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Liquid biopsy in pancreatic cancer: the beginning of a new era 
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ABSTRACT

With dismal survival rate pancreatic cancer remains one of the most aggressive 
and devastating malignancy. Predominantly, due to the absence of a dependable 
methodology for early identification and limited therapeutic options for advanced 
disease. However, it takes over 17 years to develop pancreatic cancer from initiation 
of mutation to metastatic cancer; therefore, if diagnosed early; it may increase overall 
survival dramatically, thus, providing a window of opportunity for early detection. 
Recently, genomic expression analysis defined 4 subtypes of pancreatic cancer based 
on mutated genes. Hence, we need simple and standard, minimally invasive test 
that can monitor those altered genes or their associated pathways in time for the 
success of precision medicine, and liquid biopsy seems to be one answer to all these 
questions. Again, liquid biopsy has an ability to pair with genomic tests. Additionally, 
liquid biopsy based development of circulating tumor cells derived xeno grafts, 3D 
organoids system, real-time monitoring of genetic mutations by circulating tumor 
DNA and exosome as the targeted drug delivery vehicle holds lots of potential for the 
treatment and cure of pancreatic cancer. At present, diagnosis of pancreatic cancer 
is frantically done on the premise of CA19-9 and radiological features only, which 
doesn’t give a picture of genetic mutations and epigenetic alteration involved. In this 
manner, the current diagnostic paradigm for pancreatic cancer diagnosis experiences 
low diagnostic accuracy. This review article discusses the current state of liquid biopsy 
in pancreatic cancer as diagnostic and therapeutic tools and future perspectives of 
research in the light of circulating tumor cells, circulating tumor DNA and exosomes.
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INTRODUCTION

Pancreatic cancer (PC) remains one of the most 
deadly malignancies with an overall five-year survival 
probability less than 7% in all stages combined [1]. 
Moreover, it is the fourth leading cause of cancer-
related death in the United States, with 53,670 new cases 
and estimated 43,090 deaths in 2017 [2]. In China, the 
estimated incidence and death of the PC is 90,100 and 
79,400, respectively [3]. Surgical resection is only the 

main curative treatment; in any case, because of late-
presenting clinical features, roughly 30 to 40 percent have 
the locally advanced disease and another 40 percent have a 
metastatic tumor at the time of diagnosis. Thus, palliative 
chemotherapy remains the main treatment option for most 
of these patients [4–6].  

Recently, advances in understanding of the molecular 
pathology of the PC have given hope to new therapeutic 
approaches; however, according to recently published 
systematic review, lack of clinical meaningful trials in 
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the past 25 years might be a reason behind the failure to 
achieve improvements in early diagnosis, management, and 
prolongation of overall survival of the PC [7].

With growing research, it is now well understood 
that the PC is a genetic disease, with complex mutation of 
cancer genes, and the progression of cancer is characterized 
by high heterogeneity [8–10]. In earlier studies, KRAS, 
TP53, CDKN2A, and SMAD4 have been identified as 
recurrently mutated genes in PC [11, 12]. These discoveries 
have enhanced our understanding of the molecular 
pathology of the PC. Recently, genomic analyses have 
identified different molecular subtypes of PC based on 
the expression of transcriptional profiles and the structural 
variations [8, 13–15]. Thus, it’s very crucial for early 
detection of mutant genes to identify PC and its subtypes, 
for effective management strategy of the disease. In the past 
decades, numerous studies have shown the potential clinical 
utility of liquid biopsy, such as circulating tumor cells 
(CTCs), circulating tumor DNA (ctDNA), and circulating 
tumor exosomes for various cancers, including PC [16–21]. 
These promising markers serve as a unique approach for 
early detection, monitoring and managing disease states. In 
recent years, noninvasive disease monitoring technology 
has witnessed an extraordinary explosion of research in 
the field of liquid biopsy since circulating cell free DNA 
(cfDNA) was first revealed in body fluids by Mandel and 
Metais in 1948 [22]. In this review, we have outlined better 
understanding of different components of liquid biopsy, 
especially CTCs, ctDNA and exosomes and their potential 
clinical utility for PC patients. Moreover, we have also 
drafted numerous of the rational challenges come across 
using the liquid biopsy techniques.  

CURRENT STATUS IN DIAGNOSIS OF PC 

Recently, studies have suggested that pancreatic 
cancer takes over 17 years to develop, from initiation of 
mutation in the gene to metastatic cancer, trailed by death 
roughly after 2.7 years [6, 23, 24]; therefore, if diagnosed 
early; it may increase overall survival dramatically, and 
thus, provide a window of opportunity for early detection. 
Currently, there is no official PC screening program, a 
confinement of screening for early PC is the absence of 
sensitive and specific markers [25]. Most commonly used 
blood-based tumor biomarkers in clinical practice are 
carbohydrate antigen (CA) 19-9 and carcinoembryonic 
antigen (CEA). Besides, CA19-9 is the only one currently 
recommended for clinical use by the NCCN guidelines for 
PC [26]. According to a recent meta-analysis, CA 19-9 
has satisfying pooled specificity while the poor pooled 
sensitivity for differentiating benign from malignant 
pancreatic tumors, the pooled sensitivity and specificity 
were 0.47 (95% CI: 0.35–0.59), and 0.88 (95% CI: 0.86–
0.91), respectively [27]. Additionally, it is not tumor 
specific and is elevated in many hepatobiliary cancers 
likewise in benign biliary obstruction [28]. In spite of 

advances in the molecular pathology of the PC, there is 
no dependable biomarker, the sensitivity and specificity 
of these currently used tumor biomarkers are definitely not 
adequate for the early recognition of PC [29, 30]. 

At present the diagnosis and staging of the PC to 
a great extent depends on imaging modalities, including 
ultrasonography (USG), computed tomography (CT), 
endoscopic retrograde cholangiopancreatography 
(ERCP), positron emission tomography (PET), 
magnetic resonance imaging (MRI), magnetic resonance 
cholangiopancreatography (MRCP), and endoscopic 
ultrasonography (EUS) [31–37]. In any case, little 
metastases are hard to detect regardless of the possibility 
that blends of these modalities are utilized. What’s more, 
these modalities require costly equipment and specialists 
which are more challenging [35]. 

Additionally, histological diagnosis often requires 
invasive tests before surgery. Moreover, because of 
the difficult anatomical position of the pancreas, a 
biopsy is often guided by EUS. To the date, endoscopic 
ultrasonography with fineneedle aspiration (EUS FNA) 
remains the gold standard in the workup of patients with 
PC for obtaining the biopsy, with the pooled sensitivity 
and specificity of 86.8% and 95.8%, respectively [38]. 
However, EUS-FNA requires sedation and is associated 
with the number of complications such as tumor seeding 
along the biopsy tract, pancreatitis, hemorrhage, bowel 
perforation and aspiration [39–42]. In addition, due to 
the dense desmoplastic reaction in a PC, the majority 
of the tumor mass is made up of stromal cells instead 
of the epithelial cancer cells. Thus, giving rise to false 
negative results, necessitating frequent repetitive biopsies 
[1, 41, 43]. Hence, the diagnosis is compellingly done on 
the premise of CA19-9 and radiological features only. 
In this manner, the current diagnostic paradigm for the 
diagnosis of PC experiences low diagnostic accuracy. 

Consequently, it is urgent to develop new and 
improved strategies which can address all the above 
obstacles and identify primary tumors at an early and 
resectable stage with greater diagnostic sensitivity in 
vitro, whereas patients with advanced disease must be 
preoperatively analyzed to dodge surgical impairments 
and to choose appropriate treatments to enhance the nature 
of residual life.

MOLECULAR PATHOLOGY OF PC

Genomic analyses of cancer show that there is a 
complex mutational landscape and genetic stability of 
cancer cells are compromised, and PC is no exception to this 
[8, 24]. Additionally, various genetic modifications occur 
during the development of the PC, including an increase 
in duplicate chromosomal number, genetic diversification, 
amplifications and homozygous deletions, recapitulation 
of clonal expansion, clonal selection, a small subset of 
driver mutations and loss of heterozygosity with or without 
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duplicate number reduction [6, 24, 44–51]. Besides, KRAS, 
p16, SMAD4, CDKN2A, and TP53, are most commonly 
mutated genes in the majority of the PC patients, particular 
KRAS mutations occur in almost 92% of the PC cases 
[8, 11, 12, 52]. In recent years, genomic analyses have an 
emphasis on the recognition of somatic mutations and other 
genetic alterations to identify different molecular subtypes 
of PC. As a breakthrough, some recent studies have defined 
subtypes of PC based on the expression of transcriptional 
profiles and the structural variations [8, 13–15]. 

