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Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase and an adaptor

protein that primarily regulates adhesion signaling and cell migration. FAK

promotes cell survival in response to stress. Increasing evidence has shown

that at the pathological level, FAK is highly expressed in multiple tumors in

several systems (including lung, liver, gastric, and colorectal cancers) and

correlates with tumor aggressiveness and patient prognosis. At the

molecular level, FAK promotes tumor progression mainly by altering survival

signals, invasive capacity, epithelial-mesenchymal transition, the tumor

microenvironment, the Warburg effect, and stemness of tumor cells. Many

effective drugs have been developed based on the comprehensive role of FAK in

tumor cells. In addition, its potential as a tumormarker cannot be ignored. Here,

we discuss the pathological and pre-clinical evidence of the role of FAK in

cancer development; we hope that these findings will assist in FAK-based

clinical studies.
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1 Introduction

Focal adhesion kinase (FAK) is a multifunctional tyrosine kinase protein encoded by

PTK2 (or FAK) that is overexpressed in tumor cells associated with adverse clinical

outcomes (Zhou et al., 2018). As a non-receptor cytoplasmic tyrosine kinase and

scaffolding protein located in the adhesive plaque, FAK mediates and integrates

signals initiated by growth factor, integrin, vascular endothelial growth factor receptor

(VEGFR), and G protein-coupled receptor. This activates downstream signals (such as

PI3K, Akt, and MAPK) and regulates intracellular functions (Devaud et al., 2019; Fan

et al., 2019). Moreover, growing evidence has revealed that FAK is involved in the

regulation of multiple tumorigenic processes, including growth factor signaling, cell cycle

progression, cell survival, migration, metastasis, angiogenesis, and the establishment of an

immunosuppressive tumor microenvironment (TME) through kinase-dependent and

independent scaffolding functions in the cytosol and nucleus (Haskell et al., 2003;

Kobayashi et al., 2009; Osipov et al., 2019).
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2 Characteristics of the focal
adhesion kinase molecule

The human gene encoding FAK (also known as PTK2) is

located on chromosome 8q24.3, a region shown to have frequent

aberrations in human oncology (Pylayeva et al., 2009; Schaller,

2010). The coding sequence of FAK, a highly conserved 125 kDa

non-receptor tyrosine kinase, contains 34 exons (Corsi et al.,

2006). FAK consists of an amino-terminal region containing a

4.1-Ezrin-Radixin-moesin (FERM) structural domain, a central

kinase structural domain, and a carboxy-terminal focal adhesion

targeting (FAT) structural domain (Alanko and Ivaska, 2016).

Three proline-rich regions (PRRs) are anchored to the linkage

region between these structural domains. Phosphorylation

occurs at several important tyrosine residues, including the

autophosphorylation site Tyr397, Tyr576/577 in the activation

loop of the kinase structural domain, and Tyr861, Tyr925, and

Tyr1007 in the C-terminal structural domain (Wu et al., 2022). It

is well known that both the N- and C-terminal structural

domains mediate the interaction of FAK with other proteins

essential for activating its kinase structural domain and

regulating different cellular functions. FAK is maintained in

an inactive state through the binding of the FERM structural

domain to the kinase structural domain, which prevents access to

the critical autophosphorylation site tyrosine 397 (Tyr397)

(Frame et al., 2010). After binding to the extracellular matrix

or growth factors, integrins stimulate G protein-linked receptors,

leading to a signaling substitution of the FERM structural

domain. This results in Tyr397 autophosphorylation,

conformational changes in FAK and/or its binding partners,

and binding and/or regulation of downstream effector molecules

(such as Src, MAPK, PI3K, paxlin, and Rac) (Frame et al., 2010).

The C-terminal structural domain provides binding sites for

proteins, such as p130Cas and VEGFR3 (Frame et al., 2010). It

includes the FAT sequence, which is responsible for FAK

localization to focal adhesions and facilitates its co-localization

with integrins by interacting with integrin-related proteins. The

lipid domain is also associated with several Rho GTPases, such as

p190RhoGF (Aboubakar Nana et al., 2019a) (Figure 1).

3 Focal adhesion kinase regulates
tumor development and progression

FAK expression and activation are regulated by several

mechanisms: at the gene level by gene amplification

(Agochiya et al., 1999; Okamoto et al., 2003); at the RNA

level by selective splicing (Corsi et al., 2006; Devaud et al.,

2019) or FAK mRNA upregulation (Tremblay et al., 1996;

Fujii et al., 2004); at the translational and post-translational

levels via phosphorylation (Imaizumi et al., 1997),

dephosphorylation (Hauck et al., 2001); and non-coding RNA

regulation (Egawa et al., 2016; Cheng et al., 2017; Qu et al., 2017;

Wang et al., 2019; Yan et al., 2019; Pan and Xie, 2020; Tang et al.,

2020; Zhang et al., 2021a). FAK plays an integral role in the

development of various tumors through these mechanisms.

Multiple methods, including western blotting (WB),

quantitative real-time polymerase chain reaction (qPCR), and

FIGURE 1
Basic structure and function of FAK. FAK consists of a central activation region and a protein band [4.1-Ezrin-Radioxin-moesin (FERM)]
homologous structural domain located at the amino terminus and a carboxy-terminal focal adhesion targeting (FAT) structural domain. These two
terminal structural domains are separated from the activation domain by a linker region containing proline-rich regions (PRRs). Important tyrosine
phosphorylation (P) sites include Y397, K454, and H58, which play key roles in FAK activation. FAK binding partners are shown at their sites of
interaction in FAK. The binding of different partners affects functions, such as cell motility (red), cell survival (orange), or both (red/orange). Actors
involved in FAK activation are shown in gray, and important contributions to the tumor environment are shown in green (Sulzmaier et al., 2014).
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immunohistochemistry (IHC), have shown increased FAK

expression or enhanced activity in many human cancers,

including lung (Zhou et al., 2018; Aboubakar Nana et al.,

2019b), head and neck (Zhang and Sun, 2020), oral cavity

(Kato et al., 2020), thyroid (Ignjatović et al., 2021), breast

(Roy-Luzarraga et al., 2020), ovarian (Li et al., 2015), prostate

(Goto et al., 2020), colon (Murata et al., 2008), liver (Francalanci

et al., 2020), stomach (Luo et al., 2020), pancreatic (Furuyama

et al., 2006), kidney (Béraud et al., 2015), skin (Najjar et al., 2020),

and bone (Thanapprapasr et al., 2017; Gu and Zhou, 2018)

cancer. In addition, an increased expression or activity of FAK

has been reported in various cancer cell lines (Aboubakar Nana

et al., 2019c). Here, we selected several representative cancers to

investigate the tumor effects of FAK (Figure 2; Table 1).

3.1 The molecular mechanisms of focal
adhesion kinase aberrant expression and
activation in tumors

3.1.1 Control of focal adhesion kinase expression
Overexpression of FAK transcripts is crucial for FAK-

mediated tumor cell function. The PTK2 promoter is also

activated or made more active by the transcription factors

NF-κB (Corsi et al., 2006), BACH1 (Xie et al., 2022), ETV1

(Zhang et al., 2022), ETS1 (Tomar et al., 2018), NANOG (Ho

et al., 2012), AGO2 (Cheng et al., 2013), and ETV4 (Li et al.,

2013), which similarly increases the expression of FAK mRNA.

In contrast, P53 (Cance and Golubovskaya, 2008) and ATF3

(Tian et al., 2021) limit some of the tumor’s functions by lowering

the activity of the PTK2 promoter and the number of transcripts.

By directly increasing PTK2 and IGF1R in hepatocellular

carcinoma cells, BACH1 speeds up the development and

spread of Hepatocellular carcinoma (HCC) (Xie et al., 2022).

