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Abstract
Background: Most analyses of spatial clustering of disease have been based on either residence at the
time of diagnosis or current residence. An underlying assumption in these analyses is that residence can
be used as a proxy for environmental exposure. However, exposures earlier in life and not just those in
the most recent period may be of significance. In breast cancer, there is accumulating evidence that early
life exposures may contribute to risk. We explored spatio-temporal patterns of risk surfaces using data
on lifetime residential history in a case control study of breast cancer, and identified elevated areas of risk
and areas potentially having more exposure opportunities, defined as risk surfaces in this study. This
approach may be more relevant in understanding the environmental etiology of breast cancer, since
lifetime cumulative exposures or exposures at critical times may be more strongly associated with risk for
breast cancer than exposures from the recent period.

Results: A GIS-based exploratory spatial analysis was applied, and spatio-temporal variability of those risk
surfaces was evaluated using the standardized difference in density surfaces between cases and controls.
The significance of the resulting risk surfaces was tested and reported as p-values. These surfaces were
compared for premenopausal and postmenopausal women, and were obtained for each decade, from the
1940s to 1990s. We found strong evidence of clustering of lifetime residence for premenopausal women
(for cases relative to controls), and a less strong suggestion of such clustering for postmenopausal women,
and identified a substantial degree of temporal variability of the risk surfaces.

Conclusion: We were able to pinpoint geographic areas with higher risk through exploratory spatial
analyses, and to assess temporal variability of the risk surfaces, thus providing a working hypothesis on
breast cancer and environmental exposures. Geographic areas with higher case densities need further
epidemiologic investigation for potential relationships between lifetime environmental exposures and
breast cancer risk. Examination of lifetime residential history provided additional information on
geographic areas associated with higher risk; limiting exploration of chronic disease clustering to current
residence may neglect important relationships between location and disease.
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Background
In a recent analysis of breast cancer by New York State's
Department of Health, a breast cancer cluster in the West-
ern New York area was identified [1]. One of the objec-
tives of such disease mapping is to generate hypotheses by
identifying spatial patterns so that causal processes may
be evaluated further by more rigorous epidemiologic
study. Spatial analyses have played a valuable role in
explaining different health outcomes and in uncovering
environmental causes of disease [2,3]. Residential loca-
tions at the time of diagnosis have generally been used in
these exploratory spatial analyses [4,5]. Disease mapping
has been increasingly used to identify spatial patterns with
the aid of Geographic Information Systems (GIS) and
exploratory spatial analysis tools, and has been a valuable
tool for studies of geographic and environmental epide-
miology, especially when the causes of disease and their
determinant processes are unknown [6-8]. In particular,
there has been recent interest in the use of kernel density
estimation methods in epidemiologic studies. Density
estimation methods have been used to smooth out noise
based on functions of the data in surrounding areas and
to overcome problems associated with traditional disease
mapping [9,10].

Previous studies using exploratory spatial analyses, how-
ever, have been based on either residence at the time of
diagnosis or current residence, and only a few recent stud-
ies have examined disease risk using information on life-
time residence [11,12]. For chronic disease, there is
increasing evidence that lifetime exposures may be more
relevant in understanding disease etiology. For breast can-
cer in particular, several of the well established risk factors
(age at menarche, age at first birth) are from early life.
There is now evidence that childhood and even in utero
exposures may affect risk [13]. To examine disease cluster-
ing, lifetime cumulative exposures or exposures at critical

times in a life course may be more strongly associated
with risk for breast cancer than exposures from any one
time period, especially the recent period.

In this study, we explored spatio-temporal patterns of risk
surfaces using data on lifetime residential history in a case
control study of breast cancer. We had previously identi-
fied geographic clustering of residence at critical points in
early life in relation to breast cancer risk [14]. Here we
focused on lifetime cumulative exposure in relation to the
disease risk. Risk surfaces were created based on the rela-
tive densities of cases and controls – this indicated areas
with higher case density as being areas with higher breast
cancer risk, thus identifying areas potentially having more
exposure opportunities. We used residence as a proxy for
potential environmental exposures, conducted explora-
tory spatial analyses of breast cancer, and produced risk
surface maps using information on lifetime residence to
identify areas with high breast cancer incidence. In partic-
ular, we assessed spatio-temporal variability of risk sur-
faces using the standardized difference in case and control
density, and evaluated the potential use of different kernel
density estimation methods in applying them to epidemi-
ologic data.

