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Abstract

Introduction: Amplification of the ESR1 gene, coding for estrogen receptor alpha, was shown to predict
responsiveness to tamoxifen, however its prognostic impact in breast cancer patients has not been thoroughly
investigated. Other factors that could contribute to responsiveness to tamoxifen treatment are polymorphisms in
ESR1 gene and genes involved in tamoxifen metabolism.

The aim of this study was to assess the prognostic role of ESR1 gene dosage in a consecutive group of breast
cancer patients and to correlate this feature with clinico-pathological factors. Additionally, ESR1 PvuII, CYP2C19*2
and UGT2B15*2 polymorphisms were analyzed in the tamoxifen-treated subgroup of patients.
Materials and Methods: Primary tumor samples from 281 stage I-III consecutive breast cancer patients were
analyzed for ESR1 gene dosage using real-time PCR with locked nucleic acids hydrolysis probes. In the tamoxifen-
treated subgroup of patients, ESR1 PvuII, CYP2C19*2 and UGT2B15*2 polymorphism in leukocytes genomic DNA
were analyzed. Results were correlated with clinico-pathological factors and with disease-free survival (DFS) and
overall survival (OS).
Results: ESR1 amplification (with a cut-off level of 2.0) was found in 12% of the entire group of breast cancer
patients, and in 18% of the ER-negative subgroup. This feature was associated with decreased DFS both in the
entire group (P=0.007) and in the ER-negative subgroup (P=0.03), but not in the tamoxifen-treated patients.

Patients with ESR1 PvuII wt/wt genotype and at least one UGT2B15 wt allele had a worse DFS (P=0.03) and
showed a trend towards decreased Os (P=0.08) in comparison to patients with ESR1 PvuII wt/vt or vt/vt genotype
and UGT2B15 *2/*2 genotype.
Conclusions: ESR1 amplification can occur in ER-negative tumors and may carry poor prognosis. In the tamoxifen-
treated subgroup, poor prognosis was related to the combined presence of ESR1 PvuII wt/wt and UGT2B15wt/wt or
wt/*2 genotype.
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Introduction

Estrogen receptor (ER) facilitates normal development of
mammary gland [1] but it is also involved in stimulating the
growth of ER-positive breast cancers [2]. In the clinic of breast
cancer, ER is a well-established predictive factor for the
efficacy of endocrine therapies [3]. ER-positivity indicates the

dependence of the tumor on ER-related pathways for survival
and sustained growth [4] and increased gene dosage of
estrogen receptor alpha gene (ESR1), may influence the
function of complex internal ER signaling pathways in breast
cancer cells. The frequency of ESR1 gene amplification varies
largely from 1% [5] to 23% [6] depending on the method of
ESR1 amplification analysis. Clinical significance of this
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abnormality is unclear as it was found to predict both endocrine
therapy responsiveness [6,7] and resistance [8]. Since most
studies on ESR1 amplification included tamoxifen-treated
groups [6–9], prognostic significance of ESR1 gene
amplification in general population of breast cancer patients is
unclear.

Apart from ESR1 amplification, polymorphisms in genes
metabolizing tamoxifen or polymorphisms in ESR1 gene can
influence the response to tamoxifen. Polymorphism in the
intron 1 of the ESR1 gene (rs2234693), also called ESR1
PvuII, was associated with increased risk of breast cancer [10]
and decreased ER expression [11]. CYP2C19 is an enzyme
converting tamoxifen to its active metabolites [12] and certain
polymorphisms in this gene, including CYP2C19*2, were
shown to be associated with decreased enzymatic activity
leading to poor metabolizer phenotype (*2/*2) [13].
Polymorphism in the enzyme UDP glucuronosyltransferase 2
family, polypeptide B15 (rs1902023 also named UGT2B15*2)
participating in glucuronidation of tamoxifen metabolites [14]
was associated with its decreased enzymatic activity and
slower glucuronidation and secretion of active tamoxifen
metabolites [15]. All these polymorphisms were also associated
with survival of breast cancer patients treated with endocrine
therapies, but the data are limited and inconclusive. Whereas
ESR1 PvuII polymorphism correlated with decreased survival
[16], increased survival for UGT2B15 *2 allele [16] and
CYP2C19 *2 allele [17] patients as well as decreased survival
for UGT2B15 *2/*2 [18] and CYP2C19 *2/*2 [16] patients was
observed.