Collisson et al. [13] classified 3 subtypes of PC 1. 
Classical- Increased expression of adhesion-associated 
and epithelial genes, e.g. transmembrane protein 45B 
(TMEM45B), trefoil factor 1 (TFF1) and mucin 13 
(MUC13) 2. Quasi-mesenchymal- Increased expression of 
mesenchyme-associated genes, e.g. Absent in melanoma 2 
(AIM2), glycoprotein m6b (GPM6B) and 5’-nucleotidase 
ecto (NT5E), and 3. Exocrine like- Increased expression 
of tumor cell-derived digestive enzyme genes, e.g. Islet-
derived 1 beta (REG1B), pancreatic lipase-related protein 
2 (PNLIPRP2), and cystic fibrosis transmembrane 
conductance regulator (CFTR). 

Likewise, Moffitt et al. [14] proposed 4 subtypes 
of the PC: 1. Normal stroma (high expression of ACTA2, 
VIM, and DES) 2. Activated stroma (high expression 
of ITGAM, CCL13, CCL18, SPARC, WNT2, WNT5A, 
MMP9, and MMP11) 3. Classical (high expression of 
genes such as BTNL8, FAM3D, and ATAD4), and 4. 
Basal-like (activation of genes such as VGLL1, UCA1, 
and S100A2). However, basal-like and classical subtypes 
were also seen in both the normal stroma and activated 
stroma subtypes. 

In addition, Waddell et al. [15] classified 4 subtypes 
PC based on the structural variation in the mutational 
landscape 1. Stable (less than 50 structural variations) 2. 
Locally rearranged (at the minimum of 50 somatic events 
in the tumor) 3. Scattered (50 to 200 structural variations), 
and 4. Unstable (more than 200 structural variations). 

More recently, genomic expression analysis by Bailey 
et al. also defined 4 subtypes of the PC: 1. Squamous (TP53 
and KDM6A) 2. Pancreatic progenitor (FOXA2/3, PDX1, and 
MNX1) 3. Immunogenic (upregulated immune networks), 
and 4. Aberrantly differentiated endocrine exocrine (KRAS, 
NR5A2, RBPJL, NEUROD1, and NKX2-2) [8]. 

Nonetheless, the interpretation of this molecular 
subtyping into the clinical setup has been questioned by 
conflicting outcomes between these studies. Therapeutic 
agents that can target these subtypes of the PC and their 
altered genes or their associated pathways may assume a 
crucial part in the success of precision medicine for the 
treatment of the PC [53–56].

LIQUID BIOPSY AS A GAME CHANGER 

Recently, analysts at The University of Texas MD 
Anderson Cancer Center have indicated that PC is ready 

for investigation with a liquid biopsy [57]. A liquid biopsy 
is simple and painless, minimally invasive sampling and 
analysis of liquid biomarkers that can be isolated from 
body fluids, primarily blood [19, 58]. Moreover, liquid 
biopsies have turned out to be all the more clinically 
valuable in recent years due to the ability to pair tests 
on circulating tumor cells (CTCs), circulating tumor 
nucleic acids (ctNAs) and tumor-derived exosomes with 
genomic tests [58–61] (Figure 1A). Interestingly, a liquid 
biopsy can characterize tumor biomarkers, similar to 
tissue biopsy, which allows early detection of disease, 
real-time evaluation of metastasis, treatment monitoring, 
empowers examination of primary tumors, and metastases. 
Additionally, it enables evaluation of tumor, heterogeneity, 
cancer dormancy, and monitoring of tumor progression 
along with prognosis [58, 60, 62–66]. Recently, liquid 
biopsy that identifies epidermal growth factor receptor 
(EGFR) gene mutations in non-small cell lung cancers 
have been approved by FDA [67, 68]. 

CIRCULATING TUMOR CELLS (CTCS)

Circulating tumor cells (CTCs), represent tumor 
cells that contain a heterogeneous population of cells, 
including apoptotic tumor and viable tumor cells that 
have cast off into the circulation or lymphatic vessels 
from a primary or metastatic tumor and are transported 
around the body by undergoing phenotypic changes 
that are accompanied by a process called as epithelial-
mesenchymal transition (EMT) [69–73]. Evidence now 
suggests that the tumors have ability to make their own 
blood vessels when they reach the size of 1–2 mm3 by 
inducing angiogenesis or through vasculogenic mimicry, 
the blood vessels composed of endothelial cells and tumor 
cells. However, vasculogenic mimicry forms blood vessels 
without endothelial cells. In fact, they are a mosaic blood 
vessel which allows substantial shedding of tumor cells 
into the circulation [74–80]. Likewise, stromal proteins 
like VEGF and MMP-9 have been known to stimulate 
angiogenesis in PC [81–83]. Consequently, it has been 
found that on an average metastatic cancer patient has in 
the vicinity of 5 and 50 CTCs for approximately every 
7.5 ml of blood [84–87]. Nonetheless, the number of 
CTCs varies between tumor types [88]. CTCs are found 
in both peripheral blood and bone marrow; additionally, 
CTCs in the bone marrow are generally called as 
disseminated tumor cells (DTCs) [89–91]. Further, 
understanding the CTCs biological properties have 
demonstrated that the CTCs are involved in the distant 
organ colonization and metastatic spread of cancer [92–
96]. What’s more, there has also been growing interest 
that mobilization of viable tumor cells from the site of 
primary tumor induced by a therapeutic or diagnostic 
intervention like surgery, radiation, chemotherapy or tissue 
biopsy may promote metastasis [97]. To comprehend 
this process, a team of researcher performed a tumor 
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self-seeding mouse model experiment whereby tumor 
recurrence intervened by CTCs was examined utilizing 
human colorectal, melanoma and breast cancer cell 
lines, and found that tumor-derived cytokines IL-6 and 
IL-8 act as CTC attractants which were mediated by 
MMP1, FSCN1, and CXCL1 genes expressed on CTCs 
to promote infiltration [98]. However, it is not necessarily 
always associated with metastasis, as only 0.01% of 
CTCs takes part in metastasis [97, 99, 100]. Moreover, 
highly sensitive, single cell investigation showed marked 
heterogeneity of individual CTCs for protein expression 
and localization, and the CTCs reflected the character of 
both the primary biopsy and the transformations seen in 
the metastatic sites [101, 102], which corresponds with the 
evidence of “seed and soil” hypothesis [103–105].

Amassing proof has demonstrated that CTCs can 
be utilized as a biomarker to non-invasively supervise 
cancer progression and provide direction to monitor the 
treatment [106–108]. However, the American Society of 

Clinical Oncology (ASCO) fails to recommend the use 
of CTCs as a tumor marker for breast cancer, in the lack 
of strong evidence and conflicts of opinion between the 
experts [109, 110]. 

Nevertheless, CTCs detection, identification, 
enumeration, and molecular characterization are very 
challenging. Since, CTCs are uncommon in peripheral 
blood of patients (that is, 1–100 CTCs among billions of 
normal cells) with a half-life between 1 to 2.4 hours and 
due to its fragile nature, it tends to degrade when collected 
in standard blood collecting tubes [111–116].

CTCs being a heterogeneous population of cells, 
CTCs can be positively or negatively enriched on the 
basis of 1. Physical characteristics and 2. Immunologic or 
biological characteristics. Physical features include; cell 
diameter >15 μm, nuclear-cytoplasmic ratio >0.8, electric 
charges, deformability, the hyperchromatic nuclei, sunken 
thickened nuclear membrane, and nucleus side-shift/
large nucleoli/abnormal nuclear division. Whereas, cell 

Figure 1: Application of circulating biomarkers. (A) Application of blood-based liquid biopsy analysis over the span of pancreatic 
cancer management, peripheral venous blood is collected from the patients for isolation of circulating tumor cells (CTCs), circulating 
tumor DNA (ctDNA) and exosomes. These circulating  biomarkers may be applied to guide initial diagnosis, treatment monitoring or 
planning, prognosis prediction and developing a new targeted therapy for patients  with pancreatic cancer. (B) Functional studies with 
CTCs and development of CTC— derived xeno-grafts (CDXs), patient-derived tumor xeno-graft (PDTX) and 3D organoids model from 
CTCs for dynamic monitoring of PC and development of new targeted drugs after its molecular characterization and genomic analysis. 
(C) Clinical application of ctDNA as a tool for therapy monitoring. ctDNA can be obtained from plasma for genomic analysis, drug testing 
and use in personalized medicine according to the genomic and epigenomic alteration. (D) Clinical use of exosomes for drug development 
after genomic and immunological testing. Moreover, use of exosome as a drug delivery vehicle where it can be loaded with drugs, siRNAs, 
gene etc.
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surface protein expression, cell surface markers, RNA, 
and DNA signatures are used Immunologic or biological 
characteristics [117–123]. The most common immunologic 
feature of CTCs exhibits, anti-CD45 antibody (for 
leukocytes), anti-vimentin antibody (mesenchymal marker), 
anti-CK8/18/19 antibody and the epithelial cell adhesion 
molecule (EpCAM) (epithelial marker) and contain a 
nucleus that binds to the nucleic acid dye 4’, 6-doamidino-
2-phenylindole (DAPI) [117, 121]. Further, cytokeratin 
negative (CK-) CTCs are cancer stem cells (CSCs) that 
undergoes EMT. Moreover, CK-CTCs have a high potential 
for metastasis, and are the most resistant type of CTCs 
and importantly express genes associated with cancer 
[124, 125]. Similarly, CTCs that are undergoing apoptosis 
are called apoptotic CTCs, that can be detected by Epic 
Sciences technology that recognizes nuclear fragmentation 
or cytoplasmic blebbing associated with apoptosis, and 
measuring the ratio of viable CTCs and apoptotic CTCs 
may help in treatment monitoring [124, 126, 127]. 