Results
Descriptive characteristics of study participants by meno-
pausal status are presented in Table 1, and characteristics
of lifetime residential history for breast cancer cases and
controls are summarized in Table 2. One-fourth of the
study participants had at least one previous residence out-
side the study area, and these were excluded from the
analysis. For those residences in the study area, we found
that cases were somewhat more mobile, averaging 5.8 and
5.4 residences for pre- and postmenopausal participating
cases, compared to 4.9 and 5 residences for pre- and post-
menopausal participating controls, respectively.

Table 1: Descriptive characteristics of study participants (Mean ± Standard Deviation): WEB Study, 1996–2001.

Premenopausal Postmenopausal

Case (n = 325) Control (n = 610) Case (n = 841) Control (n = 1495)

Age (years) 44.9 ± 4.6 44.1 ± 4.6 63.0 ± 8.5 63.4 ± 8.9
Education (years) 14.0 ± 2.3 14.2 ± 2.2 13.3 ± 2.6 13.0 ± 2.3
Parity 1.9 ± 1.3 2.0 ± 1.3 3.0 ± 1.9 2.5 ± 1.8
Age at menarche (years) 12.5 ± 1.6 12.6 ± 1.6 12.6 ± 1.6 12.8 ± 1.7
Age at first birth (years) 25.0 ± 5.1 25.8 ± 4.8 23.8 ± 4.7 23.5 ± 4.3
Recent BMI (kg/m2) 26.7 ± 6.6 27.2 ± 6.8 28.9 ± 6.1 28.4 ± 6.4
Benign breast disease (yes) 37% 21% 33% 22%
Relative with breast cancer (yes) 21% 10% 20% 14%
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We constructed lifetime cumulative risk surfaces to repre-
sent exposure opportunities in lifetime because cumula-
tive exposures may be a more accurate indicator of
potential environmental exposures related to breast can-

cer risk. Figure 1 shows a boundary map of Erie and Nia-
gara counties, while Figure 2 depicts geographic patterns
of lifetime residential locations for breast cancer cases and
controls by menopausal status. We used the rectangular
region as an approximate boundary of the study area to
protect individuals' confidentiality. In the study area,
there are 4,812 lifetime residential locations for cases
(1,328 pre-menopausal and 3,484 post-menopausal resi-
dences), and there are 7,886 lifetime residential locations
for controls (2,270 pre-menopausal and 5,616 post-men-
opausal residences).

We evaluated spatial patterns of risk surfaces based on the
geographic distribution of lifetime residences in Figure 2.
Risk surfaces based on the standardized difference
between case and control densities were obtained, and
areas with relatively higher case density were identified by
menopausal status in Figure 3. In the figure, areas with dif-
ference greater than 2 standard deviations (SD) were por-
trayed as contours and areas exceeding critical values were
portrayed as red images. Testing for significance was per-
formed and reported as p-values. Those areas with stand-
ardized difference greater than 2 SD were quite different
between pre- and postmenopausal breast cancer,
although ranges of standardized the difference were simi-
lar; -6.37 to 4.43 for pre-menopausal, and -6.57 to 3.39
for postmenopausal breast cancer, respectively. There
were about 29 rectangular grids in those areas greater than
2 SD for premenopausal, while about 59 grids for post-
menopausal breast cancer. Further, the statistical signifi-
cance of areas must be assessed in light of the fact that
multiple areas are tested; these are statistically significant
if the difference in density exceeds the critical value of
3.56 at α = 0.05 (determined by simulation, where ran-
dom labelling of cases and controls is carried out). There
is one small geographic area of special interest for pre-
menopausal residences in the central and upper region of
the city. When these are compared with the geographic