Additionally, HCC patients with ETV1/PTK2 or ETV1/c-MET

co-positive hepatocellular carcinoma in two different cohorts had

a worse prognosis. ETV1 can enhance HCC metastasis in HCC

by upregulating PTK2 and MET (Zhang et al., 2022). ETS1, a

crucial transcription factor produced by the microenvironment

in ovarian cancer cells, predicts a poor prognosis and targets

PTK2 while promoting graft colonization by increasing FAK

transcript levels (Tomar et al., 2018). In colon cancer cells,

NANOG increases FAK expression, and FAK’s

phosphorylation is a component of the signaling loop that

increases NANOG activity (Ho et al., 2012). AGO2 is a

component of the cellular RNA interference apparatus that is

increased in hepatocellular carcinoma and stimulates FAK

transcription (Cheng et al., 2013). In mice, inhibiting

AGO2 lowers FAK levels while preventing tumor

development and metastasis. ETV4 induced FAK expression

in vitro, again considering its role as a transcription factor

affecting PTK2 promoter activity (Li et al., 2013). ATF3 is a

downstream transcription factor of ROS, and increased levels of

ATF3 can reduce the transcriptional level of FAK, reducing

prostate cancer cells’ invasiveness (Tian et al., 2021). In non-

coding RNA studies, CircC16orf62 was found to act as a

molecular sponge for miR-138-5p and a competitive

endogenous RNA for PTK2, which promotes the activation of

the downstream AKT/mTOR pathway (Zhang et al., 2021b).

Hypomethylation of the FAK promoter region was also

associated with the high expression of FAK in HCC (Fan

et al., 2019).

Selective splicing of mRNA (Alternative Splicing, AS)

enhances the fine-tuning of protein function. By generating

FIGURE 2
Percentage of tumor samples with increased FAK mRNA. The Cancer Genome Atlas was queried using the cBioPortal (cBioPortal for Cancer
Genomics: PTK2 in Adrenocortical Carcinoma (TCGA, PanCancer Atlas) and 31 other studies). The search criteria included mRNA expression data
(Z-scores for all genes) and tumor datasets with mRNA data.
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TABLE 1 Summary of the clinical characteristics of FAK in malignant tumors.

Cancer types Expression Cases Clinical
characteristics

Cell phenotype Interacting
molecule

PMID

NSCLC Upregulation 157 Not associated with survival outcome in this North
American cohort

— — 25122425

NSCLC/SCLC Upregulation 200 Higher in SCLC — — 31658694

NSCLC Upregulation 153 Associated with poorer prognosis — — 23143646

Lung cancer Upregulation — Associated with poorer prognosis — — 8795582

Lung cancer Upregulation 41 Lymph node metastasis, associated with poorer
prognosis

— — 9194028

Hepatocellular
carcinoma

Upregulation 60 Associated with poorer prognosis — — 15246215

Hepatocellular
carcinoma

Upregulation 17 Pediatric HCCs, more significant up-regulation in a
cirrhotic background

— β-Catenin 32806748

Hepatocellular
carcinoma

Upregulation 97 Disease-free survival Tumorigenicity and
stemness

Wnt/β-catenin 30849480

Gastric cancer Upregulation 32 Disease-free survival, depth of invasion, lymph node
metastasis, pathological stage

— ASAP1 32566028

Gastric cancer Upregulation 444 Age, tumor size, distant metastasis, lymph node
metastasis, venous invasion, perineural invasion

— — 20869748

Gastric cancer Upregulation 66 Size, disease stage, nodal status, associated with poorer
prognosis

— — 18987997

Colorectal cancer and
breast cancer

Upregulation 43 - — — 10873094

Colorectal cancer Upregulation 330 Associated with poorer prognosis — — 32739842

Colorectal cancer Upregulation 298 Stage I, incidence of recurrence, associated with poorer
prognosis

— — 35094080

Colorectal cancer Upregulation 45 Lymph node metastasis Invasion CCK2R 16998832

Colorectal cancer Upregulation 80 — — — 12943621

Colorectal cancer Upregulation 42 Liver metastases — — 12538472

Pancreatic invasive ductal
carcinoma

Upregulation 50 Size — — 16425085

Urinary bladder
carcinoma

Upregulation 315 Pathologic stage, disease progression, associated with
poorer prognosis

— — 31938172

Cervical cancer Upregulation 162 Lymph node metastasis, associated with poorer
prognosis

— — 16638855

Endometrial carcinoma Upregulation 202 Histologic grade, angiolymphatic invasion, lymph
node metastasis, invasion, associated with poorer
prognosis

— — 22871469

Endometrial carcinoma Upregulation 115 — — p53 15536334

Endometrial carcinoma Upregulation 43 Age, histologic grade — — 21058027

Cervical Cancer Upregulation 162 — — — 16638855

Cervical Cancer Upregulation 30 Malignant transformation — — 12673558

Ovarian cancer Upregulation 60 Pathological stage, histologic grade, lymph node
metastasis

— ADM 26622614

Ovarian cancer Upregulation 79 Associated with poorer prognosis, histologic grade,
lymph node metastasis

Invasion — 29571323

Oral squamous cell
carcinoma

Upregulation 70 Associated with poorer prognosis — — 31522363

Oral squamous cell
carcinoma

Upregulation 65 — — p53 22790665

Head and neck squamous
cell carcinoma

54 Invasion — — 29292531

Neuroblastoma Upregulation 70 Advanced-stage — N-MYC 18519756

Astrocytomas Upregulation 331 WHO grade — — 15221336

Osteosarcoma Upregulation 80 Advanced-stage, recurrence Akt, PDK1, BRAF 29849782

(Continued on following page)

Frontiers in Cell and Developmental Biology frontiersin.org04

Zhang et al. 10.3389/fcell.2022.1040311

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.1040311


from an initial unique pre-messenger RNA, different protein

isoforms varying in expression, subcellular localization,

interactions and activities, AS represents a critical player in

protein function regulation in development, physiology and

disease (Kelemen et al., 2013). It was found that FAK mRNA

showed three different alternative splice variants in colorectal

cancer, namely FAK0, FAK28, and FAK6, and was associated with

the invasive ability of colorectal cancer (Devaud et al., 2019). In

papillary thyroid carcinoma, the number of FAK33 variants was

elevated and positively correlated with total FAK transcripts and

pY397-FAK protein levels, as well as with the advanced features

of papillary thyroid carcinoma (Ignjatović et al., 2022). After

comparing breast cancer tissues with normal tissues, FAK26 was a

spliceosome expressed only in breast cancer tissues and allowed

FAK proteins to acquire resistance to caspase-mediated cleavage

(Yao et al., 2014). For this AS, it has been demonstrated that

circRPAP2 may attenuate the selective splicing of PTK2 by

competing with PTK2 pre-mRNA for binding to the

RRM1 structural domain of SRSF1 (Yu and Fang, 2022).

3.1.2 Regulation of focal adhesion kinase activity
FAK activation is mainly controlled by FAK dimerization,

intramolecular inhibition of the FERM structural domain, FAK

phosphorylation and other mechanisms. The most typical

mechanism that promotes FAK activation involves the

aggregation of integrin receptors upon cell binding to

extracellular matrix (ECM) proteins, a process that involves

FAK dimerization. The dimerization is formed by binding of

the n-terminal FERM structural domain of FAK and is stabilized

by the interaction of the FERM and c-terminal FAT structural

domains. FAT binds to the basic motif on FERM that regulates

coactivation and nuclear localization (Brami-Cherrier et al.,

2014). This leads to autophosphorylation of FAK at the

Y397 site, binding of Src family kinases to the

phosphorylation site, and mediates phosphorylation of the

FAK kinase structural domain activation loop to form an

activated FAK - Src complex (Lietha et al., 2007). In addition

to Src, RET can also phosphorylate residues of Tyr576 and

Tyr577 to activate FAK (Plaza-Menacho et al., 2011).

Experiments using fluorescent biosensors have shown that

when ECM binds or interacts with phosphatidylinositol lipids,

the FERM structural domain undergoes conformational changes

that unwind the self-inhibitory interactions (Goñi et al., 2014).

Enhancing the stiffness or tension associated with cell- ECM

interactions by strengthening integrin signaling has also been

shown to promote FAK activation (Bauer et al., 2019), which is

essential not only for mechanotransduction but also critical for

tumor progression. In addition to binding partners to accelerate

conformational changes in the FERM structural domain, growth

factor receptors, such as MET, epidermal growth factor receptor

(EGFR) and platelet-derived growth factor receptor (PDGFR),

can also phosphorylate Tyr194 to relieve self-inhibition and

induce FAK activation (Chen et al., 2011). In addition,

Tyr397 phosphorylation is also associated with FAK activity.