Physical properties-based technologies such as ISET 
(isolation by size of epithelial tumor cells), ScreenCell, 
ApoStream™, density gradient centrifugation are used 
to detect, capture, and isolate CTCs. However, size-
based selection strategies abuse the fact that CTCs are 
notably larger in size than normal blood cells [128, 129]. 
Importantly, nevertheless, this strategy probably results 
in substantial loss of CTCs which neglects the small CTCs 
that are cytokeratin positive and CD45 negative, and with 
similar sizes and shapes to white blood cells. Critically, 
these small CTCs have cancer-specific biomarkers that 
distinguish them as CTCs. Additionally, small CTCs have 
been found in dynamic illness and differentiation into 
small cell carcinomas, which often require an alternative 
treatment [130]. CTC cluster containing three or more 
CTCs is characterized as circulating tumor microemboli 
(CTM) [121, 129]. Moreover, CTM has high metastatic 
potential compared to single CTC [131–133]. Lately, 
researchers involved in an animal experimental model 
found that a thrombolytic agent like urokinase can prevent 
the formation of CTM and further prolong overall survival 
approximately by 20% compared to control. Additionally, 
they also concluded that CTM mobilizes at a slower rate 
than the single CTC due to vessel wall adhesion [133].

In the recent years, several platforms have been 
established for segregation of CTCs that consider both 
positive and negative enrichment based on physical and 
immunological features consolidated within the same 
device [112, 118, 128, 129, 134–147]. A complete outline 
of these strategies is beyond the scope of this article. 
Despite these many platforms, CellSearch™ remains 
only the gold standard and approved by FDA for all the 
CTCs detection strategies [148–150]. In particular, this 
CellSearch™ strategy is dependent on the expression of 
epithelial markers by the CTCs, more specifically the 
Epithelial Cell Adhesion Molecule (EpCAM) [150, 151]. 

On the contrary, with respect to recent finding EpCAM 
based strategy fails to detect CTCs with low EpCAM 
expression and CK-CTCs, as CTCs tend to lose their 
epithelial antigens by the EMT process [152–156]. In 
addition, it has also been recently revealed that EpCAM- 
negative CTCs are highly aggressive and invasive [154, 
157]. Since CellSearch™ method is based on the idea 
that CTCs do not express the leukocyte antigen CD45, 
this method also neglects the fact that CTCs can directly 
attach to platelets and immune cells and thus accounts 
to be CD45-positive, which further evade immune 
surveillance that results in clonal expansion and metastatic 
[158]. In this manner, the CellSearch™ method may 
underestimate those CTCs that are highly aggressive and 
invasive [154]. 

Following detection and isolation of CTCs, the 
harvested tumor cells are studied for its genetic and 
biological features. Various molecular techniques, such 
as immunocytochemistry (ICC), fluorescence in situ 
hybridization (FISH), immunophenotyping, microarray, 
quantitative reverse transcription-polymerase chain 
reaction (qRT-PCR), droplet digital PCR (ddPCR), co-
amplification at lower denaturation temperature-PCR 
(COLD-PCR), next-generation sequencing (NGS), beads, 
emulsion, amplification and magnetic (BEAMing), 
and whole genome amplification, to mention but a few 
have been commonly performed [159–170]. Despite 
advancement in these molecular techniques, a genetic 
study of CTCs still faces challenges of sensitivity and 
specificity. In particular, digital PCR-based technology 
is able to screen genetic variations at a very low 
frequency of 0.01% [171]. However, it only permits 
monitoring of known mutations and limited numbers 
of foci [172–175]. Bearing in mind, tumor cells change 
their mutation under the pressure of therapy or in the 
midst of tumor sub-clones; therefore, digital PCR-based 
technology may miss important information during the 
monitoring process. In addition to this, DNA sequencing 
of single CTCs for whole genome analysis requires 
obtaining adequate amounts of DNA and requires 
institutionalization [176–178]. Moreover, for RNA 
sequencing strategies larger blood volume is required 
to obtain an adequate amount of CTCs. What’s more, 
CTCs needs to be captured rapidly in order to avoid RNA 
degradation. Hence, it’s not suitable for cancer screening 
at the moment [163].  

To enhance sensitivity and specificity despite the 
heterogeneity of CTCs, innovative strategies have to be 
developed, that can consolidate physical, immunological 
and genetic analyses together to ease the detection, 
isolation, enrichment and molecular characterization of 
CTCs [179]. 
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Potential clinical utility and research model of 
CTCs in PC

Currently, the clinical avail of CTCs analysis 
remains debatable in the PC. To date, numerous analysts 
have attempted to identify CTCs in patients with PC and 
have shown its potential clinical utility utilizing different 
methodologies and with varying results (Supplementary 
Table 1) [84, 180–190]. Notably, some studies showed 
that CellSearch™ has a lower CTCs detection rate for 
PC patients with the sensitivity and specificity of 55.5 % 
and 100 %, respectively. Additionally, these studies also 
revealed that CTCs could only be found in malignant 
pancreatic tumor and CTCs positive patients have a 
significantly shorter overall survival. However, CTCs 
detected in these studies failed to correspond with tumor 
stage [84, 180, 182, 190]. Interestingly, in a study by Zhou 
et al. proposed that the integrated identification of c-Met, 
h-TERT, CK20, and CEA could be used as an indicator 
for CTCs in the circulation of a PC patient, which can be 
detected by combined use of immunomagnetic separation 
and RT-PCR, and thus, improving the specificity and 
sensitivity to 100%. Moreover, the positive expression 
of C-MET, CK20, and CEA was found to be closely 
correlated with tumor stage [189]. 

Ankeny et al. found that the numbers of CTCs 
detected from PC was able to differentiate different 
stages of disease as a useful biomarker and showed 
100% similarity for KRAS mutation subtype between 
primary tumor and CTCs [187]. A meta-analysis 
comprising 623 patients with different stages of a PC 
revealed that the patients with positive CTCs had poor 
progress free survival (PFS) (HR=1.89, 95 %; CI=0.88–
2.08, P<0.001) and overall survival (HR=1.23, 95 % 
CI=1.25–4.00, P<0.001) than those with the CTC-negative 
patients, suggesting CTCs may be a promising biomarker 
for the diagnosis and prognosis of a PC [191]. 

In a study by Yu et al., CTCs was isolated by 
the HbCTC-Chip microfluidic device from genetically 
engineered KPC mice and CTCs were subjected to single 
molecule RNA sequencing, they identified overexpression 
of the WNT2 gene in CTCs, which prevent anoikis, 
anchorage-independent sphere formation, and surge 
metastatic tendency in vivo. These findings were supported 
in CTCs investigated from 5 of 11 patients with PC. Thus, 
this study proposed that the molecular study of CTCs may 
recognize patient drug targets [192]. 

In spite of the fact that evidence indicates the 
abundance of tumor cells in the blood of patients with 
PC has prognostic value, and that CTC numbers can 
be used as a biomarker for diagnosis, staging of a PC 
before treatment, and can be prescient of response to 
therapy after treatment and, consequently, treatment 
results. These results must be considered with vigilance; 
however, because CTC numbers are highly variable 
between different CTC detection platforms, and are 

subject to favoritism relating to the variety of detection 
methods used. Thus, the quantity of CTCs that can 
be detected is therefore highly dependent on how the 
platform characterizes a cell as a CTC. Nevertheless, this 
impediment is likely to be overcome by consolidating 
different technologies to enhance analysis performance. 
Apart from the difference in results between CTCs 
detection platforms, some other hypothesis has been 
postulated for reasons behind low CTCs in the PC 1. The 
blood flow in the PC is notably compromised in contrast 
to that of the normal pancreas [193]. Thus, less number 
of CTCs shed into the circulation 2. The moderately low 
CTCs number reported in PC may be a consequence of 
CTCs sequestration by the liver as blood advances through 
the portal circulation into the systemic circulation [190, 
194].