Table 2: Descriptive characteristics of lifetime residential history for breast cancer cases and controls: WEB Study, 1996–2001;

Erie and Niagara (n = 15487) Outside (n = 4752) Total (n = 20240)

Case Control Case Control Case Control

Premenopausal
Total numbers of residences in lifetime 1661 2767 432 948 2093 3715
Average numbers of residences per participant 5.8 4.9 3.2 3.4 5.0 4.4
Average years in each residence* (Mean ± SD) 5.6 ± 6.0 6.2 ± 6.6 4.3 ± 5.4 3.9 ± 4.9 5.3 ± 5.9 5.5 ± 6.3

Postmenopausal
Total numbers of residences in lifetime 4217 6842 1290 2082 5508 8924
Average numbers of residences per participants 5.4 5.0 3.5 3.2 4.8 4.4
Average years in each residence* (Mean ± SD) 6.9 ± 7.3 7.3 ± 7.9 4.8 ± 5.6 5.2 ± 6.3 6.3 ± 7.0 6.7 ± 7.6

* Excludes residences with missing data for length of residence.

Map of study area: Erie and Niagara counties with zip-code boundariesFigure 1
Map of study area: Erie and Niagara counties with zip-code 
boundaries.
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location of clusters of birth and menarche residences
identified previously [14], we found that the size and loca-
tion of these areas are about the same as clusters of
menarche residences, but somewhat smaller than the clus-
ters of birth residences. Thus, it is more likely that the
same individuals are in both clusters. For post-menopau-
sal residences, no area exceeding the critical value was
detected.

Next, we evaluated effects of other risk factors on the risk
surfaces. To create age-adjusted risk surfaces, the standard-
ized difference between case and control densities strati-
fied by menopausal status and age groups was examined.

Table 3 presents the variability of risk surfaces when
stratified by menopausal status and age groups. While
there were similar numbers of geographic areas greater
than 2 SD regardless of menopausal status and age groups,
we found areas (about 8 rectangular grids) greater than
critical values only for residences for premenopausal
women, aged 35–44, and the geographic location of those
areas was identical to the areas identified in Figure 3. In
addition, we evaluated the effects of one known risk fac-
tor, nulliparity, on those spatial patterns of risk surfaces.
Risk surfaces were examined in two groups, nulliparious
women and those with at least one child. We observed no
difference in spatial patterns of risk surfaces for these two

Geographic distribution of breast cancer in Western New York;Figure 2
Geographic distribution of breast cancer in Western New York; Shown are all residential locations of breast cancer 
cases and controls by menopausal status included in the analysis. One dot indicates each residential location. The rectangular 
region was used as an approximate boundary of the study area instead of actual county boundary in Figure 1. East (x) and north 
(y) coordinates in projected Universal Traverse Mercator (UTM) miles.
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groups.; for premenopausal women, there were seven and
two geographic areas greater than critical values for nulli-
parious and parous women, respectively, but none was
detected for either group of postmenopausal residences
(data not shown).

Lastly, we were interested in evaluating temporal variabil-
ity of risk surfaces; the standardized difference was
obtained for each decade, for both pre- and post-meno-
pausal residences, from the 1940s to 1990s (Table 4).
While there was not much difference in the number of
areas greater than 2 SD for both menopausal groups, we

were able to find geographic areas greater than critical val-
ues in the 1960s through 1990s only for residences of
premenopausal women. This is consistent with results
from the above spatial analysis.

Discussion and conclusions
This study explored the use of kernel density estimation
methods to identify spatio-temporal patterns of risk sur-
faces in a case-control study of breast cancer. We used
standardized differences between case and control densi-
ties to produce risk surfaces. These risk surfaces were
assessed for both pre- and postmenopausal breast cancer.

