000

ligands with a molecular weight of 400–500 g/mol from the All

Clean subset of the ZINC database [20,21]. The 3,000 ligands

were docked against the 12 proteins by AutoDock Vina and idock.

Since AutoDock Vina can dock only one ligand in a run, three

bash scripts containing 1,000 lines were executed instead, with

each line being an execution of AutoDock Vina to dock one single

ligand. The GNU Time utility v1.7 was used as a profiler.

The three benchmarks were carried out on desktop computers

with Intel Core i5–2400 CPU @ 3.10GHz and 4GB DDR3 RAM

under Mac OS X 10.7.4 Build 11E53. Arguments to AutoDock

Vina and idock were left as default. By default, both programs

output at most 9 predicted conformations per ligand.

Results

Rescoring Benchmark
Table 1 compares 21 scoring functions on the PDBbind v2007

core set (N = 195). RF-Score [31], ID-Score [45], SVR-Score [46]

and X-Score [47] are the only scoring functions whose training set

do not overlap with the PDBbind v2007 core set. In terms of both

Pearson’s correlation coefficient and standard deviation, RF-Score

performed the best, while AutoDock Vina and idock ranked 7th

and 8th respectively, already outperforming the majority of

commercial scoring functions.

Figure 1 plots the pairwise correlations amongst experimental

binding affinity and predicted binding affinity by RF-Score,

AutoDock Vina and idock on the PDBbind v2012 [32,33] refined

set (N = 2,897) as it is the latest version. Since both AutoDock

Vina and idock are trained on the PDBbind v2007 refined set

(N = 1,300), in order to make a fair comparison, in this benchmark

we have re-trained RF-Score on the same training set. On one

hand, the re-trained RF-Score managed to predict the binding

affinity accurately with Pearson’s correlation coefficient

Rp = 0.765, Spearman’s correlation coefficient Rs = 0.755, root

mean square error RMSE = 1.26, and standard deviation SD
= 1.26. On the other hand, although AutoDock Vina and idock

claimed to do well in conformation prediction, they could not

predict binding affinity very accurately (Rp = 0.466, Rs = 0.464,

RMSE = 1.74, SD = 1.74 for AutoDock Vina, and Rp = 0.451,

Rs = 0.453, RMSE = 1.75, SD = 1.75 for idock), a very common

obstacle in the entire computational chemistry community. As

expected, the correlation between binding affinity predicted by

AutoDock Vina and idock is very close to 1 because of their

identical scoring function but different numerical approximation

methods [17]. As can be seen from Figure 2, the above

observations also apply to the results on the CSAR NRC HiQ

Set 24Sept2010 (N = 343) [39,40].

Table 3. Docking execution time.