SHP2 is responsible for the dephosphorylation of pTyr397 and

inhibits FAK activity (von Wichert et al., 2003).

Phosphorylation-dependent isomerization of protein tyrosine

phosphatase (PTP)-PEST promotes the interaction of PTP-

TABLE 1 (Continued) Summary of the clinical characteristics of FAK in malignant tumors.

Cancer types Expression Cases Clinical
characteristics

Cell phenotype Interacting
molecule

PMID

Invasion,
proliferation

Breast cancer Upregulation 196 Age, lymphovascular invasion, the triple-negative
phenotype, associated with poorer prognosis

— — 25326692

Breast cancer Upregulation 162 HER2 — HER2, Src, Akt 15743500

Breast cancer Upregulation 102 FAK-Del26 Anti-apoptotic — 24885534

Thyroid cancer Upregulation 108 Size, lymph node metastasis, presence of capsular — — 20405349

Thyroid cancer Upregulation 104 Lymph node metastasis — EGFR 29665129

Thyroid cancer Upregulation 27 Invasion — — 8770310

Thyroid cancer Upregulation 34 Pathological typing — — 15483349

Papillary thyroid
carcinoma

Upregulation 80 Disease stage — — 34817652

Melanoma Upregulation 147 P-FAKSer910 associated with better prognosis — — 32044881

Acute myeloid leukemia Upregulation 60 CD34+ — — 15126359

Acute myeloid leukemia Upregulation 70 Associated with poorer prognosis — — 33507464

Acute myeloid leukemia Upregulation 36 Associated with poorer prognosis — — 19042019

Acute myeloid leukemia Upregulation 324 Associated with poorer prognosis — — 30428571

Acute myeloid leukemia Upregulation 50 Associated with poorer prognosis — — 29070102
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PEST with FAK and the dephosphorylation of the Tyr397 site on

FAK, leading to FAK inactivation (Zheng et al., 2011). SHP2 and

PTP-PEST synergistically control FAK activity with Src and

promote the kinetics of focal adhesion complexes, thereby

facilitating cell motility (Wu et al., 2015; Chuang et al., 2021).

3.2 Effect of focal adhesion kinase on
tumor progression

3.2.1 Lung cancer
Lung cancer is a malignant tumor with high morbidity and

mortality rates. As early as 1996, phosphorylated FAKwas shown

to be a significant component of 100–130 kDa phosphorylated

proteins in lung surgery specimens and was associated with poor

patient prognosis (Nishimura et al., 1996). Increased FAK

phosphorylation is strongly associated with lymph node

metastasis and disease-free survival in tumors (Imaizumi

et al., 1997). Smoking is an important environmental factor in

lung cancer, and a recent study confirmed that smoking activates

the c-Src/FAK pathway (Stading et al., 2021), subsequently

promoting lung carcinogenesis and progression (Zhou et al.,

2019), drug resistance (Kang et al., 2013), and maintenance of

KRAS-driven lung adenocarcinoma (Zhou et al., 2018). This

provides ample evidence that the role of FAK in lung cancer

cannot be ignored.

Lung cancer is pathologically divided into small cell lung

cancer (SCLC) and non-small cell lung cancer (NSCLC). SCLC

accounts for approximately 10% and has a poorer prognosis than

NSCLC. Recent studies on the differences in FAK and p-FAK

expression in SCLC and NSCLC have shown that the staining

scores of FAK and p-FAKwere significantly higher in lung cancer

and SCLC tissues than in normal lung and NSCLC tissues

(Aboubakar Nana et al., 2019b). There are many subtypes of

NSCLC, such as lung squamous carcinoma, lung

adenocarcinoma, and large cell lung cancer. FAK

overexpression in NSCLC was associated with the stage as

well as the adenocarcinoma subtype and positively correlated

with lymph node metastasis (Ji et al., 2013). Whether there is a

link between FAK expression and NSCLC prognosis is unclear

and may be ethnically relevant (Ji et al., 2013; Dy et al., 2014;

Aboubakar Nana et al., 2019b).

Although FAK appears to be more relevant in SCLC, most

in vitro experiments have been conducted on NSCLC. Consistent

with these pathological features, Fu et al. (2015) found that in

NSCLC cells, ENO1 could enhance the proliferation, migration,

invasion, epithelial-mesenchymal transition (EMT), and

glycolytic capacity of tumor cells by activating the FAK/PI3K/

AKT pathway. Moreover, depletion of FAK using siRNA

inhibited the phosphorylation of molecules such as Src, ERK1/

2, PI3K, and Akt (Fu et al., 2015). Additionally, Wang et al.

(2020a) found that secretory PKM2 directly binds to integrin

β1 and activates the FAK/SRC/ERK axis to promote lung cancer

metastasis. Fu et al. (2020) also found that secretory OPN leads to

acquired epidermal growth factor receptor tyrosine kinase

inhibitor (EGFR-TKI) resistance by activating the integrin

αVβ3/FAK pathway, which provides novel insights for the

application of FAK inhibitors in lung cancer treatment.

3.2.2 Liver cancer

HCC is a prevalent disease with highmorbidity andmortality

rates. A study of FAK overexpression in 64 HCC tissues

undergoing hepatectomy without pre-operative treatment

showed that FAK expression was correlated with the

clinicopathological features of HCC and was strongly

upregulated in HCC compared with that in primary lesions

and portal vein invasion (Itoh et al., 2004). Chen et al. (2010)

reached the same conclusion and found that overexpression of

FAK and its phosphorylated form in HCC tissues was associated

with tumor stage, vascular invasion, and intrahepatic metastasis.

The same phenomenon has been observed in human

hepatoblastoma tissues (Gillory et al., 2013). In addition,

several studies have demonstrated that FAK mRNA and

protein expression levels are independent prognostic factors

that affect disease-free survival and overall survival of patients

with HCC (Fujii et al., 2004; Fan et al., 2019).

SiRNA-mediated inhibition of FAK expression in HCC cell

lines revealed that the growth and apoptosis of HCC cell lines

were not affected, but their adhesion and invasion abilities were

reduced to different degrees (Chen et al., 2010). The FAK-ERK1/

2 signaling pathway in HCC may play a vital role in reducing the

stiffness of HCC stem cells and enhancing the invasive ability of

HCC. These effects can be inhibited by FAK inhibitors (Sun et al.,

2017; Sun et al., 2018a). Collagen is an essential component of the

TME. The collagen type IV alpha1 chain (COL4A1) is known to

be highly expressed in HCC and promotes the growth and

metastasis of HCC by activating the FAK/Src pathway (Wang

et al., 2020b). FAK is also a driver of cholangiocarcinogenesis,

and in vivo experiments have shown that ablation of FAK

significantly delayed the initiation of Akt/YAP-driven

intrahepatic cholangiocarcinoma (iCCA) in mice.

Additionally, growth was reduced considerably when FAK

inhibitors and palbociclib (a CDK4/6 inhibitor) were

administered simultaneously to mice (Song et al., 2021).

3.2.3 Gastric cancer

Gastric cancer is the third leading cause of cancer-related

deaths worldwide (Ferlay et al., 2015). FAK is overexpressed in

half of gastric cancer cases (Tani et al., 1996; Su et al., 2002;

Luo et al., 2020). The same applies to the level of FAK

expression in pathological specimens of patients with

gastric cancer, which is positively correlated with the size,
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pathological stage (Luo et al., 2020), depth of infiltration,

lymph node metastasis, and venous invasion of the patient’s

tumor (Park et al., 2010).

Integrins also play a role in the cancer-promoting effects

of FAK in gastric cancer. Annexin A6, transported in the

extracellular vesicles of cancer-associated fibroblasts (CAFs),

promotes drug resistance in a mouse metastatic tumor model

by mediating the activation of FAK/YAP pathway in cancer

cells via integrin β1 (Uchihara et al., 2020). In addition to drug

resistance, integrin β1/FAK/YAP can mediate gastric cancer

FIGURE 3
Signaling molecules associated with FAK in tumor growth and invasion. Tumor development and metastasis are complex processes. In growth
signaling, FAK is closely linked to anoikis, cell cycle, and apoptotic processes. In EMT and invasion, FAK can also function through associated Src,
PI3K/Akt, and other signaling pathways.
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metastasis (Xiang et al., 2018). Extracellular matrix protein 1

(ECM1) mediates the activation of the FAK/SOX/HIF-1α axis

by directly interacting with integrin β4 to increase metastasis

and aerobic glycolysis in gastric cancer cells (Gan et al., 2018).