This study aimed at assessing the prognostic role of ESR1
gene dosage in consecutive group of breast cancer patients
and to correlate ESR1 gene dosage with their clinico-
pathological data. Additionally, prognostic value of ESR1 PvuII,
CYP2C19*2 and UGT2B15*2 polymorphism was analyzed in a
tamoxifen-treated subgroup of patients.

Patients and Methods

Ethics Statement
The study was conducted in accordance with the Helsinki

Declaration and accepted by the Ethics Committee of the
coordinating center, the Medical University of Gdansk (NKEBN
16/2010, 781/2005). All patients signed informed consent
forms.

Clinical material
The study group included 281 consecutive stage I-III breast

cancer patients (Table 1) treated between 1999 and 2009 in
three Polish institutions. This group included both ER-negative
and ER-positive patients. Primary tumor samples were
obtained by surgical excision or excisional biopsy prior to any
systemic treatment, snap-frozen in liquid nitrogen and stored at
-80° C for further DNA isolation. Adjuvant treatment was
offered according to the standards of care at the time of their
diagnosis. Twenty-seven percent (75/281) of the patients were
treated with tamoxifen 20 mg/day, either alone (46%) or in
combination with radiotherapy (12%), chemotherapy (17%) or
both (25%).

Median age of the patients was 56 years (range 27-86 years,
average 57.4 years). Follow-up data were available for 277
patients, median follow-up time was 54 months (range 0.2-137
months) and the dataset was frozen in August 2011. Seventy-
three patients (26%) developed tumor recurrence and 41 (15%)
have died. In accordance with St Gallen guidelines [19], tumors
were divided into five surrogate intrinsic subtypes based on the
expression of ER, PgR, HER2, tumor grade and/or Ki-67: 1)

Table 1. Patients characteristics.

Variable Number of cases (%)

Age   
<50 yr. 68 (24)
≥50 yr. 213 (76)

T stage   
T1 91 (32)
T2 128 (46)
T3 28 (10)
T4 31 (11)
Missing data 3 (1)

N stage   
N0 148 (53)
N1 73 (26)
N2 50 (18)
N3 6 (2)
Missing data 4 (1)

Grade   
G1 14 (5)
G2 107 (38)
G3 85 (30)
Missing data 75 (27)

HER2 status   
Negative 182 (65)
Positive 29 (10)
Missing data 70 (25)

ER status   
Negative 120 (43)
Positive 161 (57)

PgR status   
Negative 131 (47)
Positive 150 (53)

Histological type   
Ductal 191 (68)
Lobular 51 (18)
Other 33 (12)
Missing data 6 (2)

Molecular subtype   
Luminal A 60 (21)
Luminal B (HER2-) 38 (14)
Luminal B (HER2+) 15 (5)
HER2+ 14 (5)
Triple negative 56 (20)
Missing data 98 (35)

TAM-treatment   
Not-treated 206 (73)
Treated 75 (27)
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Luminal A–ER+ and/or PgR+, HER2-, Ki-67 below 14% or
G1/2; 2) luminal B (HER2-negative) – ER+ and/or PgR+,
HER2-, Ki-67 above 14% or G3; 3) luminal B (HER2-positive) –
ER+ and/or PgR+, HER2+, any Ki-67 or any G; 4) HER2+ -ER-
and PgR-, HER2+; 5) Triple negative (TNBC) – ER-, PgR-,
HER2-. Details of procedures of ER, PgR, Ki-67 and HER2
status determination are presented in the Text S1.

In the tamoxifen-treated group, full blood samples were
available from 69 patients. Samples were stored at -80° C and
200 µl was used for genomic DNA isolation with QIAamp DNA
Blood Mini Kit (Qiagen, Germany) in accordance with the
manufacturer’s instructions. From the macrodissected tumor
samples, DNA was isolated using QIAamp DNA Mini Kit
(Qiagen, Germany) in accordance with the Tissue protocol.
Quantity and quality of the isolated DNA were measured on
Spectrophotometer ND-1000 (NanoDrop, USA). Isolated DNA
samples were stored at -20° C until the analyzes of ESR1 gene
dosage and ESR1 PvuII, CYP2C19*2 and UGT2B15*2
polymorphisms.