200–300g/mol 300–400g/mol 400–500g/mol

CPU Elapsed CPU Elapsed CPU Elapsed

1HCL human cyclin-dependent kinase 2

Vina 12.57 3.33 22.55 5.91 51.62 13.41

idock 0.63 0.16 0.92 0.24 1.38 0.36

1J1B human tau protein kinase I

Vina 9.07 2.47 14.69 3.92 32.28 8.49

idock 0.78 0.21 1.25 0.33 2.35 0.62

1LI4 human S-adenosylhomocysteine hydrolase

Vina 11.82 3.30 19.08 5.22 39.41 10.64

idock 0.89 0.23 1.55 0.40 3.15 0.82

1V9U human rhinovirus 2 coat protein VP1

Vina 9.80 2.95 15.55 4.62 29.75 8.49

idock 0.97 0.25 1.64 0.42 3.42 0.89

2IQH influenza A virus nucleoprotein NP

Vina 9.51 2.66 15.03 4.08 29.64 7.83

idock 0.92 0.24 1.59 0.41 3.41 0.88

2XSK Escherichia coli curli protein CsgC – SeCys

Vina 10.44 2.71 17.89 4.61 40.58 10.41

idock 0.71 0.19 1.16 0.30 2.16 0.56

2ZD1 HIV-1 reverse transcriptase

Vina 9.78 2.70 17.67 4.76 42.03 11.33

idock 0.97 0.25 1.52 0.39 2.60 0.69

2ZNL influenza virus RNA polymerase subunit PA

Vina 9.49 2.60 15.04 4.01 29.97 7.82

idock 0.89 0.23 1.56 0.40 3.41 0.87

3BGS human purine nucleoside phosphorylase

Vina 9.59 2.57 16.50 4.37 38.42 10.14

idock 0.95 0.25 1.55 0.40 2.81 0.74

3H0W human S-adenosylmethionine decarboxylase

Vina 9.85 2.64 17.67 4.70 41.69 11.04

idock 0.88 0.23 1.35 0.35 2.20 0.58

3IAR human adenosine deaminase

Vina 11.25 3.03 20.21 5.39 46.93 12.53

idock 0.80 0.21 1.21 0.32 2.01 0.53

3KFN HIV protease

Vina 10.53 2.80 18.37 4.83 42.43 11.03

idock 0.77 0.20 1.20 0.32 2.09 0.55

Average across the above 12 receptors

Vina 10.31 2.81 17.52 4.70 38.73 10.26

idock 0.85 0.22 1.38 0.36 2.58 0.67

CPU time and elapsed time in hours of docking 3,000 clean ligands of 3
molecular weight sets against 12 diverse receptors by AutoDock Vina and idock.
idock outperforms AutoDock Vina by at least 8.69 times and at most
37.51 times.
doi:10.1371/journal.pone.0085678.t003
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Redocking Benchmark
Figures S5, S6, S7 and S8 visualize the redocking results of four

protein-ligand complexes selected from the PDBbind v2012

refined set. Table 2 shows the success rates of idock and AutoDock

Vina under various conditions regarding the RMSD values

between the crystal and docked conformations. Given a redocking

case, RMSDi(i~1,2,:::,9) refers to the RMSD value between the

crystal conformation and the ith docked conformation, i.e. the one

with the ith highest predicted binding affinity, while RMSDmin

refers to the RMSD value between the crystal conformation and

the closest docked conformation, i.e. the one with the minimum

RMSD value. RMSDmin~ min
i

RMSDi (i~1,2,:::,9). The con-

dition RMSD1 = RMSDmin therefore tests for how many percent

the docked conformation with the highest predicted binding

affinity actually turns out to be the closest one among the 9

predicted conformations. It can be seen that the success rates of

idock are comparable to, albeit slightly lower than, AutoDock

Vina, and the success rates on the CSAR NRC HiQ Set

24Sept2010 are consistently higher than the PDBbind v2012 and

v2011 refined sets, probably because the scoring function performs

well on carefully refined structures. Using a RMSD value of 2.0Å,

a publicly accepted positive control for correct bound structure

prediction, both programs managed to predict a conformation

sufficiently close to that of the co-crystallized ligand as the first

conformation in over half of the cases, without any manual

tweaking of the protein model.

Figure 3 plots the impact of rotatable bonds of the ligand on the

success rates. Both programs tend to do well when the ligand

contains fewer than 10 rotatable bonds. Figure 4 plots the impact

of metal ions in the binding site on the success rates. Both

programs tend to do well when the binding site contains no metal

ions.

From the perspective of prospective docking, Figure 5 shows the

scatter plot of the highest predicted binding affinity of the 9 docked

conformations output by idock against the experimental binding

affinity. The weak correlation and large deviation (Rp = 0.502,

Rs = 0.530, RMSE = 1.31, SD = 1.32) reflect the limitation of

using idock alone as scoring function. After adopting the

maximum RF-Score of the 9 docked conformations as predicted

binding affinity, the correlation improves (Figure 6, Rp = 0.815,

Rs = 0.817, RMSE = 0.75, SD = 0.76). Moreover, since for over

50% probability the docked conformation with the highest

predicted binding affinity indeed turns out to be the closest to

the crystal conformation (i.e. RMSD1 = RMSDmin), using RF-

Score to re-score the conformation with RMSD1 leads to even

better prediction (Figure 7, Rp = 0.855, Rs = 0.859, RMSE

= 0.73, SD = 0.73).

Execution Time Benchmark
Table 3 compares the CPU time and elapsed time of AutoDock

Vina and idock. The execution time varied a lot from protein to

protein and from molecular weight set to molecular weight set. In

conclusion, idock outperformed AutoDock Vina by at least

8.69 times and at most 37.51 times, making idock particularly

ideal for large-scale docking, as is the case of istar.