In contemporary research, the development of cell 
lines from CTCs is a motivating novel field. Recently, 
different groups reported CTCs developed cell lines in 
vitro from patients with breast, mesothelioma, esophageal, 
bladder, lung, and colon cancer [195–200]. However, 
some researchers found it to be demanding and reported 
that CTC derived xeno grafts (CDXs) foresee therapeutic 
response conflictingly in many cancers, including the PC 
[195, 201–204]. Interestingly, this has been confirmed 
by recent research that pluripotent stem cells cultured in 
the lab acquire new mutations all the time, especially in 
TP53 gene [205], and this might be a suggesting reason 
that why CDXs doesn’t correspond to genetic mutations 
to that of the primary tumor, suggesting that research 
must be careful while genetic characterization of CDXs. 
By contrast, direct inoculation of CTCs into immune-
compromised mice has met with appreciable success 
in lung cancer and showed to mirror the response of 
chemotherapy in CDXs model to that of donor patient. 
Additionally, it also exhibited comparable genetic profile 
between isolated CTCs and CDXs model [206]. CDX 
models have been developed for breast and prostate cancer 
[207–209]. More interestingly, Gao and colleagues [210] 
successfully cultured 3D organoids system from CTCs 
isolated from patients with advanced prostate cancer, 
which they aim to recapitulate the different subtypes 
prostate cancer. Likewise, some group of researchers has 
successfully isolated CTCs from patient-derived tumor 
xeno-graft (PDTX) models in some cancers, including 
the PC, and identified its potential clinical utility [211–
213]. Perhaps, a standout amongst the most energizing 
utilizations of CTCs lines is that CDXs and organoids 
system model may bolster choice of targeted therapies, 
tracking cancer genetic and epigenetic modifications, 
and may evolve as an instrumental device for new drug 
development (Figure 1B). While initial studies using 
these models are promising, but it needs to be validated 
with further researches. The primary limitation of these 
models might be the selection method used for CTC 
enrichment. In a separate proof-of-concept study, Yu et 
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al. created a pharmacogenomic (PGx) model to predict 
treatment response of a PC patient to chemotherapy 
regimens based on the genetic mutations in CTCs, and 
found that PGx profiling of CTCs can forecast treatment 
response, additionally they found clinical advantage for 
the patients treated with sensitive chemotherapy regimens 
versus insensitive chemotherapy regimens in regard 
to progression free (10.4 mo vs. 3.6 mo; P < 0.0001; 
HR, 0.14) and overall survival (17.2 mo vs. 8.3 mo; P < 
0.0249; HR, 0.29) [214].

The big question remains: Can these CTCs derived 
xeno-graft and organoids models give a mirror image of 
a PC?

CIRCULATING TUMOR NUCLEIC 
ACIDS (CTNAS)

Circulating tumor nucleic acids (ctNAs) composed 
of circulating tumor DNA (ctDNA), mRNA and 
microRNA (miRNA) that are released and circulate in 
the blood of cancer patients, and changes in the levels 
of ctNAs in the circulation have been associated with 
tumor burden, tumor stage, vascularity, cellular turnover, 
response to therapy, and metastasis [17, 215–217]. At 
present, the potential clinical utility of cell free RNA 
(cfRNA) is debatable. A comprehensive discussion of 
cfRNA is beyond the scope of this article, and this topic 
has been well documented elsewhere [218]. Moreover, 
miRNAs are most copious circulating RNA and are also 
carried in exosomes; thus, this topic has been covered later 
on with regards to exosomes in this article.

CIRCULATING TUMOR DNA (CTDNA)

It has been postulated that cell free DNA (cfDNA) 
can originate directly from the viable tumor cells or 
from CTCs by apoptosis, necrosis, autophagy, micro-
environmental stress, mitotic catastrophe, trauma, and 
treatment procedure [17, 219–226], others include 
viruses, such as EBV, HPV and hepatitis B virus [227–
229]. Moreover, cfDNA is regarded as ‘circulating tumor 
DNA’ (ctDNA) after mutations in cfDNA in cancer; 
hence, information regarding the origination and release 
of ctDNA may provide insight to clinicians about their 
possible involvement and nature of the disease. Of these, 
many studies have shown that ctDNA conveys genomic 
and epigenomic modifications indistinguishable to those of 
tumor cells [230]. Studies have demonstrated that cfDNA 
is cleared from the circulation by means of nuclease 
activity and renal clearance [231–233]. Additionally, 
some cfDNA that are taken up by the liver and spleen 
are degraded by macrophages [234, 235]. Studies in both 
human and mice have shown that most of the apoptotic 
cfDNA fragments are measured in the vicinity of 166 
and 200 base pairs (bp) with an observed half-life of 16 
minutes to 2.5 hours [216, 236–241]. In contrast, necrosis 

creates higher molecular weight DNA fragments of over 
10,000 bp in size due to an inadequate and irregular 
absorption of genomic DNA [242–245]. However, 
current isolation strategies are unable to capture long 
DNA fragments [246]. Indeed, the length of the cfDNA 
might be clinically valuable, utilized as a surrogate for 
identification of tumors as ctDNA released from necrosis 
represents malignant tumor’s origin, and increased in the 
DNA integrity index (ratio of longer fragments to shorter 
DNA) are seen in most of the malignant tumors [247–
249]. However, there are clashing reports in the literature 
about the origin and composition of ctDNA, a few reports 
have shown that ctDNAs are shorter than that of apoptotic 
cfDNAs [238, 250, 251], measuring between 134 and 144 
bp [250]. Withal, not all cfDNA originates from cell death; 
viable cells also release cfDNA as a part of homeostasis 
[221, 223, 252, 253]. In addition to this, it has also been 
seen that the activation of lymphocytes can result in 
the release of large numbers of cfDNA in the absence 
of apoptosis or necrosis [222, 252, 254]. Moreover, It 
has been suggested that cfDNA act as a ligand for Toll-
like receptor 9 (TLR9) that may inhibit pro-apoptotic 
caspases by virtue of TLR9-dependent signaling [255]. 
This signifies a possible immunomodulatory function 
for cfDNA. These days cfDNA remains to be a hot topic 
and is widely used for a wide range of research and clinical 
purposes, including tumor genotyping, early cancer 
detection, patient prognosis, minimal residual disease 
monitoring, therapy evaluation, a biomarker in transplant 
surgery for graft injury, and prediction of allograft 
rejection [58, 256–268]. In recent years, multiple studies 
have demonstrated that patients with invasive tumors such 
as lung, breast, pancreas, colon, hepatocellular, ovarian, 
prostate, esophageal, and melanoma generally have a high 
level of ctDNA in their plasma than in healthy individuals 
[269–274]. Several genomic studies of tumor mutations 
have analyzed ctDNA to quantify the tumor burden and 
to detect therapeutic resistance conferring mutations 
[216, 275–277]. Moreover, a correlation has been set up 
between the levels of non-mutated cfDNA and mutated 
cfDNA in circulation and the tumor stage [278, 279]. In 
addition to this, some studies have also found that mutated 
cfDNA can lead to therapeutic resistance in cancer several 
months prior to detection of the tumor by imaging, helping 
clinicians for therapy evaluation [275, 280, 281]. 

The study of ctDNA in the plasma basically involves 
quantification of ctDNA in the circulation using various 
measurements, for instance mutant allele fraction or 
mutant allele concentration (that is, copies per milliliter) 
to estimate disease burden and the detection of genetic 
aberrations such as somatic mutations, allelic imbalances, 
genetic polymorphisms, microsatellite alterations, loss of 
heterozygosity, and methylation [17, 256, 282–288]. 

There are various methods and technologies used 
for quantitative and qualitative analysis of ctDNAs, 
commonly used platforms to name a few are digital 
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PCR (dPCR) [289], droplet digital PCR (ddPCR) [290], 
BEAMing [291, 292], cancer personalized profiling by 
deep sequencing (CAPP-Seq) [293], tagged amplicon 
deep sequencing (TAM-Seq) [276], safe-sequencing (Safe-
Seq) [294], duplex sequencing [295], integrated digital 
error suppression (iDES)-enhanced CAPP-Seq [296], 
whole-genome sequencing (WGS) [297, 298] and next-
generation sequencing (NGS) [299]. Among these NGS 
holds great expectation for future of genomic analysis.  

Regardless of these wide ranges of technologies, 
extraction, and analysis of ctDNA still face many 
challenges that need to be addressed before its regular 
use in a clinical setup. The major challenges are 1. 
Contamination of ctDNA with a large amount of wild-
type cfDNA which are released from lysis of WBC of 
stored blood in EDTA tubes [300]. Hence, it has been 
proposed for the utilization of commercially available 
cell stabilization tubes to prevent or delay the lysis of 
WBC thereby decreasing the dilution impact of the 
ctDNA [301]. Additionally, a collection of blood at room 
temperature and shouldn’t freeze more than 2 hours before 
extracting the plasma for ctDNA analysis, avoid of use 
heparinised tubes, extraction of ctDNA from plasma 
rather than serum and a double centrifugation step to 
remove more cellular debris preceding DNA extraction 
[300–302]. 2. Low sensitivity and specificity for analysis 
of ctDNA [303, 304], this could be enhanced by the 
combination of advanced genomic approaches that have 
higher sensitivity to identify all ctDNA in the sample, even 
with small amounts of input material it has been found 
that multiplexed patient-specific panels in combination 
with targeted sequencing methods can improve the 
sensitivity [296, 304, 305]. 3. The expenses of NGS for 
liquid biopsies are high and the requirement for repeated 
liquid biopsies for longitudinal study may constrain its use 
among a substantial group of patients. The quick question 
emerges: Can patients bear the cost of advanced genomic 
approaches?