Table 3: Standardized difference of residences for premenopausal and postmenopausal breast cancer cases and controls by age 
groups;

Premenopausal Case
(n = 1328)

Control
(n = 2270)

Standardized 
differences

No. of areasa > 2SD No. of areasa > critical 
valuesb

Ages 35–44
(n = 1889)

647 1242 -5.12–5.88 34 8

Ages 45–56
(n = 1709)

681 1028 -4.72–3.14 30 0

Postmenopausal Case
(n = 3484)

Control
(n = 5616)

Standardized 
differences

No. of areas > 2SD No. of areas > critical 
values

Ages 40–64
(n = 4916)

2115 2801 -3.52–3.77 49 0

Ages 65–79
(n = 4184)

1369 2815 -4.50–3.15 40 0

a Areas refer to the rectangular grid overlaid on to the study area, b Critical values of 3.88 for premenopausal and 3.71 for postmenopausal 
residences.

Table 4: Standardized difference of residences for premenopausal and postmenopausal breast cancer cases and controls by decades;

Decades Case Control Standardized 
differences

No. of areasa > 
2SD

No. of areasa > 
critical valuesb

Premenopausal 1940s 36 86 -2.35–2.12 2 0
1950s 222 461 -2.45–3.15 9 0
1960s 341 633 -4.02–3.78 21 2
1970s 514 1025 -3.89–3.96 35 2
1980s 552 1005 -4.26–4.50 24 3
1990s 457 723 -4.06–4.14 32 5

Postmenopausal 1930s 389 676 -2.51–2.62 24 0
1940s 809 1253 -3.01–3.04 23 0
1950s 1158 1968 -3.66–2.91 22 0
1960s 1247 2072 -4.18–2.99 18 0
1970s 1100 1839 -4.98–3.13 21 0
1980s 960 1651 -3.84–2.85 23 0
1990s 943 1542 -4.40–3.57 22 0

a Areas refer to the rectangular grid overlaid on to the study area, b Critical values of 3.88 for premenopausal and 3.71 for postmenopausal 
residences.
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We found a general tendency for spatial clustering of
breast cancer cases, and observed stronger evidence of
geographic clustering for pre-menopausal women than
for postmenopausal women. Geographic areas greater
than 2 SD of the standardized difference were identified
among lifetime residences for pre- and postmenopausal
women, but more rigorous testing showed such evidence
only for premenopausal residences. We were able to pin-
point geographic areas with relatively higher case densi-
ties, and to assess temporal variability of risk surfaces.

This study focused on the investigation of breast cancer
risk associated with lifetime residential history using GIS-
based exploratory spatial analyses. Since environmental
risk factors are of continuing interest in breast carcinogen-
esis, this approach may be more relevant in understand-
ing the environmental etiology of breast cancer [15,16].
Residential location has often been used as a proxy for
exposures, and the relationships between residential
environment and breast cancer risk have been a focus in
recent epidemiologic studies [17-19]. Although the role of
clustering analyses remains controversial in scientific
advances in our understanding of disease etiology
[20,21], these GIS-based exploratory spatial analyses are
well suited for environmental epidemiologic investiga-
tions; this study demonstrated that smoothed risk surfaces
created by kernel methods are useful for large sets of data
in space and time, but also when the form of cluster is not
well defined. This method can be applied to other
epidemiologic analyses. For example, this GIS-based spa-
tial analysis can be effectively used in exposure analyses
and assessment, as previously used in identifying people
potentially exposed to environmental risk factors [22,23].

Given that these are exploratory methods, however, it is
meaningful to compare the strengths and limitations of
different approaches when applied to epidemiologic data.
We have chosen the standardized difference approach to
represent risk surfaces, as opposed to other methods (such
as risk ratios) that can be used to create risk surfaces,
because it is more easily able to handle the difficulties that
arise with small densities. Unsmoothed risk surfaces are
relatively easy to manipulate, but they are sensitive to geo-
graphic scales, while the ratio of case to control density
results in unstable risk surfaces due to small number prob-
lems. We were able to reduce this problem in creating risk
surfaces based on a standardized difference approach. The
selection of optimal bandwidths in the application of ker-
nel methods to cluster detection, and comparison of dif-
ferent types of bandwidths, such as adaptive kernel, will
be a subject of future study [24].