Discussion

Docking is the computational method that investigates how a

ligand binds to a protein, and predicts their binding affinity. Hence

docking is useful in elaborating inter-molecular interactions and

enhancing the potency and selectivity of binding in subsequent

phases of the drug discovery process.

In this study, we report a web platform called istar to automate

large-scale protein-ligand docking using our popular docking

engine idock. Since the initial release of idock, we have been

further improving its docking speed and robustness. Compared to

AutoDock Vina, our idock features a new numerical model in

approximation of the scoring function, replacing slow linear

interpolation by fast table lookup. It encapsulates a unique feature

that can safely deactivate certain torsions to reduce the dimension

of variables. It also implements an efficient thread pool to

parallelize multiple components of the program and maintain a

high CPU utilization. Results show that idock managed to predict

a conformation sufficiently close to that of the co-crystallized

ligand as the first conformation in over half of the test cases across

a number of diverse datasets, and it outperformed AutoDock Vina

by an order of magnitude in terms of docking efficiency at no

significant cost of accuracy. It is worthwhile to highlight that in

order to use istar, the input protein model requires no manual

preprocessing in most cases.

We examine two possible reasons that might cause idock to fail

in some test cases. They are the number of rotatable bonds of the

ligand (Figure 3) and the number of metal ions in the binding site

(Figure 4). On one hand, a large number of rotatable bonds

implies a high dimension of variables to optimize. idock has a

higher chance to succeed when the ligand consists of fewer than 10

rotatable bonds. On the other hand, all kinds of metal ions are

simply treated as hydrogen bond donors in the idock score, which

might not thoroughly accounts for their solvation effects and other

possible interactions. idock has a higher chance to succeed when

the binding site consists of no metal ions.

Although idock performs well in conformation prediction, it

displays its weakness in binding affinity prediction. In contrast,

RF-Score, a new scoring function that circumvents the need for

problematic modelling assumptions via non-parametric machine

learning, has been recently shown to obtain the best scoring

performance among 16 classical scoring functions on PDBbind

v2007 core set (N = 195) [31]. We have therefore integrated a

revised version of RF-Score as an alternative re-scoring function.

We have re-trained RF-Score on the entire PDBbind v2012

refined set (N = 2,897) for prospective prediction purpose. Results

show that using RF-Score to re-score the predicted conformations

leads to a much better prediction with Rp = 0.855, Rs = 0.859,

RMSE = 0.73, and SD = 0.73. We have successfully demon-

strated that RF-Score is a particularly effective re-scoring function

for docking purposes.

To compile a more complete list of scoring functions

benchmarked on the PDBbind v2007 core set (N = 195) into

Table 1, we have extracted the performance results for 19 scoring

functions from [31,45,46,48], and reported the results for

AutoDock Vina and idock on the same test set in this study. This

procedure has a number of advantages. Evaluating all the scoring

functions on the same test set under the same conditions

guarantees a fair and objective comparison. Using a common

existing benchmark can also ensure the optimal application of such

functions by their authors and avoid the danger of constructing an

in-house benchmark on which unrealistically high performance

might be produced. Moreover, future scoring functions can be

unambiguously incorporated into this comparative assessment.

Notably, the top four scoring functions, namely RF-Score [31],

ID-Score [45], SVR-Score [46] and X-Score [47], are the only

scoring functions whose training set do not overlap with the

PDBbind v2007 core set. The prediction power of RF-Score is

already superior to many scoring functions in commercial docking

software. In terms of implementation complexity, a descriptor in

RF-Score is just the occurrence count of a particular protein-ligand
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atom type pair interacting within a certain distance range, while a

descriptor in ID-Score can be as mathematically demanding as, for

instance, calculating the cosine value of the bond angle between a

hydrogen bond donor and a hydrogen bond acceptor. This again

demonstrates the adaptiveness of RF-Score to various applications.

One may argue that although the scoring functions are

evaluated on the same test set, their training sets are not identical.

Besides, the PDBbind v2007 core set consists of merely 195

complexes, which might not cover sufficient protein-ligand

diversity from the perspective nowadays. To address this issue,

we re-trained RF-Score on the PDBbind v2007 refined set

(N = 1,300), on which AutoDock Vina and idock were also

trained, and we expanded the test set to the much larger PDBbind

v2012 refined set (N = 2,897). The results of Figure 1 show that all

the performance gain (Rp = 0.765, Rs = 0.755, RMSE = 1.26,

SD = 1.26 for RF-Score versus Rp = 0.451, Rs = 0.453, RMSE

= 1.75, SD = 1.75 for idock) is guaranteed to come from the

scoring function characteristics, ruling out any influence of using

different training sets on performance.

