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Accumulating evidence suggests that exosomes can affect lung adenocarcinoma (LUAD) progression. However, there is still a lack
of understanding of the global influence of exosome-related genes (ERGs) on prognostic relevance, tumor microenvironment
features, and immunotherapy responsiveness in patients with LUAD. In the TCGA dataset, differential analysis of 490 LUAD
samples and 59 normal samples yielded 30 ERGs with differential expression. We have created a predictive signature based on 10
overall survival (OS)-related ERGs and confirmed it in two external cohorts (GSE72094 and GSE68465) via the least absolute
shrinkage and selection operator (LASSO) and Cox regression analysis in the TCGA dataset. +e new signature revealed superior
robustness and prognostic capacity for overall patient survival. Univariate and multivariate Cox regression analyses indicated that
this signature was an independent risk factor for survival in patients with LUAD. In addition, for predicting the 1-year, 3-year, and
5-year OS of LUAD patients, we developed a nomogram and confirmed its predictive ability via the C-index and calibration curve.
In addition, patients categorized by risk score exhibited distinct immunological states, stemness index, immune subtypes, and
immunotherapy response. In conclusion, we created a risk signature for LUAD that was tightly associated with the immune
landscape and therapeutic response. Also, such a risk signature effectively promotes the ability of the clinicians in making more
precise and individualized treatment recommendations for patients with LUAD.

1. Introduction

Lung cancer ranks second and first, respectively, in inci-
dence (11.4%) and mortality (18.0%) among malignant tu-
mors [1], with 2.2 million new cases and 1.8 million deaths
globally in 2020. Lung adenocarcinoma (LUAD) is one of
the major pathological subtypes of non-small cell lung
cancer (NSCLC) [2]. Patients with LUAD lack tumor
specificity and clinical symptoms in early stages, and local
infiltration and even distant metastases occur in mid-to-late
stage LUAD, with a poor outcome [3]. Despite recent ad-
vancements in molecularly targeted treatments and im-
munotherapy, improving patients’ overall survival (OS) and
progression-free survival remains a significant therapeutic
challenge [4, 5]. +e development of new valuable

biomarkers has important clinical implications for prognosis
prediction and individualized treatment.

Exosomes are small vesicles, usually 40–100 nm in di-
ameter, that are secreted outward by cells [6]. Exosomes
contain proteins, lipids, RNA, and other substances, which
can be received by recipient cells to achieve material
transport and information transfer between cells [7]. As an
element widely present and distributed in various body
fluids, the exosomes have the features, such as, carrying and
transmitting important signaling molecules, forming a new
cell-cell information transfer system, influencing the phys-
iological state of cells, and actively participating in a variety
of biological processes including immune response, antigen
presentation, and cell differentiation [8, 9]. Increasing evi-
dence indicates that exosomes secreted by tumor cells are
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involved in tumorigenesis, growth, invasion, and metastasis
[10]. Tumor immunity is modulated by the communication
provided by exosomes between immune cells and tumor
cells. Exosomes can either trigger antitumor responses by
suppressing immune cells (DCs, NK cells, CD4+ and CD8+
T cells, etc.) or induce immunosuppression or modulate
immunosuppression of cell populations (MDSCs, Tregs, and
Bregs) [11, 12].

In this investigation, ten ERGs were used to create a risk
signature. Its prognostic value, diagnostic efficacy, immu-
notherapy efficacy, and tumor immune infiltration in LUAD
patients were also investigated. It may provide a crucial
foundation for future research.

2. Materials and Methods

2.1. Dataset and Preprocessing. Samples with no survival
status and overall survival (OS) of <30 days were excluded.
+e RNA-Seq data of LUAD patients were downloaded from
the TCGA database (in TPM format and log-transformed),
and 490 tumor samples and 59 normal samples were in-
cluded. +e GSE72904 and GSE68465 datasets were
downloaded from the GEO database, annotated with their
respective platform files, and used as the validation cohorts.
In the survival analysis, 490 patients were included in
TCGA-LUAD, 386 in GSE72904, and 210 in GSE68465. +e
batch effect was removed for GSE72904, GSE68465, and
TCGA-LUAD using the combat function in the “sva”
package. GSE78220 and IMvigor are immunotherapy co-
horts in which clinical information includes response to
immunotherapy. In addition, 121 exosome-related genes
(ERGs) were downloaded from the ExoBCD database
(https://exobcd.liumwei.org/).