Similarly, integrin α5β1 promotes the migration of gastric

cancer cells through the FAK/ERK1 pathway (Yao et al.,

2020). FAK/Akt/mTOR also seems to be the focus of

research in gastric cancer, and many molecules are

involved in this pathway, promoting gastric cancer growth

and migration (Wu et al., 2019; Wu et al., 2021a; Qiao et al.,

2021).

3.2.4 Endometrial carcinomas

Estrogen-dependent endometrial carcinomas express

only low levels of FAK, whereas non-dependent

endometrial carcinomas show FAK overexpression; p-FAK

has the same expression pattern (Zhou et al., 2013a). A

synergistic study on the overexpression of EZH2, FAK,

and p-FAK found that all of them were positively

associated with a high histological grade, type II tumors,

vascular lymphatic invasion, lymph node metastasis,

myometrial invasion, and cervical involvement.

Contrariwise, only p-FAK overexpression was associated

with omental metastasis (Zhou et al., 2013a). A study of

FAK and PTEN at the pathological level also showed a

positive correlation between their expression (Zhou et al.,

2013b). Similarly, the expression of various molecules (such

as AFP and EZH2) was found to show a synergistic increase

with FAK expression in different tumor tissues (Fujii et al.,

2004). This indicates, to some extent, the role of FAK in

tumor development and its potential as a tumor marker.

Studies on a variety of tumor tissues have revealed that the

expression of many molecules such as cholecystokinin-2

receptor (Yu et al., 2006), adrenomedullin (Li et al., 2015),

HER-2/neu (Lark et al., 2005), p-Src (Schmitz et al., 2005),

p-Akt (Schmitz et al., 2005), PYK2 (Gutenberg et al., 2004),

p120RasGAP (Hecker et al., 2004), adenosine diphosphate

ribosylation factor guanylate kinase 1 (Luo et al., 2020), AFP

(Fujii et al., 2004), EZH2 (Fujii et al., 2004), H3K27me3

(Francalanci et al., 2020), EGFR (Šelemetjev et al., 2018),

PTEN (Zhou et al., 2013b), and pyk2 (Gutenberg et al., 2004)

shows a synergistic increase with FAK expression. These

molecules affect tumor development to varying degrees by

interacting upstream and downstream of FAK.

3.2.5 Breast cancer

As one of themost commonmalignant diseases among women,

breast cancer also displays a high degree of diversity in terms of

pathological characteristics, disease progression, and response to

treatment. Numerous studies have shown that FAK is

downregulated in benign breast epithelium and moderately or

strongly expressed in most malignant breast tissue (Weiner et al.,

1993; Cance et al., 2000; Watermann et al., 2005; Almstedt et al.,

2017). In particular, the high expression of FAK in early metastatic

tissues suggests that it plays an important role in breast cancer

metastasis (Lightfoot et al., 2004). FAK expression in breast cancer is

associated with sex hormone levels. This may be related to the

estrogen-related G protein-coupled receptors (Rigiracciolo et al.,

2019a). High FAK expression is associated with a high histological

grade, high T-stage, estrogen receptor-negative expression,

progesterone receptor-negative expression, and triple-negative

phenotype (Schmitz et al., 2005; Yom et al., 2011; Rigiracciolo

et al., 2019a). Additionally, high FAK expression in primary foci

correlates with younger patient age and lymphovascular invasion

(Golubovskaya et al., 2014). Furthermore, high FAK expression is

significantly and positively correlated with shorter overall survival

and progression-free survival in patients with metastatic tumors

(Golubovskaya et al., 2014). However, in a study of 162 lymph node-

negative breast cancer tissues, FAK expression showed no

prognostic significance (Schmitz et al., 2005). FAK has been

suggested to play a significant role in breast cancer metastasis

and affects the survival of patients with metastatic tumors.

The heterogeneity of triple-negative breast cancer with FAK-

related mechanisms is possibly mediated by GPER, CTGF, and

Gpx1 (Rigiracciolo et al., 2019b; Lee et al., 2020; Kim et al., 2021).

Extracellular CTGF directly binds integrin αvβ3 and activates the

FAK/Src/NF-κB p65 signaling axis, leading to the upregulation of

Glut3 transcription, through which the glycolytic and migratory

capacities of breast cancer cells are enhanced (Kim et al., 2021).

Gpx1, a redox protective factor for FAK kinase, prevents kinase

inactivation via H2O2, whereas Gpx1 deletion downregulates FAK/

c-Src activation, thus preventing the spread and metastasis of tumor

cells (Lee et al., 2020). Likewise, the role of FAK in the TME of breast

cancer is an important research direction (Wu et al., 2020; Wang

et al., 2021). Analysis of CAFs from knockout mice revealed that

miR-16 and miR-148a help mediate FAK activity to enhance tumor

cell activity and metastasis (Wu et al., 2020). In co-cultures of breast

cancer cells and monocytes, breast cancer cells secrete CSF1 and

induce monocytes to express and release CXCL7, which in turn acts

on cancer cells to promote FAK activation, MMP13 expression,

migration, and invasion. In a xenograft mouse model,

administration of the CXCL7 antibody significantly reduced the

abundance of M2 macrophages in the TME and reduced tumor

growth and distant metastasis (Wang et al., 2021).

4 Mechanism by which focal
adhesion kinase regulates tumor
progression

Tumor development and metastasis are complex processes

that involve tumor cell shedding, invasion, migration,
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vascularity, and proliferation in distal parts of the body. Signaling

pathways promote tumor progression and growth by regulating

cell adhesion, invasion, and migration. Numerous studies on the

signaling pathways between FAK and several types of cancers

have revealed the biological mechanisms by which FAK

promotes cancer development. This also corroborates the link

between FAK overexpression and its molecular role at the

pathological level (Figure 3).

4.1 Focal adhesion kinase and tumor
survival signaling

The disorderly proliferation of malignant tumors is the major

pathway of tumor progression. It is influenced by a variety of

factors both inside and outside the cell. In addition, the ability of

tumors to resist death, including apoptosis and anoikis, is a key

aspect of tumor survival and progression.

4.1.1 Cell cycle
The role of FAK in cell cycle progression has been reported

previously. The gene encoding cyclin D1, a key regulator of G1/S

phase progression, is the major target of FAK action in cell cycle

control. Zhao et al. (1998) and Zhao et al. (2001) found that FAK

could regulate cyclin D1 gene expression mediated by the ERK1/

2 pathway at the EtsB-binding site (Njei et al., 2015). Expression

of the autophosphorylation site-mutated FAK molecule (FAK-

397F) in glioblastoma cells leads to exit from the G1 phase by

decreasing the expression of cyclinD1 and E and enhancing the

expression of p27 (Kip1) and p21 (Waf1) (Ding et al., 2005). In

particular, in a mouse model, Marta et al. found that intranuclear

FAK regulation, which is dependent on IGFBP3 transcription,

regulates squamous cell carcinoma cell cycle progression and

tumor growth in vivo and that FAK interacts with many

RUNX1 regulatory proteins (Canel et al., 2017). Moreover,

Zhang et al. (2019) found that MET/FAK signaling enables

CDK4/6 non-dependent CDK2 activation, which leads to cell

cycle delivery. Furthermore, they found that the inhibition of

CDK4/6 andMET/FAK can synergistically alter the fate of tumor

cells.

4.1.2 Apoptosis
FAK is associated with apoptosis in cancer cells. First, FAK

inhibition can lead to the loss of adhesion and apoptosis of tumor

cells, which has been confirmed at an early stage (Xu et al., 1996;

Xu et al., 2000). Sonoda et al. (2000) demonstrated that FAK

induces IAPs by activating the PI3K/Akt pathway along with NF-

κB. This ultimately inhibits apoptosis by inhibiting the caspase-3

cascade. RIP, a major component of the death receptor complex,

mediates apoptosis by interacting with Fas and tumor necrosis

factor receptor 1 by binding to junctional proteins. The pro-

apoptotic signal provided by RIP is inhibited by its binding to

FAK (Kurenova et al., 2004). In addition, the FERM structural

domain of nuclear FAK interacts with the N-terminal structural

domain of wild-type p53 and MDM-2 to promote the

degradation of p53, thereby preventing apoptosis (Lim et al.,

2008; Golubovskaya and Cance, 2011).