Potential clinical utility and research model of 
ctDNA in PC

ctDNA based liquid biopsy brings to the clinic 
the valuable strength for the success of targeted therapy 
and precision medicine. Straightaway, understanding of 
molecular landscapes of PC is vital to guide treatment 
decisions in clinical practice and with regards to clinical 
trials. Summary of selected studies using ctDNA for 
diagnosis, staging, and treatment of pancreatic cancer 
has been outlined in Table 1 [299, 306–312]. It was 
Shapiro et al. who first reported the presence of ctDNA 
in PC and exhibited that ctDNA is markedly elevated in 
PC patients contrasted with healthy controls, and further 
concluded that ctDNA may serve as a useful diagnostic 
and prognostic biomarker [269]. Moreover, PC patients 
with noticeable ctDNA have been appearing to have worse 

survival and advanced disease stage [313]. In addition 
to this, ctDNA can be used for real-time monitoring of 
tumor dynamics, because of its short half-life it can 
present with the true picture of tumor burden in response 
to different therapy [216]. Sausen et al. demonstrated that 
the measurement of ctDNA can be used to predict relapse 
and poor outcome after curative surgery, and recurrence 
could be detected 6.5 months before radiographic imaging 
[310]. Moreover, in a recent study, ctDNA was found to 
be an independent prognostic marker in advanced PC, 
and the presence of ctDNA was associated with a shorter 
disease-free survival (4.6 vs.17.6 months) and overall 
survival (19.3 vs. 32.2 months) after surgery in patients 
with resectable PC [299]. In a separate study, Tjensvoll 
et al. noted that during chemotherapy of PC patients, 
changes in mutant KRAS gene level in the circulation 
corresponded with radiological imaging data and CA19-
9 level; moreover, they proposed the utility of ctDNA 
for monitoring treatment efficacy and tumor progression 
[312]. These studies demonstrate the potential clinical 
utility of ctDNA as a prognostic biomarker in PC and 
further its benefit in monitoring minimal residual disease.

Since, it is known that over 90% of mutation in 
PC contains mutated KRAS gene and is considered to 
be an early event during carcinogenesis [8, 52, 314–
316]. Moreover, the mutation occurs most commonly in 
codon G12D, G12V, and G12R [314, 317, 318]. G12V 
mutation is significantly associated with shorter survival 
contrasted to G12D, G12R, and wild-type [319]. Thus, 
mutated KRAS gene has been a center of surveillance 
for definitive diagnosis of PC. Discouragingly, chronic 
pancreatitis also shows the KRAS mutation in 10 to 15% 
of the cases in cfDNA, and to increase the sensitivity and 
specificity for diagnosis of PC it has additionally been 
proposed that combining KRAS mutation and serum 
CA19-9 level can enhance a sensitivity and specificity by 
98% and 77%, respectively [306]. Besides, later on, some 
studies have shown that methylation analysis of DNA 
can differentiate PC from chronic pancreatitis and could 
be used as a potential diagnostic marker for PC [311, 
320, 321]. Additionally, it has been found that ctDNA 
methylation analysis can also detect epigenetic alterations 
in different cancers, including PC that involves in tumor 
progression and metastasis [322–325]. Besides, these 
epigenetic alterations are strongly associated with patient 
survival [326]. Interestingly, recently it has been proposed 
that epigenetic alterations in a gene can be reprogrammed 
genetically or with a pharmacological inhibitor to reverse 
the epigenetic variations and inhibit their tumor-forming 
capacity; thus, helping in a finding of attractive therapeutic 
targets [327]. To the point, the essential question arises: 
Can ctDNA methylation analysis detect all the epigenetic 
alterations? 

In addition to this, methylation of ctDNA has been 
found to conceal tissue and cell specific information 
that may be invaluable in cancer patients to find tissue-
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Table 1: Studies of circulating tumor DNA (ctDNA) in pancreatic cancer
Study Pts 

(N)
Stages Controls Time of 

Analysis
Platform Markers Findings Sensitivity and 

Specificity

Zill et al. 
2015 [309]

18 Advanced
pancreatobiliary 

cancers

8 biliary cancer Post-treatment NGS KRAS, TP53, 
APC,

SMAD4, and 
FBXW7

Mutations were detected 
in 90.3% of cfDNA. The 
diagnostic accuracy of 
cfDNA sequencing was 
97.7%, changes in cfDNA 
coordinated with tumor 
marker dynamics. 

92.3% and 100%

Cheng et al. 
2017 [308]

188 Metastatic PC NA Pre-treatment NGS and 
ddPCR

KRAS,  
BRCA2, EGFR 

and KDR

The KRAS mutation 
was detected in 72.3% 
(136/188) patients. The 
detection of ctDNA and 
response to treatment as 
assessed by CT imaging 
was 76.9%, the presence 
of ctDNA provided 
the earliest measure of 
treatment in 60% patients.

NA

Berger et al. 
2016 [307] 

24 Metastatic PC 21 IPMN, 
38 healthy 

controls, 26 
patients with 

resected SCAs 
and 16

borderline 
IPMN

NA ddPCR KRAS The KRAS mutation was 
detected in 41.7% (10/24) 
patients. KRAS mutation 
was not detected in cfDNA 
of controls, SCA, and 
IPMN.

NA

Sausen  et al. 
2015 [310]

77 stage II NA Pre-treatment 
and  Post-
treatment

NGS  ddPCR NA ctDNA was detected 
in the 43% of patients 
with localized disease at 
diagnosis, and detection 
of ctDNA after resection 
predicts clinical relapse 
and poor prognosis. 
Moreover, ctDNA could 
detect recurrence 6.5 
months earlier than with 
CT imaging.

NA

Henriksen 
et al. 2016 
[311]

95 NA 27 without 
evidence of 

malignancy, 97  
CP and 59 AP 

NA EasyMag 
platform, PCR

BMP3, 
RASSF1A, 

BNC1, 
MESTv2, 

TFPI2,
APC, SFRP1 
and SFRP2

The distinction in mean 
number of methylated 
genes in the PC group 
(8.41 (95% CI 7.62–9.20)) 
versus the aggregate 
control group (4.74 (95% 
CI 4.40-5.08)) was highly 
significant (p < 0.001). 
Additionally, a diagnostic 
prediction model (age > 
65, BMP3, RASSF1A, 
BNC1, MESTv2, TFPI2, 
APC, SFRP1 and SFRP2) 
had an area under the curve 
of 0.86 (sensitivity 76%, 
specificity 83%). 

NA

Tjensvoll  
et al. 2016 
[312]

14 All stages  29 healthy 
individuals

Pre-treatment 
and  Post-
treatment

PNA-clamp 
PCR

KRAS KRAS mutation was 
detected in 71% of patients 
with PC. The pre-therapy 
ctDNA was a predictor of 
both progression-free and 
OS. Changes in ctDNA 
levels corresponded both 
with radiological follow-up 
data and CA19-9 levels. 

NA

Maire et al. 
2002 [306]

47 NA 31  CP Pre-treatment - PCR and 
allele-specific
amplification

KRAS2 KRAS2 mutation was 
detected in 22 patients 
(47%) with PC and in 4 
controls with CP (13%) (P 
< 0.002). The combination 
of KRAS2 and CA19.9 
gave a sensitivity and 
specificity of 98% and 
77% respectively.

47% and 87%
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of-origin [251, 328], such as in the case of cancers of 
unknown origin. Of note, methylation analysis of ctDNA 
is found to be useful in determining the primary location 
of cancer with a specificity and sensitivity of 99.6% and 
97.7%, respectively [329]. 

Apart from KRAS mutation, in recent years 
with the development of NGS, increasingly pertinent 
genetic aberrations have been identified, namely 
oncogenic BRAF V600E mutation that are observed 3% 
of PC patients, and that do not acquire a KRAS mutation; 
similarly, amplification of the MYC oncogene which 
is remarkably associated with poor prognosis [318]. 
Moreover, detection of mutations such as RBM10, 
MLL, MLL2, MLL3, and ARID1A is associated with 
longer survival [310, 318]. These studies furnish genetic 
indicators of prognosis and outcome in PC and have 
suggestions for a new period of therapeutic development 
(Figure 1C).