It is important to note that current approaches to obtain-
ing density surfaces of lifetime breast cancer risk are lim-
ited in several ways. First, we are using residential

locations of breast cancer cases and controls; we obtained
the difference in densities (risk surfaces) based on their
residential location to identify areas with relatively higher
case density. We do not know actual exposures and breast
cancer risk associated with residential locations. However,
this study provides evidence of differential exposure
opportunities among cases and controls for further epide-
miologic assessment, since spatio-temporal clustering of
residential locations in a life course may be an indicator
of differential exposure opportunities and the subsequent
risk of breast cancer. Another limitation of this analysis is
that we were unable to incorporate length of residence
into the model. We were able to visualize risk surfaces
with different weights based on the actual length of resi-
dence of each individual, but there were difficulties in
incorporating this information into risk surfaces due to a
substantial degree of variability in the length of residence.
However, we observed spatial patterns consistent with
those in Figure 3, despite the greater variability, when we
visualized risk surfaces with length of residence
information.

There is also need for cautious interpretation of these
results due to the potential for selection bias inherent in
the study design, including factors such as non-participa-
tion, and missing and excluded residential location.
Although we had a relatively stable population and about
40% of study participants were lifetime residents in the
study area, there may be different geographic patterns
among those included and excluded groups. We excluded
missing residential information and residential locations
outside of the study area. In addition, we had a rate of
non-participation of about 30% in the survey. However,
in our earlier study [14], we found that characteristics of
subjects in the study area were not different from charac-
teristics of subjects with missing residential information
and from subjects excluded due to residence outside of the
study area, and that the geographic distribution of partic-
ipants was not different from that of non-participants.
Although we used the same methods for both cases and
controls, and interviewers were blinded as to case and
control status, there may be recall bias in the lifetime self-
reported residential history. We validated the accuracy
and reliability of lifetime residential history, especially
earlier residences. Our finding was that reported residence
information was generally correct. The greater problem
was missing data; for this we conducted searches of histor-
ical records, as we have described earlier. We are now in
the process of obtaining birth addresses from birth certif-
icates for additional validation.

This study has significant implications for further studies
on environmental exposure and breast cancer. We had
previously found strong evidence of clustering of resi-
dence in early life, especially residence at birth and
Page 6 of 10
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menarche [14]. In these analyses, we were able to show
evidence of clustering of lifetime residence. In addition,
we found breast cancer cases were more mobile than con-
trols, and that premenopausal participants were more
mobile than postmenopausal pariticipants. Average years
at current residence was between 11 and 12 years for pre-
menopausal participating cases and controls, compared
to 22 and 23 years for postmenopausal participating cases
and controls, respectively. Taking findings from this and
our previous study together, it appears that examination
of exposure opportunities in the past and across the
lifespan may be critical for understanding environmental
exposures related to breast cancer. Exploring spatio-tem-

poral patterns of lifetime residential history may provide
a link between this potential exposure and breast cancer
risk. This study provides a more comprehensive analytical
framework for the analysis of environmental exposures in
relation to breast cancer by considering these compo-
nents, such as migration and latency periods, and these
spatio-temporal patterns of lifetime residential history
may be a key to the understanding the actual relationships
between environmental exposure and subsequent breast
cancer risk.

To provide more accurate measures of personal cumula-
tive exposures based on complete lifetime residential

Risk surfaces of pre- and postmenopausal breast cancer using standardized difference;Figure 3
Risk surfaces of pre- and postmenopausal breast cancer using standardized difference; Areas with standardized 
difference greater than 2 SD are portrayed as contours of 2, and areas exceeding critical value of 3.56 as red images. The rec-
tangular region was used as an approximate boundary of the study area instead of actual county boundary in Figure 1. East (x) 
and north (y) coordinates in projected UTM miles.
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history, further studies should take into account the differ-
ent effects of time periods or timing of exposures; con-
struction of lifetime cumulative risk surfaces with
different weights for exposure sensitivity at different
points in time is a potential improvement and explana-
tion of the methods employed to date. This approach may
help to provide an answer to the question of where, when,
and what kinds of exposures have influenced individuals'
risk for a particular disease. Further, there has been recent
development of a GIS-based framework to examine spa-
tio-temporal patterns of lifetime residential history; the
geospatial lifeline concept and space-time information
system (STIS) approach is a good example of this [25-27].
We are currently testing the feasibility of similarity and
difference measures of an individual's lifetime residential
history using this case and control data, since it would be
a powerful tool to analyze the personal environmental
exposures associated with lifetime residential history.