4.1.3 Anti-anoikis
One reason for the crucial role of FAK in promoting tumor

proliferation is that FAK can promote cell survival in suspension,

also known as anoikis apoptosis resistance, first identified by

Frisch et al. (1996). In the death receptor-mediated mechanism

of anoikis, the dissociation of FAK and receptor-interacting

protein (RIP) leads to the binding of RIP to FAS. This forms

a death-inducing signaling complex (DISC) that activates

caspase-3. Indeed, activation of the FAK/Src complex is

focused on the upregulation of signaling cascades (including

PI3K-Akt, ERK1/2, and other mitogen-activated protein kinases)

which maintain cell survival by promoting the resistance of

isolated cells to “anoikis”. In addition, the combination of

FAK and RIP enhances anoikis resistance by inhibiting the

binding of RIP to Fas and the formation of the death

signaling complex, which allows cells to escape anoikis.

4.2 Focal adhesion kinase, epithelial-
mesenchymal transition and invasion

Tumor cell invasion into the surrounding microenvironment

is a critical step in cancer progression, allowing cancer cells to

metastasize to secondary locations. This requires a shift to a

motor phenotype by altering focal adhesion and cytoskeletal

dynamics as well as altering matrix metalloproteinase (MMP)

expression or activating to promote extracellular matrix (ECM)

invasion (Weiss et al., 2022).

FAK mediates cell invasion and metastasis by promoting

EMT (Canel et al., 2013; Frisch et al., 2013), in which E-cadherin

plays a pivotal role as FAK mediates changes in E-cadherin

expression (Avizienyte et al., 2002a; Canel et al., 2010; Serrels

et al., 2011; Gayrard et al., 2018). Furthermore, SRC-FAK-

dependent actomyosin remodeling relaxes E-cadherin without

causing β-linked protein dissociation (Gayrard et al., 2018). FAK

phosphorylation is required for Src-induced E-cadherin

downregulation in colon cancer cells (Avizienyte et al.,

2002b), and inhibition of FAK activity reduces Src-mediated

cell invasion and blocks metastasis of FAK drug-targeted

invasion and metastasis (Hauck et al., 2002). In addition, the

knockdown of KIF26A increases the binding of c-MYC to the

FAK promoter region and decreases the expression of

E-cadherin, consequently promoting EMT (Ma et al., 2021).

In parallel to E-cadherin-mediated EMT, TGF-β1-induced
Slug expression also modulates EMT and promotes cell

migration in human squamous cell carcinoma cells; this effect

can be inhibited by FAK inhibitors (Saito et al., 2013).

Accordingly, FAK plays a significant role in EMT, invasion,
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and metastasis. In contrast, the downstream molecular

mechanisms of FAK-regulated EMT with E-cadherin-

mediated cell-cell adhesion or integrin-ECM-mediated

adhesion and their interactions and roles in metastasis remain

to be investigated.

Invasion-associated cellular activities depend on

branching networks of signal transduction pathways,

including the activation of trimeric G proteins,

phosphoinositide 3-kinase (PI3K), Src, signal transducer

and activator of transcription, and the Rab, Rac, and Rho

family of small GTPases. The heterotrimeric G protein, Gαq,
activates FAK. This subsequently regulates YAP through

tyrosine phosphorylation of MOB1 and inhibits core Hippo

signaling (Feng et al., 2019). G-protein-coupled estrogen

receptor (GPER) signaling triggers phosphorylation of

Y397-FAK and an increase in adherent patches (FAs) in

TNBC cells, and FAK inhibition prevents the invasion of

TNBC cells upon GPER activation (Rigiracciolo et al.,

2019a). Numerous reports show that FAK enhances tumor

invasion through PI3K/AKT (Fu et al., 2015; Wu et al., 2019)

and Src (Dong et al., 2021) signaling. In studies of melanoma

invasion, STK11 was found to inhibit the invasion process of

cutaneous melanoma through signal transducer and activator

of transcription 3/5 and FAK repression (Dzung et al., 2022).

In addition, the Rab (Choe et al., 2018; Xu et al., 2021), Rac

(Acevedo-Díaz et al., 2019), and Rho (Tornin et al., 2018)

families of small GTPases with FAK have been reported to

affect tumor invasion in a number of ways. Some metastasis-

related enzymes also play a role through the FAK signaling

pathway, such as euchromatic histone methyltransferase 2

(G9a) (Sun et al., 2021), MMP-2 (Kwon et al., 2021), and

PKCθ (Chadelle et al., 2022). Thus, FAK plays a vital role in

the process of tumor invasion through its interaction with a

range of invasion-associated molecules.

Recent studies have shown a strong relationship between

calcium levels and FAK, which may also contribute to the

upregulation of FAK expression and affect tumor

aggressiveness. Calcium release-activated calcium

modulator 2 (Orai2) is primarily upregulated during lymph

node metastasis in gastric cancer. It enhances gastric cancer

cell metastasis by inducing FAK-mediated MAPK/ERK

activation and promotes the dissociation of focal adhesions

at the posterior margin of cells (Wu et al., 2021b). Studies on

Orai3 calcium channels have revealed that Orai3 alters cell

adhesion capacity in two ways: 1) by reducing calpain activity,

cell adhesion, and migration in a calcium-dependent manner

and 2) via interaction with FAK to regulate the actin

cytoskeleton (Chamlali et al., 2021), which is the main

driver of cell adhesion and mechanosensing in a Ca2+-

independent manner.

FIGURE 4
FAK and the tumormicroenvironment are intricately linked. The increase in chemokines secreted by tumor cells through FAK-related pathways
induces the accumulation of immunosuppressive cells and suppresses immune killer cells, allowing tumor cells to gradually escape from the
immune system (Huang et al., 2016a); meanwhile, FAK activates the VEGF-C-secreted signaling pathway within the tumor tissue, leading to
enhanced vascular regeneration and lymphatic vessel regeneration around the tumor. Endothelial cells (Pedrosa et al., 2019), fibroblasts
(Demircioglu et al., 2020), and adipocytes (Blücher et al., 2020) surrounding the tumor can also contribute to the shaping of the TME by activating
FAK-related pathways.
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4.3 Focal adhesion kinase and tumor
microenvironment

The TME is composed of cellular components (endothelial

cells, immune cells, stromal cells, and fibroblasts) and non-

cellular components (ECM, cytokines/chemokines, growth

factors, and hormones) surrounding the tumor. FAK is known

to play a vital role in promoting TME remodeling, which includes

several processes such as angiogenesis, immune cell recruitment,

and ECM (Figure 4).

4.3.1 Cytokines and immune cells
FAK expression drives the establishment of an

immunosuppressive TME by increasing the expression of

various chemokines. It has been found that nuclear FAK

increases the expression of homing signals (Huehn and

Hamann, 2005; Ondondo et al., 2013), such as CCL5, CCL7,

CXCL10, and TGFβ2, which are chemokines and cytokines

associated with the recruitment of regulatory T cells (Tregs)

(Serrels et al., 2015). This suggests that FAK activation in cancer

cells plays a critical role in regulating the tumor immune

landscape. FAK also enhances the expression of IL-33

(Griffith et al., 2021), and the FAK-IL-33 complex can

increase the transcription of chemokine genes by interacting

with CCL5 transcriptional regulators. It can also enhance the

suppressive activity of Treg cells by interacting with ST2L on the

surface of immune cells, thereby promoting tumor growth

(Schiering et al., 2014). Alternatively, it activates the cytotoxic

function of CD8+ T cells, resulting in improved antitumor

immunity (Yang et al., 2011). FAK depletion results in the

regression of CD80-expressing tumors by increasing the

number of CD28+ T cells within the TME (Canel et al., 2020).