In a separate study carried by Zill et al. has 
demonstrated that tumor sequencing was failed in 35% 
cases of tissue biopsy due to inadequate a tissue sample, 
in addition to this all mutations were detected in ctDNA 
similar to that of tissue biopsy. Moreover, they proposed 
that ctDNA could correlate well with tumor marker 
dynamics in longitudinal monitoring with a diagnostic 
accuracy of 97.7%, and with sensitivity and specificity of 
92.3% and 100%, respectively [309].

Intra- and inter-tumor heterogeneity contribute to 
the development of drug-resistant tumors and failure of 
treatment [330]. A small genetic clone carrying a drug-
resistant mutation within the tumor can extend after the 
pressure treatment. These genetic clones can be missed 
by tissue biopsies due to low prevalence or the spatial 
partition of cells within the tumor [331]. Interestingly, 
ctDNA can be exploited to monitor dynamic clonal and 
subclonal evolution in response to the pressure of therapy 
[332] (Figure 2). 

EXOSOMES

Exosomes are very stable, small cup-shaped, lipid 
bilayer microvesicles of endocytic origin with a size of 
50–150 nm in diameter and density of 1.12–1.19 g/ml [60, 
333, 334]. These microvesicles are discharged by all cells, 
including tumor cells, and originally thought to be that they 

are like cellular garbage bags [335–337]. However, recent 
research suggests that exosomes are involved in many 
physiological and pathological functions and processes 
such as intracellular communication, inflammation, cell 
proliferation and regeneration following injury, immune 
response, lactation, neuronal function, immunothrombosis, 
diabetes, atherosclerosis, development, and progression 
of liver disease, neurodegenerative diseases and more 
recently in cancer [338–352]. Evidence demonstrates 
that exosomes are available in numerous biologic body 
fluids; exosomes may in this way be viewed as open 
indicative biomarkers that hold incredible potential for 
recognition of numerous disease conditions, including 
cancer [353, 354]. Interestingly, exosomes are enriched 
with DNA, proteins, lipids, RNAs, and metabolites that 
are reflective of the cell types of origin [352, 355–357]. 
Nonetheless, whole RNA sequence can’t be bundled 
inside one exosome, because of its small size, which was 
contrasted and retrovirus particles of a comparable size 
that can just pack 10 kb transcriptome, subsequently, 
single exosome conveys just a predetermined number of 
transcripts [358]. Still, exosomes are remarkably abundant 
in plasma and when segregating the vesicle portion, the 
vast majority of the RNA sequence can be identified [359, 
360]. Recent data from various cell type uncovers that 
exosomes contain 4,563 proteins, 194 lipids, 1639 mRNA 
and 764 microRNA [361]. Among the main 20 regularly 
recognized exosomal proteins, a significant number of the 
proteins, including CD9, ACTB, CD63, CD81, HSPA8, 
PKM2, ANXA2, HSP90A1, SDCBP, YWHAE, LDHA, 
MSN, PDCP6IP, ANXA5, FASN, ACTN4, LDHB, 
ANXA1, HSPA1A,  and YWHA are known to be mutated 
in multiple cancer types [362]. Additionally, it has been 
found that some exosomes reveal major histocompatibility 
complex MHC I and MHC II on their surface, suggesting 
that they are derived from antigen-presenting cells and 
might have a regulatory immunological part in cancer 
biology [363, 364]. Considering, exosomes convey 
genomic and proteomic materials, thus it has been 
hypothesized that exosomes secreted by tumor cells 
take part in the tumor growth, invasion, pre-metastatic 
niches (PMNs) and metastasis through intracellular 
communication and escape from immunosurveillance 
[338, 365–373]. Biogenesis and secretion of exosome 
within the cell is a complex process which requires 

Pietrasz et al.  
2017 [299]

135 All stages NA Pre-treatment 
and  Post-
treatment

NGS NA ctDNA was detected in 
48% of patients with  
advanced PC, and ctDNA 
emerges as an independent 
prognostic marker in 
advanced PC and indicator 
of shorter DFS and shorter 
OS when detected after 
surgery.

NA

PC: Pancreatic cancer; cfDNA: Cell-free DNA; PCR: Polymerase chain reaction; ddPCR: Droplet digital PCR; NGS: Next-generation sequencing; PNA-clamp PCR: Peptide 
nucleic acid clamping PCR; IPMN: Intraductal papillary mucinous neoplasm; SCAs: Serous cystadenomas; DFS: Disease-free survival OS: Overall survival; CP: Chronic 
pancreatitis; AP: Acute pancreatitis; CT: Computed tomography; ctDNA: Circulating tumor DNA; NA: Not available.
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different factors like molecular motors (cytoskeleton- 
kinesins and myosins, polymerisation- actin, dynamin, and 
microtubules), molecular switches (GTPases, annexins, 
and flotillin) and the fusion proteins (SNARE proteins 
and tethering factors), cargo sorting proteins complex 
(ALIX and TSG101) and finally exocytotic released is 
promoted by cellular stress or hypoxia in cancer cells 
[333, 374–377]. Studies from Thery and colleagues reveal 
that Rab27a and Rab27b act as key downregulators of 
the exosome secretion pathway, which inhibit secretion 

of exosomes [378]. These Rab family proteins are 
thought to be involved in cancer progression and tumor 
advancement, which provided clues that exosomes have 
something to do with tumor biology [379]. Moreover, 
p53 protein, and a p53-regulated gene, TSAP6, have 
shown to increase production of exosome [380, 381]. 
Emerging evidence suggested that breast and pancreatic 
tumor-derived exosomes express integrins (ITGs) on their 
surface which direct organ-specific colonization by fusing 
with targeted stromal and cancer cells, thereby forming 

Figure 2: Tumor heterogeneity and clonal evolution during treatment. (A) Diagram showing the evolutional clonal architecture 
in pancreatic cancer (PC) at diagnosis and relapse. Of note, at diagnosis, the clonal and subclonal  diversity  evolved from a common 
ancestral tumor stem cell. The clonal evolution may follow linear or branched evolution, however, branched evolution is probably more 
likely to contribute to tumor heterogeneity. Additionally, drug treatment instigates a bottleneck effect, where resistant subclones will 
survive and proliferate to form a heterogeneous tumor. (B) During systemic successive targeted therapy assessed by longitudinal liquid 
biopsies may identify an actionable genetic alteration, therapy response or progression. In the event that progression is identified, the 
clinician may be able to  switch  treatment to target arising clones that carry additional mutations that were identified  by the ctDNA 
analysis. At the start of targeted therapy, all cells in the patient’s with  PC have actionable genetic mutations (clone 1). The administration 
of treatment 1 targets the clone 1. longitudinal liquid biopsy analysis demonstrates  an  initial decrease in the clone 1 during treatment 1, 
yet uncovers the evolution of new clone (clone 2 and clone 3) causing resistance to treatment 1. The  clone 2 and clone 3 can  be targeted 
with treatment 2, where longitudinal liquid biopsy analysis uncovers a decrease in the frequency of resistance clone 2 and clone 3, during 
this time, however, other genetic alterations clone 4 and clone 5 increases in frequency. These clones 4  and 5 are resistant to treatment 2, 
yet is sensitive to treatment 3. During treatment 3, the frequency of the clone 4 and clone 5 decreases, while residual earlier resistant clones 
may persist to give rise to therapeutic resistance.
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PMNs within the cancer microenvironment to transmit 
signals and their cargo, that includes genetic material 
(that is, DNA, mRNA, and miRNA), metabolites and 
proteins, by that determining organotropic metastasis [338, 
366–368, 373, 382–384]. Subsequently, PMNs requires 
S100 family proteins for homing of tumor-derived 
exosomes in targeted organs [373]. Furthermore, tumor-
derived exosomal miRNA and protein have a tendency to 
reprogram and instruct target cells that it fuse with towards 
pro-inflammatory and pro-metastatic phenotype leading to 
metastasis [382, 385]. 

Till the date, numerous of technologies and methods 
have been used for extraction of exosomes from body 
fluids which have been well documented elsewhere [386]. 
Commonly used methods are ultracentrifugation-based 
isolation, precipitation-based isolation, size-based isolation, 
immunoaffinity-based isolation, and microfluidics-based 
isolation [386]. The segregation of tumor-derived exosomes 
from patients; however, remains challenging due to some of 
the reasons: 1. Lack of a standardized method for segregation 
and the absence of specific markers that can differentiate 
tumor-derived and non-tumor derived exosomes [387]. 2. 
Failure in isolating large concentration of exosomes, due to 
contamination from other extracellular vesicles and cellular 
debris [386]. 3. Time-consuming technology that is hard to 
implement in routine clinical setup [386]. 

To overcome these challenges, an institutionalized 
technique for exosome isolation should be developed 
sooner rather than later, thus amplifying the significance 
of research facility based investigations of exosomes in the 
clinical setting. It is important to reliably approve each of 
these strategies as per meticulous definitions of exosomes, 
those laid out by the International Society for Extracellular 
Vesicles [388].  