In summary, we found evidence of clustering of lifetime
residence for premenopausal cases relative to controls,
and a substantial degree of spatio-temporal variability in
the risk surfaces, thus providing a working hypothesis on
breast cancer and environmental exposures. Geographic
areas with higher case densities need further
epidemiologic investigation for potential relationships
between lifetime environmental exposures and breast
cancer risk. Examination of lifetime residential history
provided additional information on geographic areas
associated with higher risk; limiting exploration of
chronic disease clustering to current residence may neglect
important relationships between location and disease.
Further studies on the relationship between disease risk
and environmental exposures associated with lifetime res-
idential history should be replicated in other settings.

Methods
The Western New York Exposure and Breast Cancer Study 
(WEB Study)
Data from a population-based case-control study of breast
cancer in western New York (the WEB Study) were used
for our analyses. Participants were women, age 35–79
who were residents of Erie and Niagara counties, with no
history of cancer other than non-melanoma skin cancer;
cases were women with incident, primary, pathologically
confirmed breast cancer, diagnosed during the period
1996–2001, and controls were randomly selected and fre-
quency matched to cases on age, race, and county of cur-
rent residence. Details of the WEB study, including
selection, ascertainment, in-depth interview processes,
have been described previously [14]. We collected lifetime
residential histories for 1,166 cases and 2,105 controls,
identified 20,240 lifetime addresses, an average of approx-
imately 6 addresses for each individual, from participating

cases and controls. Analyses were restricted to those resi-
dential locations within the two counties of study area.

Geocoding of residential location
Geocoding of residential locations enables us to record
each individual's locational information as x and y coor-
dinates to be used in further spatial analyses. Address
geocoding is a process that creates a theme based on the
address data in a tabular form (event theme) and a refer-
ence feature theme (street map) to add point locations
defined by the street address to the map. Matching
depends not only on the quality of the reference theme,
but also on the quality of the tabular data to be mapped.
We used GDT/Dynamap 2000, an enhanced version of
Topographically Integrated Geographic Encoding and
Referencing system (TIGER), as a reference theme. In a
study validating the positional accuracy of TIGER for the
use in epidemiologic study [28], we found positional
accuracy to be extremely high.

The overall matching rate for the 15,487 Erie and Niagara
County residential locations was 82% (12,698); 91% of
the matches were matched with complete information
(good match), while about 9% of were estimated with
partial information (interactive match) as detailed below.
Geocoding success rates were lower for earlier residences,
mainly due to more missing and partial information of
earlier residences and changes in streets names and zip
codes. However, it is important to note that there were few
changes in street structure for this region during the time
period of interest. There was, of course, addition of new
streets, but existing streets were unchanged for the most
part, and thus we found that the process of geocoding
using current information was not inappropriate. We
utilized various resources, including historic city directo-
ries with address information for residents, historical
maps, and commercial address databases, to find missing
residence information, and we developed several strate-
gies to improve matching rates [14]. In addition, for resi-
dences where we had a known street name but no known
street number and if the total length of the street was one
kilometre or less, we estimated the residence location as
the midpoint of the street.