LysM-Cre was used to knock out FAK in mononuclear

phagocytes in an MMTV-polyoma middle T murine model of

breast cancer, and knockout myeloid cells were found to show

faster tumor growth. Increased tumor size was associated with a

decrease in the number of natural killer cells, suggesting that FAK

expression in myeloid cells correlates with the recruitment or

survival of natural killer cells in the TME (Llewellyn et al., 2018).

4.3.2 Angiogenesis
FAK has been shown to play a key role in tumor angiogenesis

in multiple in vivomouse models (Tavora et al., 2010; Kostourou

et al., 2013). FAK in endothelial cells initiates angiogenesis, and

FAK deletion reduces VEGF- and bFGF-induced angiogenesis

(Tavora et al., 2010), which may be achieved through the FAK/

Src/PI3K(P55)/Akt axis (Pedrosa et al., 2019). FAK affects

angiogenesis and is mainly associated with Tyr397 and Tyr861

(Kostourou et al., 2013). Endothelial cell-specific expression of

the FAK Y397F mutant reduces tumor angiogenesis (Pedrosa

et al., 2019), where FAK affects VEGFR2 transcription through

its kinase activity (Sun et al., 2018b; Shiau et al., 2021). This has

also been demonstrated in recent studies, where phosphorylated

Try397-FAK was found to be an important part of angiogenesis

promotion in experiments in which protrudin (Arora et al., 2022)

and HAX1 (You et al., 2022) affected angiogenesis. Try397-FAK

can affect angiogenesis via ERG (D’Amico et al., 2022). In a

subcutaneous Lewis lung cancer tumor model, only mice with

pericyte-specific FAK-Y861F mutation showed reduced

angiogenesis and tumor growth. This is associated with a

notable increase in vascular degeneration (Lees et al., 2021).

In addition, the detection of secretion and protein expression of

FAK-Y861F pericytes revealed that cytokines and proteins

promote tumor cell apoptosis and increased secretion (Lees

et al., 2021). Therefore, pericyte FAK-Y861F plays a role in

controlling tumor growth (Lees et al., 2021), and pericyte

FAK deficiency increases tumor growth and angiogenesis

(Lechertier et al., 2020a). Interestingly, when studying the

specific mechanism by which FAK phosphorylation at

Tyr397 and Tyr861 regulates tumor angiogenesis, it was found

that FAKY397F/Y397F and FAKY861F/Y861F mice had different end-

stage tumor vascular responses. This may be due to the enhanced

p190Rhogef/p130Cas dependent signal of FAK-Y861F rather

than FAK-Y397F (Pedrosa et al., 2019). Furthermore, pericyte

FAK deletion enhances Gas6-stimulated phosphorylation of the

receptor tyrosine kinase Axl and upregulates Cyr61, while

pericyte-derived Cyr61 indicates that tumor cells upregulate

the expression of the pro-angiogenic/tumorigenic

transmembrane receptor tissue factor (Lechertier et al.,

2020b). In addition to being a vascular signal, endothelial

FAK is a regulatory site for tumor chemoradiotherapy

sensitivity (Roy-Luzarraga and Hodivala-Dilke, 2016). FAK

also affects ECM by promoting vascular permeability (Lee

et al., 2010; Chen et al., 2012), thereby increasing the

probability of tumor metastasis (Jean et al., 2014).

4.3.3 Lymphangiogenesis
Lymphopenia and immunocytotoxicity are also associated

with metastasis (Mlecnik et al., 2016). FAK reduces

lymphocyte toxicity and affects lymphatic vessel formation

(Morita et al., 2015). Among the known lymphangiogenic

factors, vascular endothelial growth factor-C (VEGF-C) is the

best characterized and recognized as a major regulator of

lymphangiogenesis. It reshapes the lymphatic

microenvironment by regulating the production of

chemokines in lymphatic endothelial cells (Chen et al.,

2019). FAK affects VEGF-C production via various

signaling pathways. For example, FAK inhibition can

reduce IL-6-induced VEGF-C expression and VEGF-C

promoter luciferase activity (Huang et al., 2016a). Leptin-

induced VEGF-C is mediated by the FAK/PI3K/Akt signaling

pathway and negatively regulates the expression of

microRNA-27b (Yang et al., 2016). The expression level of

Nrp2 in tumor-associated lymphatic endothelial cells in

colorectal cancer is significantly correlated with tumor

lymphatic density. Nrp2 promotes tumor
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lymphangiogenesis through the integrin α9β1/FAK/Erk
pathway rather than the VEGF-C/VEGFR3 signaling

pathway (Ou et al., 2015).

4.3.4 Extracellular matrix remodeling
Based on FAK signaling, the metabolic relationship between

the ECM and the tumor is mutual. The absence of FAK in CAFs

leads to enhanced glycolysis in malignant cells because FAK

deletion in CAFs increases the production of chemokines

CCL6 and CCL12. This in turn activates protein kinase A

through CCR1/CCR2 in cancer cells (Demircioglu et al.,

2020). At the same time, adipose tissue in obesity can also

induce the activation of tumor FAK signaling by secreting

chemokines or fatty acids and change tumor invasiveness and

lipid metabolism (Blücher et al., 2020). Desmosplasia is a

characteristic of most solid tumors in which PI3K plays a vital

role, affecting tumor development. PI3K activation occurs when

increased matrix stiffness is triggered through integrin-mediated

FAK and its downstream pathway (Kallergi et al., 2007;

Provenzano et al., 2008; Tung et al., 2015). The regulation of

PIP3 by PI3K and the subsequent activation of Akt and mTOR

are the means of remodeling the tumor environment. Through

this medium, desmosplasia and increased ECM deposition affect

cell metabolism, promoting cell proliferation and survival

(Wozniak et al., 2003) as well as carcinogenic transformation

and tumor metastasis (Levental et al., 2009). It is also the main

cause of acquired chemoresistance (Darvishi et al., 2022).

Therefore, FAK plays a significant role in physical

construction of the TME.

4.4 Focal adhesion kinase and metabolic
reprogramming

It has become apparent that high levels of FAK can

orchestrate tumor progression by promoting metabolic

reprogramming (Zhang et al., 2016). However, the specific

mechanisms remain unclear.

4.4.1 Glucose metabolism
After blocking FAK with siRNA and inhibitors, glucose uptake

and glycolysis in glioblastoma multiforme cells were inhibited, but

mitochondrial function was significantly enhanced (Che et al.,

2021). In addition, fat-selective loss of FAK leads to impaired

glucose tolerance and insulin sensitivity (Luk et al., 2017).

Growth factors, such as insulin/IGF-1 and anchorage, are the

primary extracellular cues that stimulate cell proliferation. FAK

interactions with IGF1R (Kasprzak, 2021) and integrins (Che et al.,

2021) transmit these growth signals by activating effectors, such as

PI3K/Akt, promoting glucose consumption to fuel rapid growth of

tumor cells. The N-terminal FERM structural domain of FAK binds

directly to the IGF1R (Stanicka et al., 2018), leading to the activation

of PI3K/Akt (Godoy-Parejo et al., 2019) and YAP (Rigiracciolo et al.,

2020) signaling. Inhibition of the FAK-IGF1R interaction by small

molecules induces apoptosis and inhibits tumor growth (Lehman

et al., 2021). Impaired non-dependent biological functions of IGF1R

kinase lead to a decrease in intracellular glucose levels, resulting in

decreased cancer cell viability (Wang et al., 2022). Likewise, integrins

are among the reinforcing factors in the Warburg effect of tumors

(Yousefi et al., 2021). Studies have shown that FAK is a downstream

effector of integrin αV/β3 and regulates the metabolic changes in

glioblastoma cells to glycolysis (Che et al., 2021). CD81 can interact

with integrins αV/β1 and αV/β5 to form a complex that mediates

irisin-induced FAK signal transduction, and subsequently regulates

the growth and energy balance of beige fat progenitor cells (Oguri

et al., 2020). Twist, a key regulator of EMT, enhances aerobic

glycolysis by activating β1-integrin/FAK/PI3K/AKT/mTOR and

inhibiting P53 signaling (Yang et al., 2015). ECM1 significantly

increased the uptake of 18F-deoxyglucose by xenografts, and further

studies have found that ECM1 interacts with integrin β4 and induces
the expression of the transcription factor SOX2 through the integrin

β4/FAK/glycogen synthase kinase 3β/HIF-1α pathway. This changes
the gene expression of EMT factors and glucose metabolism-related

enzymes (Gan et al., 2018).