To design the istar platform in a user-friendly way, we have

utilized state-of-the-art web and database technologies. On istar,

there are over 17 million ready-to-dock ligands collected from

ZINC [20,21]. These ligands come with supplier information for

easy purchase, and they can be filtered by nine molecular

properties in a fine-grained manner. The number of ligands to

dock can also be previewed in real time. The jobs are transparently

split into slices for parallel docking across multiple workstations,

and the job progress can be monitored in real time in a browser so

that users can have a rough estimation of how long the job will

take and when the job will complete. Additionally, our web server

supports REST API so that developers can easily submit multiple

jobs in batch. Automation is the major reason of submitting jobs to

istar instead of running idock locally on one’s computer. With istar

at hand, users need not to write special scripts to fetch ligands from

some sources, to implement parallelism, or to invoke RF-Score

externally by themselves. Users can therefore concentrate on the

docking results and subsequent analysis rather than the docking

process itself.

We compare our istar to DOCK Blaster [18], an expert system

created to investigate the feasibility of full automation of large-

scale protein-ligand docking. It uses DOCK [19] as the docking

engine and ZINC [20,21] as the ligand repository. Although

DOCK is open source, DOCK Blaster itself is not open source.

istar is indeed much easier to use than DOCK Blaster. Given the

structure of a target protein, both istar and DOCK Blaster can

dock and score a large set of ligands against the target protein and

provide a ranked list which users may review and prioritize for

purchase and wet-lab testing. From the perspective of binding site

indication, istar automatically detects a site from the co-

crystallized ligand, while DOCK Blaster makes use of Pock-

etPickker (CLIPPERS) [22]. From the perspective of ligand

selection, istar features ligand filtering by nine desired molecular

properties in a fine-grained fashion, while DOCK Blaster

predefines several subsets either by property, by vendor, or by

user. From the perspective of documentation and user manual, the

istar website presents a graphical tutorial on how to submit a new

job, while DOCK Blaster deploys a wiki with very rich contents

covering all the procedures of DOCK Blaster. As extra features,

DOCK Blaster allows the input of known active and inactive

binders as heuristic information for docking. In summary,

although istar and DOCK Blaster share the identical motivation

of automating large-scale protein-ligand docking, their internal

implementations and methodologies differ greatly. Users are

encouraged to utilize both istar and DOCK Blaster to reach a

consensus of promising candidate ligands for purchase.

Due to limited budget, we cannot offer as much hardware

resource as DOCK Blaster (i.e. 700 CPU cores plus 20TB RAID-6

storage). However, we emphasize full reproducibility and we have

released istar under a permissive open source license so that

anyone who possesses sufficient hardware resource is welcome to

deploy a copy of istar to his/her own infrastructure with no

charge.

Availability

We emphasize full reproducibility. Both idock and istar are free

and open source under Apache License 2.0. For idock, its C++
source code, precompiled executables for 32-bit and 64-bit Linux,

Windows, Mac OS X, FreeBSD and Solaris, 13 docking examples,

and a doxygen file for generating API documentations are

available at https://github.com/HongjianLi/idock. For istar, its

C++ and JavaScript source code and REST API documentation

are available at https://github.com/HongjianLi/istar. Our istar

website is running at http://istar.cse.cuhk.edu.hk/idock. It has

been tested successfully in Chrome 30, Firefox 25, Safari 6.1 and

Opera 17. Support for IE 11 is experimental.

Supporting Information

Figure S1 The overall architecture of istar.
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Figure S2 istar supports filtering ligands with molecu-
lar properties in a fine-grained manner and previewing
the number of ligands to dock in real time.
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Figure S3 istar supports monitoring job progress in
real time.
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Figure S4 istar writes verbose output to file in PDBQT
format.

(PNG)

Figure S5 Redocking result of PDB ID 1B8N.

(PNG)

Figure S6 Redocking result of PDB ID 4TMN.
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Figure S7 Redocking result of PDB ID 1PKX.
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Figure S8 Redocking result of PDB ID 3HV8.
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