Kernel density estimation methods
Kernel density estimation methods have been used for
disease mapping and for the detection of geographical
location of clusters in epidemiologic settings [10,12,29].
A general form of the kernel k is defined as,

, and by averaging over these individual

kernel functions, we obtain the kernel density estimator,

 ;

k x
h

k
x

hh( )  (= 1
)

f̂ xh( )
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where x is the location for density estimation, xi is the
observed point location, n is the number of points, and h
is a smoothing parameter that regulates the degree of
smoothness. Kernel functions are symmetric around zero
and integrate to one. Both kernel and kernel density esti-
mator are density functions; thus ∫kx (x)dx = 1 and ∫fh(x)dx
= 1. For the two-dimensional kernel density estimator:

While the estimation of intensity for one point pattern
may show patterns of high and low risk areas, this is of
limited utility in epidemiologic applications because it
may largely reflect the pattern of population distribution
[30]. The ratio of case to control density can be more effec-
tively used in epidemiologic settings [9,31]. To estimate
the ratio of the two density estimates, the ratio of case to

control density,  is used, where  and  are

estimates of the intensity for cases and controls,
respectively. Smoothed risk surfaces using the ratio or log
ratio of case to control density can be less effective with
small sample sizes; it is possible to have spurious, high
risk areas in the application of the ratio of densities when
the value of the control density is too small.

The relative difference between two densities provides an
alternative way to assess the spatial variability of risk sur-
faces. Using the square root variance stabilizing transfor-
mation and the standardized difference, this measure
allows us to identify areas with differences between case
and control density exceeding two standard deviations
[32]. The standardized difference between case and con-
trol densities is obtained by taking the square root of the
case density minus the square root of the control density,
and dividing by the standard deviation of the difference
between the densities.

where 

Analytical procedures
The first step in creating smoothed risk surfaces using ker-
nel methods was to create reference grids and overlay the

study area with them. We obtained the smoothed inten-
sity for both cases and controls by calculating the distance
between each point on the reference grid and the loca-
tions of breast cancer cases and controls. We used the
quartic kernel to estimate the intensity of points at each
grid point, although the choice of kernel type is not crucial
as long as the kernel is symmetrical [33]. We applied
equal, fixed bandwidths for both cases and controls using
equation (1) because the objective is to describe overall
patterns of the underlying spatial distribution [9]. The risk
surface was obtained by forming the difference in densi-
ties based on equation (2).

The above analyses were repeated with varying band-
widths because the choice of appropriate bandwidth is
one of the primary concerns of the kernel method.
Although a subjective choice made from a range of values
is commonly used [33], selections of bandwidth were
made here on the basis of several factors. To avoid subjec-
tivity, we first began with the commonly used optimal
bandwidth designed to minimize the estimated mean
square error [34]. Other established methods, such as
cross validation, were tried and these resulted in small
bandwidths because of the large sample size [34,35]. In
addition, to take into account the spatial distribution of
point patterns and to avoid problems associated with
fixed bandwidths, we initially selected bandwidths based
on the average distance among points. Since the size of
the study area is approximately 30 miles in width and 60
miles in length, we selected a one-mile radius as an initial
bandwidth of the kernel, with a range of 0.5 to 10 miles.
In summary, we searched over a range of bandwidths and
ultimately chose a two-mile bandwidth as a balance
between over-smoothing and under-smoothing. Increas-
ing bandwidth implies increasing the amount of smooth-
ing in the estimate. A larger bandwidth results in very
smooth density surfaces, while too small a bandwidth
produces noisy density estimates. These issues are impor-
tant in applications of our case-control data; the geo-
graphic distribution of cases and controls is dependent on
the population distribution, which is greatly concentrated
in urban areas and is sparser in rural areas. Thus, the use
of a small bandwidth less than two miles resulted in an
unrecognizable pattern of density.

Risk surfaces based on the ratio and difference in density
surfaces between cases and controls were implemented in
a GIS and S-Plus environment [36]. In addition to finding
the risk surface associated with the standardized differ-
ence between densities, we tested the significance of the
difference surfaces between cases and controls by Monte
Carlo simulation. Under the null hypothesis of constant
risk in the study area, we obtained critical values. We first
randomly assigned case and control status to each of the
case and control locations, based on the proportion of
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cases and controls among the set of cases and controls.
Then we obtained the 95th percentile for the maximum
difference between case and control densities from 999
simulations.
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