In addition, CTGF promotes aerobic glycolysis via the FAK/

Src/NF-κB p65/Glut3 pathway (Kim et al., 2021). Hexokinase 2

(HK2) is highly expressed in ascites and metastases in patients

with ovarian cancer. It is the first key enzyme to be involved in

glucose metabolism. HK2 overexpression can regulate lactate

production through the expression of MMP9/Nanog/

Sox9 mediated by the FAK/ERK1/2 signaling pathway and

participates in ovarian cancer metastasis and stem cell

regulation (Siu et al., 2019).

4.4.2 Lipid metabolism
As the key regulator of de novo lipid synthesis, fatty acid

synthase (FASN) is highly expressed in many tumors. Inhibition

of FASN reduces the activity of p-FAK, indicating that FAK may

contribute to changes in the invasive phenotype of tumor cells

caused by metabolic reprogramming (Jafari et al., 2019).

Additionally, inhibition of critical lipogenic enzymes ACLY

and FAS results in the reduction of FAK, Akt, and paxillin

activity and cell viability (Zaytseva et al., 2012).

4.4.3 Amino acid metabolism
FAK expression is related to glutamine metabolism, which

may mediate changes in glutamine metabolism through the

PI3K/Akt pathway, thus playing a role in cell autophagy,

stress, and growth (Zhang and Hochwald, 2014). FAK

stimulates PI3K/Akt signaling, whereas PI3K/Akt activation

increases the levels of glutamine and its synthetase (Van Der

Vos et al., 2012). The YAP/TAZ pathway plays an important role

in amino acid metabolic reprogramming (Jeon et al., 2022), and

FAK/Src signaling has been shown to mediate the activation of

YAP/TAZ signaling in tumor cells (Totaro et al., 2018; Ma et al.,

2020). However, there are still questions regarding the specific
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mechanisms of FAK in amino acid metabolic reprogramming,

such as whether it affects the expression of key enzymes and

whether there are key signaling pathways.

Whether FAK has a core pathway and function through the

metabolism of the three nutrients remains to be investigated,

which is an important part of future research on the Warburg

effect (Figure 5).

4.5 Focal adhesion kinase and tumor
stemness

Cancer stem cells (CSCs) are important for clonal growth and

metastasis of solid tumors. FAK may contribute to CSC activity

in diverse types of tumors (Sun et al., 2018a; Diaz Osterman et al.,

2019). In a histological study of liver cancer, we found that FAK

expression in liver cancer patients was positively correlated with

the expression of liver cancer stem cell markers (Fan et al., 2019).

Type I collagen increases the initiation potential, self-renewal

ability, and frequency of CSCs in pancreatic ductal

adenocarcinoma by activating FAK (Begum et al., 2017). In

colon cancer cells, knockdown of transmembrane heparan

sulfate proteoglycan syndecan-1 significantly enhances the

stem cell phenotype of SDC-1-deficient cells by enhancing the

FAK-Wnt signaling axis (Kumar Katakam et al., 2021). In

malignant pleural mesothelioma, significant decreases in stem

cell markers can be caused by inhibition of PFKFB3, and, thus,

the disruption of the FAK-Stat3-SOX2 nexus (Sarkar

Bhattacharya et al., 2022). In studies related to the

transformation of normal stem cells into tumor stem cells

(CSCs) without genetic manipulation, fibroblast growth factor

2 (FGF2) was found to induce normal stem cells to acquire

stemness expression of tumor stem cells and initiate cancer; this

process was found to be associated with integrin/FAK/PI3K/AKT

signaling pathway activation (Sheta et al., 2021). In oral

squamous cell carcinoma (OSCC), KRT17 regulates stemness

marker levels via the integrin/FAK/Src/ERK/β-catenin pathway

(Jang et al., 2022). In addition to its contribution to the

maintenance of tumor stemness, the effect of FAK on the

stemness of embryonic stem cells has been identified by a

wider range of researchers (Baumann, 2021; Hur et al., 2021).

5 Potential for focal adhesion kinase
applications in tumor biomarker and
therapy

FAK small-molecule inhibitors can be divided into twomajor

groups: 1) inhibitors that target the enzymatic or kinase-

dependent functions of FAK, such as inhibitors that target the

FIGURE 5
Mechanisms of FAK-mediated reprogramming of tumor glycolytic metabolism. FAK plays an important role in reprogramming the metabolism
of the three major nutrients. This figure highlights the mechanisms by which it plays a role in reprogramming sugar metabolism.
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structural domain of the ATP-binding site and variant inhibitors

that target other sites of FAK but still block kinase activity, and 2)

inhibitors that target the scaffold function of FAK

(Golubovskaya, 2014). The application of FAK inhibitors can

directly and synergistically enhance the therapeutic and killing

effects on tumor cells and restore the sensitivity of a few drug-

resistant tumor cells.

As FAK mediates resistance to treatment, the application of

FAK inhibitors can restore the sensitivity of some tumor cells

after chemoresistance. In high-grade serous ovarian cancer

models in vivo, Y397-FAK phosphorylation increased upon

sublethal cisplatin treatment of platinum-resistant tumors

(Diaz Osterman et al., 2019). Since platinum-induced cell

stress can activate FAK, it has been suggested that FAK

activation may function to permit acquired platinum tumor

resistance (Diaz Osterman et al., 2019). In addition, FAK

inhibition allows resistant tumors to regain cisplatin

sensitivity (Mohanty et al., 2020). Cancer patients treated with

EGFR inhibitors often develop resistance to treatment. Some

evidence suggests that EGFR-TKI resistance works through an

integrin-mediated pathway (Seguin et al., 2014), and FAK is

involved in the increase in resistance of cancer cells to EGFR-TKI

FIGURE 6
Amolecular target for combination therapy with FAK inhibitors. FAK supports a variety of oncogenic processes and is beneficial in combination
with a variety of available antitumor agents. In RAS-mutated or RAF-mutated cancer cells, blocking the RAS-RAF-MEK pathway with RAF or MEK
inhibitors activates FAK and promotes cell survival by reactivating ERK signaling. Activated FAK in diffuse gastric cancer and uveal melanoma
attenuates the negative regulation of the transcriptional activator YAP by large tumor suppressor 1 and 2 (LATS1/2). FAK activity can promote
nuclear translocation of YAP, and combinations of FAK inhibitors with inhibitors of YAP expression [e.g., histone deacetylase (HDAC) inhibitors] or
transcriptional activity may be required to enhance inhibition of oncogenic YAP signaling (Hicks-Berthet and Varelas, 2017; Song et al., 2021).
Inhibition of RHOA or FAK selectively induces mutant KRAS cell death in non-small cell lung cancer studies (Konstantinidou et al., 2013). In breast
cancer sRc-3Δ4, a splice isoform of the oncogene was found to be a signaling adapter linking EGFR and FAK and promoting EGF-induced
phosphorylation of FAK and c-Src (Long et al., 2010). FAK inhibitors also play a role in epigenetics (Romito et al., 2022), and radiation treatment in
combinationwith FAK inhibitors affects the immunemicroenvironment surrounding the tumor (Osipov et al., 2021). The small GTPase, RAS homolog
family member A (RHOA), regulates the actin cytoskeleton. ECM, extracellular matrix; GPCR, G protein-coupled receptor.
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(Solanki et al., 2018). The combination of erlotinib and FAK

inhibitors has been shown to be effective in reducing the survival

of EGFR-TKI-resistant NSCLC cells (Murakami et al., 2017). In

addition, according to Grace et al., during epithelial cell

migration, the complex formed by EGFR and FAK has a

common downstream Ezrin, and FAK and/or Ezrin could be

targeted and/or used in combination with EGFR to overcome the

resistance of cancer cells to EGFR-TKI in the future. Reversal of

EMT and repolarization of tumor-associated macrophages

(TAMs) using simvastatin targeting the role of FAK in lipid

metabolism can treat drug-resistant cancers (Jin et al., 2019). The

YAP pathway leading to tumor drug resistance is now a

comparatively clear mechanism (Nguyen and Yi, 2019). FAK

is required for Y357-FAK phosphorylation, and both play a vital

role in intrahepatic cholangiocarcinoma (ICCA) development

through the FAK/Akt/YAP pathway. ICCA growth was

significantly reduced when treated with both FAK inhibitor

and CDK4/6 inhibitor palboclib in both in vivo and in vitro

TABLE 2 Summary of preclinical studies with FAK inhibitors.