2.2. Construction and Validation of Prognostic Signature.
First, we used the “limma” package to explore the DEGs (FDR
<0.05, logFC >1) of 121 ERGs between normal and tumor
samples (TCGA-LUAD cohort). +e TCGA-LUAD cohort
was used as the training set.+e external validation set consists
of GSE68465 and GSE72904 cohorts. By the adoption of the
least absolute shrinkage and selection operator (LASSO) Cox
regression, we removed the redundant genes in DEGs in
theTCGA-LUAD cohort and then produced a risk score
formula via the multivariable Cox regression. Patients were
divided into high- and low-risk groups according to themedian
risk score. Univariate and multivariate cox regression analyses
were used to assess the prognostic value of risk score in both the
training set and the external validation set. In addition, we
evaluated the prognostic performance of the risk signature by
employing the Kaplan–Meier and time-dependent receiver
operating characteristic (ROC) analyses. A prognostic no-
mogramwas constructed using independent prognostic factors
identified by multivariate Cox regression and validated using
the calibration curve.

2.3. Immune Analysis. Different methods, including TIMER,
CIBERSORT, QUANTISEQ, MCP-counter, XCELL, and EPIC,
were employed concurrently to estimate the immune cell

infiltration in different samples during immune cell analysis.
Using the ESTIMATE algorithm, stromal score, ESTIMATE
score, and tumor purity were calculated to characterize the
condition of the tumor microenvironment. +orsson et al. [13]
defined six immune expression signature subtypes based on the
gene expression profiles of all solid tumors in TCGA, including
wound healing (Immune C1), IFN-gamma dominant (Immune
C2), inflammatory (Immune C3), lymphocyte depleted (Im-
mune C4), immunologically quiet (Immune C5), and TGF-beta
dominant (Immune C6).

3. Results

3.1. Construction of an Exosome Prognostic Signature in
Training Set. We discovered 30 differentially expressed ERGs
through differential analysis of 490 LUAD cases and 59
normal samples, comprising 9 upregulated and 12 down-
regulated genes (Figures 1(a) and 1(b)). To construct a
prognostic prediction signature for patients with LUAD, we
performed LASSO regression analysis on 30 differentially
expressed ERGs in the training set and determined a mini-
mum lamba value of 0.00818, retaining 17 genes (Figures 1(c)
and 1(d)). Subsequently, multivariate Cox regression analysis
was used for rescreening and 10 genes were finally included
for the construction of prognostic signature (Figure 1(e)). To
quantify the risk score, we placed the above genes in a Cox
regression equation to obtain correlation coefficients
(Figure 1(f)). Risk score � (0.5756∗BIRC5) + (0.1019∗CP) +
(0.1179∗DUSP1) + (−0.0694∗CXCL13)+ (−0.5461 ∗CHEK2)
+ (−0.2781∗EPCAM) +(−0.1662∗CD47) + (−0.1077∗HLA-
DQA1) + (0.15833∗POSTN) + (0.0911∗ FGFR3). Using the
median risk score as the dividing line, we classified all LUAD
patients in the training cohort and the external validation
cohort (GSE72094 or GSE68465) into two subgroups: high-
risk and low-risk.

3.2. Validation of the Exosome-Related Prognostic Signature.
To verify the predictive power of prognostic signature, we
performed survival analysis and ROC analysis of LUAD pa-
tients from different cohorts based on the risk score. In the
training set, Kaplan–Meier analysis revealed that the survival
rate of LUAD patients in the high-risk subgroup was con-
siderably lower than that of patients in the low-risk subgroup
(p< 0.001). Figures 2(a) and 2(b) depict ROC curves indicating
that the prognostic signature showed a significant predictive
value for LUAD patients in the testing set (1-year AUC� 0.706,
3-year AUC� 0.696, and 5-year AUC� 0.647). Moreover, the
prognostic signature demonstrated excellent prognostic sig-
nificance for LUAD patients in the GSE68465 cohort (1-year
AUC� 0.626, 3-year AUC� 0.640, and 5-year AUC� 0.586;
Figure 2(d)) and the GSE72094 cohort (1-year AUC� 0.677, 3-
year AUC� 0.603, and 5-year AUC� 0.750; Figure 2(e)).
Kaplan–Meier survival curves revealed that the low-risk group
had greater survival than the high-risk group (p< 0.05)
(Figures 2(c) and 2(e)).