Potential clinical utility and research model of 
exosomes in PC

As the content of exosomes is cell-type specific 
with an extensive variety of molecular information carried 
forth from parent cells to secondary cells, exosomes may 
provide an idiosyncratic ‘signature’ of tumor development 
and metastatic progression, as well as the metabolic status 
of the tumor. In spite of the fact, that the mechanism of 
packaging is yet to be completely comprehended, it has 
been seen that the metastatic tumor cells show the high 
ability of packing and cargo secretion (that is, protein, 
RNA, DNA, and metabolites) in exosome [382, 385]. To 
date, numerous studies have outlined clinical utility of 
exosomes as a diagnostic, prognostic and therapeutic tool 
in PC patients (Table 2) [387, 389–393]. 

In a seminal research, Melo et al. [387] demonstrated 
an increased amount of glypican 1 (GPC1) a membrane-
bound protein on circulating exosomes of mice and humans 
with PC can differentiate healthy control and patients with 
a benign pancreatic disease. Notably, GPC1+ exosomes 

level correlated with tumor burden and the survival of PC 
patients before and after the surgery with utter sensitivity 
and specificity. Additionally, circulating GPC1+ exosomes 
of PC patients bear KRAS mutations, and were able to 
identify pancreatic intraepithelial neoplasia (PanIN) in 
mice from healthy control even before detectable pancreatic 
lesion on MRI. Of note, the main limitation of this study 
was a small sample size. Undoubtedly, these findings 
should be verified with a larger series of the sample, but 
the striking evidence provided by Melo and colleagues 
suggest that GPC1+ exosomes may serve as a potential 
diagnostic and screening biomarker to detect early stages 
of PC for possible curative surgery. In earlier studies, 
overexpression of surviving [394], and mislocalization of 
plectin [395] in exosomes were also proposed as biomarkers 
for PC. Moreover, it has also recently been found that a 
higher rate of patients with localized PC showed noticeable 
KRAS mutations in exosomal DNA than previously 
revealed for cfDNA, and thus exosomal DNA may act as 
a complementary DNA source to liquid biopsy [393]. In a 
research, Madhavan et al. outlined that a combination of 
five proteins (CD44v6, Tspan8, EpCAM, MET and CD104) 
and four miRNAs (miR-1246, miR-4644, miR-3976 and 
miR-4306) in circulating tumor exosomes could recognize 
PC from healthy control, chronic pancreatitis, and benign 
pancreatic disease with a sensitivity and specificity of 100% 
and 80%, respectively [391]. 

Exosomal micro-RNAs (miRNAs) have additionally 
increased generous consideration in later past years. From 
the recent studies, the number of exosomal miRNAs 
including miR-21, miR-17-5p, miR-155, miR-34, miR-
196a, miR-181a, miR-181b, miR-138-5p, miR-494, miR-
542-3p, miR-31, and miR-205 has been identified and 
upregulation of these miRNAs has been shown to increase 
cellular proliferation, angiogenesis promotion, disease 
progression, metastasis, and chemo-resistance in PC 
patients [389, 396–403]. Moreover, these studies highlight 
the potential use of exosomal miRNAs as a diagnostic and 
prognostic biomarker. Likewise, targeting the exosomal 
miRNAs might be a potential therapy for PC.

Additionally, it has been found that miRNAs 
in circulating exosomes are representative of those 
increased in the primary tumor cells [21]. In a separate 
study, Ohuchida et al. distinguished 24 miRNAs with 
altered expression in gemcitabine-resistant cells, and 
furthermore found that patients with high miR-142-
5p and miR-204 expression had significantly longer 
survival times than those with low miR-142-5p and 
miR-204 expression in the gemcitabine-treated group 
[404]. Despite the fact that the miRNA levels were 
determined in paraffin-embedded tissue, this highlights 
the potential use of tumor-derived exosomal miRNAs as 
predictors of response to chemotherapy and future use of 
miRNAs for targeted immune therapy in PC. Moreover, 
it had been proposed that exosomes miRNAs are derived 
from living cells, while circulating free miRNAs usually 
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originates from apoptotic or necrotic cells [398], and 
thus, exosomes miRNAs might have advantages over 
circulating free miRNAs for monitoring therapy or late 
stage of PC. 

Lyden and colleagues [373] in their recent paper 
proposed that tumor-derived exosomes integrins (ITGs) 
can determine organotropic metastasis as discussed in 
the earlier section of this paper. The consequent analysis 

Table 2: Studies of circulating tumor exosomes in pancreatic cancer

Study Specimen 
type Platform Markers Findings and Conclusion

Que et al. 2013 
[389]

Serum Filtration, 
Ultracentrifugation, and 
RT-PCR

miR-17-5p, miR-21, 
miR-155, and miR-
196a

There were low expressions of exosomal 
miR-155 and miR-196a in PC patients. 
Moreover, there were high expressions of 
serum exosomal miR-17-5p and miR-21 in 
PC patients than control groups and high 
expression of miR-17-5p was significantly 
correlated with advanced stage of PC. 

Kahlert et al.
2014 [390]

Serum Filtration, 
Ultracentrifugation and
WGS

KRAS, p53 Exosomes from PC patients contain >10-kb 
fragments of double-stranded genomic DNA 
with detectable mutations in KRAS and 
p53. In addition, WGS of exosomal DNA 
can determine genomic DNA mutations for 
cancer prediction, treatment, and therapy 
resistance. 

Madhavan
et al.
2015 [391]

Serum Ultracentrifugation, qRT-
PCR, and Flow cytometry

CD44v6, Tspan8,
EpCAM, c-Met,
CD104, miR-1246,
miR-4644,
miR-3976, and
miR-4306

Serum exosomal miR-1246, miR-4644, 
miR-3976 and miR-4306 were significantly 
upregulated in 83% of PC serum-exosomes, 
but rarely in control groups. Additionally, 
It was found that a combination of five 
proteins (CD44v6, Tspan8, EpCAM, MET 
and CD104) and four miRNAs (miR-1246, 
miR-4644, miR-3976 and miR-4306) in 
circulating tumor exosomes could recognize 
PC from healthy control, chronic pancreatitis 
and benign pancreatic disease with a 
sensitivity and specificity of 100% and 80% 
respectively.

Melo et al. 2015 
[387]

Serum Filtration, 
Ultracentrifugation, qRT-
PCR
And Mass spectrometry
analyses

Glypican-1 Expression of glypican 1 (GPC1) a 
membrane-bound protein on circulating 
exosomes of mice and humans with PC can 
differentiate healthy control and patients 
with a benign pancreatic disease. Notably, 
GPC1+ exosomes level correlated with tumor 
burden and the survival of PC patients before 
and after the surgery with utter sensitivity 
and specificity. Additionally, circulating 
GPC1+ exosomes of PC patients bear KRAS 
mutations,

Kanwar et al. 
2014 [392]

Serum ExoChip (antigen based) CD63 Significantly higher exosome capture in PC 
patients, compared to controls.

Allenson et al.  
2017 [393]

Whole blood Ultracentrifugation, Flow 
cytometry, and ddPCR

KRAS Exosomal DNA posses KRAS mutations and 
was detected localized, locally advanced, 
and metastatic PC patients, respectively. 
Higher exosomal DNA KRAS mutations 
were associated with decreased disease-free 
survival in patients with localized disease.

PC: pancreatic cancer; GPC1: glypican-1; miR: microRNA; ddPCR: Droplet digital polymerase chain reaction; qRT-PCR: Quantitative 
reverse transcription polymerase chain reaction; WGS: Whole-genome sequencing; EpCAM: Epithelial cellular adhesion molecule; RT-
PCR: Reverse transcription polymerase chain reaction.
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demonstrated that liver-tropic pancreatic exosomes 
expressing ITGαvβ5 could communicate with F4/80+ 
macrophages and fuse with Kupffer cells in fibronectin 
rich liver niches. Besides, inhibiting ITGβ5 expression 
through short hairpin RNAs or hindering their binding 
by HYD-1/RGD peptides particularly reduced exosome 
uptake and additionally liver metastasis. This study 
explains why the liver is the most common site for PC 
metastasis. Moreover, these outcomes showed that 
exosomal ITGs may be used as organotropic biomarkers 
to anticipate organ-specific metastasis in PC patients, 
and expands our understanding of the organ-specific 
metastasis mechanisms involvement of exosomes in 
advancing tumor metastasis. In addition to Lyden results, 
a study by Costa-Silva et al. [385] demonstrated that 
the PC exosomes can expand liver metastatic burden by 
transferring macrophage migration inhibitory factor (MIF) 
to Kupffer cells and by recruiting immune cells to initiate 
PMNs development in the liver. It is thus proposed that 
the presence of MIF in exosomes may be a biomarker that 
can show the likelihood of PC metastasis to the liver and 
blockage of MIF could prevent liver metastases and may 
prove to be clinically relevant for the development of new 
targeted therapies.  