Inhibitor Molecular targets Cancer types PMID

BI-853520 (IN10018) FAK Prostate cancer; breast cancer 29472531; 30237500

GSK2256098 FAK Pancreatic cancer; ovarian cancer 25486573; 27064283

NVP-TAC544 FAK N/A 18391070

PF-431396 FAK/PYK2 Pancreatic cancer 19244237

PF-573228 FAK Pleural mesothelioma; lung cancer 29303405; 17395594

TAE226 FAK/IGF-IR Breast cancer; ovarian carcinoma; hepatocellular carcinoma 17849451; 17431114; 34784956

VS-4718 FAK/PYK2 Breast cancer/ovarian cancer; pancreatic cancers 27376576; 20234191

VS-6062 FAK/PYK2 Gliomas; pancreatic cancer; colon cancer; lung cancer; prostate cancer; breast cancer 18339875; 18339875; 22454420

VS-6063 FAK/PYK2 Ovarian cancer; Hepatocellular carcinoma 24062525; 35154476

C4 FAK-VEGFR3 interaction Breast cancer 19610651

R2 FAK-p53 interaction Colorectal cancer 23841915

Y11 FAK Colon cancer and breast cancer 22402131

Y15 FAK Breast cancer; lung cancer 18989950; 27336608

TABLE 3 Summary of clinical trials with FAK inhibitors.

Name Tumor Target Status/phase Trial identifiers

Defactinib (VS-6063) NSCLC FAK Completed NCT01951690

Defactinib (VS-6063) Malignant pleural mesothelioma FAK Terminated NCT02004028

Defactinib (VS-6063) Solid cancer FAK Completed NCT01943292

Defactinib (VS-6063) VS-6766 Ovarian cancer FAK MEK Phase 2 NCT04625270

Defactinib (VS-6063) VS-6766 NSCLC FAK MEK Phase 2 NCT04620330

Defactinib (VS-6063) VS-6766 NCT04720417 FAK MEK Phase 2 NCT04720417

Defactinib (VS-6063) VS-6766 Cervical cancer high grade Serous ovarian cancer FAK MEK Phase 2 NCT05512208

Defactinib (VS-6063) Pembrolizumab Pancreatic ductal adenocarcinoma FAK PD-1 Phase 2 NCT03727880

Defactinib (VS-6063) Pembrolizumab Pancreatic cancer NSCLC FAK PD-1 Phase 2 NCT02758587

Defactinib (VS-6063) Paclitaxel Ovarian cancer FAK Tubulin Completed NCT01778803

Defactinib (VS-6063) Pembrolizumab Gemcitabine Advanced solid tumors; Pancreatic cancer FAK PD-1 DNA Phase 1 NCT02546531

Defactinib (VS-6063) radiation therapy Pancreatic cancer FAK DNA Phase 2 NCT04331041

GSK2256098 Solid cancer FAK Completed NCT01138033

GSK2256098 Solid cancer FAK Completed NCT00996671

GSK2256098 Trametinib Advanced solid cancer FAK MEK Completed NCT01938443

VS-4718 Metastatic cancer FAK Terminated NCT01849744

VS-4718 Nab-paclitaxel Gemcitabine Pancreatic cancer FAK Tubulin DNA Terminated NCT02651727

PF-04554878 Solid cancer FAK Completed NCT00787033
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experiments (Song et al., 2021). FAK inhibitors synergize with

KRAS G12C inhibitors to treat different cancers; this process is

also accomplished through the FAK-YAP signaling pathway

(Zhang et al., 2021c).

FAK inhibitors can synergistically increase the sensitivity of

various cancers to chemotherapeutic agents because they not only

reduce FAK expression (Le Large et al., 2021; Tong et al., 2022) but

also inhibit numerous signaling pathways associated with FAK. In

a study on the effect of tyroservatide (YSV) on lung cancer cell

metastasis, YSV was found to inhibit the adhesion and invasion of

human lung cancer cells and had a therapeutic effect on lung

cancer metastasis. YSV significantly inhibited the phosphorylation

of FAK Tyr397 and FAK Tyr576/577 in highly metastatic human

lung cancer cells (Huang et al., 2016b). In vivo experiments have

shown that endothelial cell-specific FAK deletion sensitizes tumor

cells to DNAdamage treatment, thereby reducing tumor growth in

mice (Newport et al., 2022). In addition, treatment with

adriamycin may alter vascular, secretory signaling associated

with improved chemosensitivity of acute tumor cells in FAK−/−

mice compared with that in wild-type mice (Newport et al., 2022).

FAK inhibitors can inhibit tumor progression by altering

epigenetic forms. TAE226, in combination with SOR, effectively

reduced HCC growth, both in vitro and in vivo. TAE226-mediated

FAK deletion and SOR-promoted MAPK downregulation led to a

decrease in HDAC1/2 expression in the nucleus, which in turn

increased histone H3 lysine 27 acetylation (H3K27ac). This

inhibited histone H3 lysine 27 trimethylation (H3K27me3) and

suppressed tumor progression through altered epigenetic forms

(Romito et al., 2022).

Inhibition of FAK renders tumors more sensitive to

radiotherapy (RT) (Eke et al., 2012; Zhang et al., 2021d). In

2002, Kasahara et al. first reported that FAK overexpression

significantly enhanced radiation resistance in human

leukemia cells. The results of this study showed that FAK

overexpression inhibited the caspase-8 expression and

caspase-3 activation, thereby exerting resistance to ionizing

radiation (IR)-induced apoptosis. This process has since been

found to be mediated through various signaling pathways,

such as paxillin, Akt1, JNK, and ERK1/2 (Hehlgans et al.,

2012; Ou et al., 2012). This is not only related to DNA damage

repair, EMT-related protein expression, and cell cycle arrest

but may also be related to the immune microenvironment

(Skinner et al., 2016a; Skinner et al., 2016b; Hou et al., 2016;

Tang et al., 2016). CD8+ T-cell infiltration was significantly

enhanced after treatment with FAK inhibitor combined with

RT. Additionally, granulocyte infiltration was significantly

reduced, and macrophage and T-cell infiltration was

significantly increased in the FAK inhibitor combined with

radiotherapy group compared with that in the radiotherapy

alone group (Osipov et al., 2021) (Figure 6; Tables 2, 3).

The high expression of FAK in a wide range of tumors, as

illustrated in Part II of this paper, suggests its potential as a

diagnostic marker. When combined with clinical data, FAK

expression levels are found to correlate with prognostic levels

in tumors such as liver cancer, gastric cancer, colorectal

cancer, bladder cancer, OSCC, breast cancer, thyroid

cancer, AML, and melanoma; therefore, FAK has essential

qualities as a prognostic marker.

6 Conclusion

In this study, we first analyzed the molecular pathology of

FAK expression in various tumor types. We found that it was

not only overexpressed in tumors but also correlated with

clinical features, such as tumor stage and prognosis of cancer

patients. We then described how FAK overexpression exerts

regulatory effects at the molecular level in tumor cells and

their surroundings. This process participates in many cancer-

related processes, such as tumor invasion, EMT, construction

of the TME, metabolic reprogramming, and maintenance of

tumor stemness. The role of FAK in clinical applications is

also summarized. FAK inhibitors combined with other

established chemotherapeutic agents can reduce the rate of

treatment resistance and further enhance the tumor-killing

capacity.

As mentioned earlier, future research on FAK could be

combined with the clinical characteristics of patients with

tumors to specifically explain how the function of FAK hair

differs in pre-, mid-, and late-stage tumor patients. Research on

FAK inhibitors is important as it could potentially lead to treating

patients with tumors in the future. The scientific justification for

the clinical application of FAK needs to be refined. In addition,

the potential of FAK for therapeutic and diagnostic purposes is

promising and can further oncology research.
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