+e distribution plot of risk score and survival status
revealed that the number of LUAD patients with a status of
deceased increased as the risk score in the training set rose.
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In validation sets, the low-risk group maintained its superior
survival status and longer survival time from the training set
(Figures 3(a) and 3(b)). In addition, a heatmap demon-
strated that the expression of 10 ERGs varied significantly
among LUAD patients with varying risk scores (Figure 3(c)).
We hypothesized that the prognostic signature could
function as an independent prognostic factor for LUAD
patients. In order to confirm this hypothesis, univariate and
multivariate Cox regression analyses were conducted. In
univariate Cox analysis, the signature-based risk score was
found to be substantially associated with OS (TCGA-LUAD :
HR� 1.616, p< 0.001; GSE68465 : HR� 1.088, p � 0.066;
GSE72094 :HR� 1.482, p< 0.001) (Figure 4(a)). Moreover,
multivariate Cox analysis revealed that the risk score
remained an independent risk factor (TCGA-LUAD :
HR� 1.621, p< 0.001; GSE68465 :HR� 1.141, p � 0.007;
GSE72094 :HR� 1.530, p< 0.001) (Figure 4(b)). Conse-
quently, the signature was an independent risk factor that
affected the survival of LUAD patients.

3.3. Construction of the Clinical Nomogram. Considering the
complexity of the risk signature formula and the visual
applicability of the nomogram in clinical work, we devel-
oped a nomogram to predict the 1-year, 3-year, and 5-year
OS of LUAD patients (Figure 5(a)). In addition, the cali-
bration curve revealed that the predicted curve was near to
the true curve of LUAD patients, indicating that the pre-
dicted survival rate at 1, 3, and 5 years is closely related to the
actual rates (Figures 5(b)–5(d)). +e C-index of TCGA-
LUAD, GSE68465, and GSE72094 were 0.823, 0.715, and
0.733, respectively. According to the preceding data, the
nomogram is appropriate for clinically predicting the
prognosis of LUAD patients.

3.4. Immune Characteristics in Different Risk Subgroups.
To investigate the discriminative usefulness of the risk sub-
group for TME and its application value in immunotherapy, we
utilized six distinct algorithms to simultaneously evaluate the
abundance of immune cell infiltration in various samples.
Unsurprisingly, the number of killer immune cells (e.g., CD4+
T and CD8+ T cells) declined as the risk score grew, while the
number of immunosuppressive cells (e.g., Treg) increased
(Figures 6(a) and 6(b)). +e association between the risk score
and the TME score was then investigated. We concluded that
the risk score is negatively linked to ESTIMATE and stromal
scores and positively correlated with tumor purity
(Figures 6(c)–6(e)). In light of the significant influence of the
stemness index on immunotherapy, correlation research
revealed that the risk score is positively correlated with DNAss
and RNAss (Figures 6(f)–6(g)). +ese results demonstrate an
immune activation status in the low-risk subgroup, which may
benefit from immunotherapy.

3.5. Exosome Risk Signature Predicts Immunotherapy
Outcomes. +e C3 subtype had the lowest risk score among
the six known immunological characteristic subtypes,
whereas the C1 subtype had the greatest risk score

(Figure 7(a)). In the low-risk grouping, C3 was more
prevalent (Figure 7(b)). To validate the value of the risk score
for survival prediction and treatment reflection prediction in
the immunotherapy cohort, we performed validation in the
two immunotherapy cohorts separately. Kaplan–Meier
analysis revealed that patients undergoing immune treat-
ment with a low-risk score had better OS. +e percentage of
responsive patients was higher in the low-risk score group
(Figures 7(c) and 7(d)).

4. Discussion

Our study is, to the best of our knowledge, the first
complete and detailed examination of ERGs in LUAD,
which may serve as an important foundation for future
research. First, we retrieved 30 differentially expressed
ERGs from differential analysis of 490 LUAD samples and
59 normal samples from the TCGA database, including 9
upregulated genes and 12 downregulated genes. To de-
velop a prognostic prediction signature for patients with
LUAD, we conducted LASSO regression analysis on 30
differentially expressed ERGs in the training set and found
a minimal lambda value of 0.00818 while retaining 17
genes. Subsequently, multivariate Cox regression analysis
was utilized for rescreening, and ten genes were subse-
quently incorporated in the building of the prognostic
signature.