The utilization of exosomes as a nucleic acid, 
gene or drug delivery vehicles (Figure 1D) has increased 
significant enthusiasm because of their phenomenal 
biodistribution and biocompatibility [405]. Moreover, the 
advantage of utilizing exosomes as a drug delivery system 
lies in the fact that they can be particularly targeted to a 
specific cell type by engineering exosome-producer cells 
[406]. Interestingly, past studies have demonstrated that 
tumor cells secrete more exosomes compared to normal 
cells [407]. Furthermore, malignant pancreatic tumor 
cells, with oncogenic RAS have also founded to uptake 
exosomes more readily through the active induction of 
macropinocytosis [408, 409], and this could strengthen 
the use of exosome as an ideal drug delivery vehicle. 
Recently, Kamerkar et al. demonstrated treatment efficacy 
of engineered exosome (iExosome), where iExosome 
was able to suppress the PC progression in genetically 
engineered KTC and KPC mouse models, this study 
exhibited an approach for direct and specific targeting of 
KRAS mutation in tumors using engineered exosomes 
[410]. However, it still needs to be verified in the clinical 
setting.   

CONCLUSIONS 

We have accomplished enormous progress in our 
understanding of the complex molecular and genetic 
mechanisms of PC, yet key inquiries stay unanswered 
for its early diagnosis, staging, treatment monitoring, 
and management. Taking everything into account, the 
up and coming era of ‘ liquid biopsy’ will be vital to 
conclusively build up the clinical relevance of blood-

based genomic profiling. Liquid biopsy methodologies 
will most likely give enhanced diagnostic and therapeutic 
outcome. However, a few issues stay to be tackled before 
application in a clinical setting: 1. Institutionalization 
of the sample collection methodology in pre-analytical 
setup, subsequently decreasing pre-analytical errors 2. 
Institutionalized and strict definition of CTCs, ctDNA, and 
exosomes for their segregation and analysis is required. 
3. Improvement in the sensitivity and specificity of the 
detection methods by integrating CTCs, ctDNA, and 
exosomes in one platform. 4. Universal signature from 
CTCs, ctDNA, and exosomes for differentiating benign 
from malignant disease and that can cover all phases of 
cancer along with their subtypes, tumor characteristics, 
and mutations for the success of precision medicine. 
5. Substantial forthcoming clinical trials, including 
multicenter studies, are expected to approve the clinical 
essentials for diagnosis, treatment monitoring, and 
prognosis. The comparison of CTCs, ctDNA, and 
exosomes is outlined in Table 3.

In spite of the presence of various challenges, 
liquid biopsy seems to be ideal diagnostic and therapeutic 
strategies for PC. So far, in June 2016, a liquid biopsy 
was approved by the FDA for use in the USA to detect 
EGFR mutations in plasma ctDNA and entered clinical 
practice for the management of non-small cell lung 
cancer (NSCLC) [68]. After its approval, it represents key 
milestones towards the application of liquid biopsies in 
personalized clinical oncology.

CTCs seem to have enormous potential for PC, 
and can be exploited to understand the development of 
the distant organ colonization and metastatic spread of 
cancer. Moreover, CTCs can be used to understand the 
phenotypic changes, plasticity of tumor biology and 
mutational landscape of tumor by development of PDTX 
[213], PGx [214], CDXs [206], and 3D organoids [210] 
models and guide treatment decisions for complex disease 
like PC [184, 190, 411–413]. However, methylation 
analysis of CTCs remains largely unexplored, except few 
studies which have been reported in recent years [414, 
415]. Methylation study of CTCs holds a promising future 
with an exciting result; this may give a new direction to 
upcoming research. 

In the ctDNA arena, ctDNA has offered more 
an inclusive understanding of a patient’s disease. For 
instance, the total ctDNA concentration can be used for 
real-time monitoring of tumor dynamics and predicts 
relapse, poor outcome and shorter disease-free survival 
after curative surgery [299, 310, 313]. Methylation 
analysis of ctDNA can detect epigenetic alterations that 
involve in tumor progression and metastasis [322, 325]. 
Moreover, it can also differentiate PC from chronic 
pancreatitis and could be used as a potential diagnostic 
marker for PC [320, 321]. However, the sensitivity and 
specificity of ctDNA analysis are struggling and it can be 
increased by adopting a multi-marker strategy along with 
integrating it with other biomarkers.
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Exosomes provide an enormous understanding 
about organ-specific colonization and PMNs [373, 385]. 
Moreover, exosomes can serve as a potential biomarker 
as its contents are largely derived from the tumors, 
which are enriched with DNA, proteins, lipids, RNAs, 
and metabolites. In addition to this, exosomes as drug 
delivery vehicles offer an important perspective because 
of its cell-specific nature, excellent biodistribution and 
biocompatibility [405]. Before these drug delivery systems 
become a therapeutic reality, it needs to be validated with 
further researches and large clinical trials.

In general, a liquid biopsy can possibly be used 
to diagnose PC at an early stage, predict prognosis, 
monitor PC stage, therapeutic efficacy or resistance, 
and provide optimal, personalized treatment strategies 
for patients with PC. This review has endeavored to 
organize the present advances in liquid biopsy for PC 
into a solitary idea to establish an effective management 
plan and implementation of these understandings to 

bolster energizing zones of research. But the fundamental 
question remains: Can liquid biopsy become a screening 
reality for pancreatic cancer?
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Table 3: Comparison between CTCs, ctDNA and exosomes as liquid biopsy
Comparison CTCs ctDNA Exosomes

Origin

Includes apoptotic tumor and 
viable tumor cells from a 
primary or metastatic tumor 
[71, 73].

Includes cfDNA, from the viable 
tumor cells or from CTCs  
[17, 219, 221, 224, 225].

Includes DNA, proteins, lipids, RNAs and 
metabolites and are discharged by all cells 
including tumor cells [333, 336, 352, 355–357].

Bio-banked samples used 
for study 

Frozen plasma, urine and other 
biofluids cannot be used for 
study of CTCs [116]. 

Frozen plasma, urine and other 
biofluids can be used for study of 
cfDNA [116, 260]. 

Frozen plasma, urine and other biofluids can be 
used for study of exosomes [260].

Stability Unstable [114, 116, 117] Stable [116] Very stable [334]

Genetic materials DNA and RNA [117, 122, 123] DNA [17, 219, 221] DNA and RNA [355, 357, 359–361]

Analytic Techniques

CellSearch [84, 148–150, 180, 
182, 190], Microfluidic  
[187, 181], SE-iFISH 
[186], MetaCell [184], 
Immunofluorescence  
[181, 185, 188], ScreenCell 
[185], ISET Test [188, 190] etc. 

dPCR [289], CAPP-Seq [293], 
TAM-Seq [276], ddPCR [290, 
307, 308, 310], COLD-PCR 
[167], Safe-Seq [294], NGS 
[299, 308–310], BEAMing [291, 
292], WGA [297, 298] etc.

Ultracentrifugation [387, 386, 389-391, 393], 
ExoChip [392], Precipitation [386], Size-based 
isolation [386], Immunoaffinity-based isolation 
[386],  Microfluidics-based isolation etc [386].

Morphological study and 
functional study of tumor 
cells ex vivo

Yes [128, 129, 188, 190, 206, 
210, 213, 214] No No

Analysis of protein 
location on  tumor cells Yes [101, 102] No No

Identification of 
mutations Yes [165, 185, 187] Yes [306, 319] Yes [387, 390, 393]

Identification of 
epigenetic changes Yes [414, 415] Yes [322–325] Yes [357]

Analysis of RNA 
transcription profiles Yes [157, 192] No Yes [359–361, 367]

Proteomics Analysis Yes [157] No Yes [367, 387, 392]

Analysis tumor 
heterogeneity Yes [206] Yes [332] No

Use as drug delivery 
vehicle No No Yes [406, 410]

DNA: Deoxyribonucleic acid; RNA: Ribonucleic acid; CTCs: Circulating tumor cells; ctDNA: Circulating tumor DNA; cfDNA: Cell free DNA; ISET: 
Size of Epithelial Tumor; SE-iFISH: Immunostaining-fluorescence in situ hybridization; ddPCR: Droplet digital PCR; COLD-PCR: Co-amplifcation 
at lower denaturation temperature-PCR; NGS: Next-generation sequencing; BEAMing: Beads, Emulsion, Amplifcation and Magnetic; WGA: Whole 
genome amplifications, messenger RNAs (mRNAs); dPCR: digital PCR; CAPP-Seq: Cancer personalized profiling by deep sequencin; TAM-Seq: 
Tagged amplicon deep sequencing; Safe-Seq: Safe-sequencing.  
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