We then developed a 10-gene risk signature to inves-
tigate the association between LUAD and ERGs. Updates
confirm that several of these identified genes may play
distinct functional functions in the progression of cancer.
Specifically, BIRC5, CP, EPCAM, CXCL13, POSTN, HLA-
DQA1, and CHEK2 have a high predictive value for LUAD
[14–20]. As discovered by Yang and others, coexpression of
PD-L1 and CD47 predicts survival and illuminates future
dual-targeting immunotherapy in non-small cell lung cancer
[21]. Jing et al. [22] found that miR-24-3p/FGFR3 signaling
as a novel axis is involved in EMT and regulates lung ad-
enocarcinoma progression.

In addition to determining the best cutoff point that
discriminated the high- or low-risk group among patients
with LUAD in the training cohort and the external vali-
dation cohort (GSE72094 and GSE68465), we performed
Kaplan–Meier analysis and ROC to validate the prediction
capacity of the risk signature. Using Kaplan–Meier analysis,
it was evident that patients in the high-risk group had a
considerable disadvantage in terms of survival. Surprisingly,
we discovered that the training cohort and the two external
validation cohorts exhibited similar consistency. In addition,
ROC curves revealed that the prognostic signature had a
high predictive value for LUAD patients in the testing set
and two external sets (GSE72094 and GSE68465). In ad-
dition, a nomogram was developed to predict the 1-year, 3-
year, and 5-year OS of LUAD patients, and its predictive
ability was confirmed using the C-index and calibration
curve.

Immune infiltration research revealed a negative
association between the risk score and the infiltration of
killer immune cells (such as CD4+ T and CD8+ T cells)
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Figure 1: Continued.
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Figure 1: Construction of ERG prognostic signature in the training set. (a) +e heat map indicated ERG expression in LUAD and normal
samples. (b) +e volcano plot exhibited both down- and upregulated ERGs. (c) Tuning parameter selection using cross-validation in the
LASSO model. (d) +e coefficient profile of LASSO for 17 ERGs. (e) Multivariate Cox regression analysis of ERGs.
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and a positive correlation with the infiltration of im-
munosuppressive cells (such as Treg). In a recent study,
CD4+ T cells were proven to be more recruited by BLCA
cells, which promoted LUAD metastasis [23]. IL-9-
producing tumor-infiltrating lymphocytes and Treg
subsets drive immune escape of tumor cells in non-small
cell lung cancer [24]. Using the gene expression profiles
of all solid tumors in TCGA, +orsson et al. [13] iden-
tified six immune expression signature subtypes. We
discovered that the expression of risk score was lowest in
the C3 subtype and highest in the C1/C6 subtypes, while
the low-risk subgroup had a higher proportion of C3. In

light of the significant impact of stemness index on immuno-
therapy, correlation analysis revealed a positive relationship
between risk score and DNAss and RNAss. All of the afore-
mentioned findings revealed that patients with low-risk scores
have a highly activated immune system, whichmay have a good
effect on immunotherapy. Comprehensive validation analysis of
two immunotherapy datasets (GSE78220 and IMvigor) revealed
that patients with a low-risk score who were treated with im-
munotherapy had improved OS and immunotherapy response.
All of the aforementioned data suggested that our signature may
be a suitable index for evaluating the immunotherapy response
in patients with LUAD.
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Figure 2: Validation of the prognostic signature for LUAD patients in the testing set and two external validation sets. Kaplan–Meier curves
showed that the high-risk group had worse overall survival (OS) than the low-risk group in the testing set (a), GSE68465 set (c), and
GSE72094 set (e). ROC curves and their AUC values represented 1-, 3-, and 5-year predictions in the testing set (b), GSE68465 set (d), and
GSE72094 set (f ).
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Figure 3: Evaluation and validation of the utility of prognostic signature in the training set and validation sets. (a)+e risk score distribution
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Figure 5: Construction and evaluation of the novel nomogram. (a)+e nomogram for predicting the survival probability of LUAD patients.
+e calibration plots of the nomogram for predicting OS probability for 1, 3, and 5 years in the TCGA-LUAD cohort (B), GSE68465 cohort
(c), and GSE72094 cohort (d).
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5. Conclusion

Overall, our study indicated that exosomes are strongly
associated with LUAD. In addition, the risk signature
formed from 10 ERGs may provide a novel method for
accurate clinical outcome prediction and selection of in-
dividualized treatment strategies.
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