Full blood samples were also drawn from 5 healthy donors
(who signed informed consent forms) in order to isolate
leukocyte DNA that served as a reference sample and an inter-
run calibrator in real-time PCR experiments. Additionally,
pooled genomic leukocytes DNA purchased from Roche was
tested. Finally, we preserved healthy breast tissue samples
obtained from 3 patients during surgery from a site distant from
the primary tumor location. DNA from ESR1-amplified sarcoma
cell line [5] was used as a positive control.

ESR1 Gene Dosage Evaluation
ESR1 gene dosage was measured by real-time PCR on

iCycler iQ thermal cycler (Bio-Rad, USA). Pfaffl relative
quantification method was used for the calculations as
described before [20], with modifications (inclusion of inter-run
calibrator) applied by qbase Plus software version 2 [21].
Briefly, the amount of ESR1 gene was related to the amount of
amyloid precursor protein (APP) reference gene in a test
sample and in a reference sample (leukocyte DNA) using gene
specific amplification efficiencies. PCR was performed using
following primers sets for ESR1 gene (NC_000006.11) F 5’-
ACA TGG ACA CCT CCC AGT C-3’, R 5’-ACA GAC TAA CAC
AGC CCA TC-3’; and APP gene (NC_000021.8) F 5’-AGC
CCA GAA GGT GTC AAA CA-3’, R 5’-CAT CTT CAT GTC
CGT TGC AT-3’) and locked nucleic acid hydrolysis probe nr 4
and 2 for ESR1 and APP detection (Universal ProbeLibrary
Probes, Roche), respectively. The length of each amplicon was
60 bp.

The composition of reagents used in real-time PCR was as
follows: 1× reaction buffer containing MgCl2, dNTPs and Taq
polymerase (FastStart Taqman Probe Master (no ROX),
Roche), primers 600 nM of each, probe 250 nM. One hundred
ng of DNA, in the volume of 5 µl, and water were added into
the reaction mixture to obtain the final volume of 20 µl.
Reactions were performed in duplicates on 96-well plates (Bio-
Rad, USA), sealed with optical tape (Bio-Rad, USA). On each
plate negative control (no template DNA) for each gene and
inter-run calibrator (DNA from leukocytes) were always
included. Real-time PCR cycling conditions were 10 min 95° C,

cycles 1-45: 15 s 95° C, 1 min 60° C. Specificity of the primers
was checked by electrophoretic separation of post-PCR
solution on 2% agarose gel stained with ethidium bromide.

Polymorphisms analysis
Presence of three polymorphisms connected with tamoxifen

metabolism - CYP2C19*2 (rs4244285, G>A), UGT2B15*2
(rs1902023 A>C) and ESR1 PvuII (rs2234693 T>C) was
tested. Polymorphisms in ESR1 and CYP2C19 genes were
analyzed with restriction fragment length polymorphism (RFLP)
using PvuII and SmaI restriction enzymes, respectively. At first,
genes were amplified in PCR using primer sequences
described before for ESR1 F 5’-CTG CCA CCC TAT CTG TAT
CTT TTC CTA TTC TCC-3’, R 5’-TCT TTC TCT GCC ACC
CTG GCG TCG ATT ATC TGA-3’ [22] and CYP2C19 F 5’-AAT
TAC AAC CAG AGC TTG GC-3’, R 5’-TAT CAC TTT CCA TAA
AAG CAA G-3’ [23]. PCR reactions were performed with
following concentrations: 300 nM of each primer, 200 µM of
dNTPs, 2 mM (for CYP2C19) or 4 mM (for ESR1) of MgCl2 and
1U of Taq polymerase (Promega, USA). One hundred ng (for
ESR1) or 150 ng (CYP2C19) of DNA was added per reaction
and the total reaction volume was 25 µl. Amplification
conditions were described before [24] and were as follows: for
the CYP2C19 95° C for 2 min – initial denaturation, 35 cycles
of denaturation at 94° C for 20 s, annealing 53° C for 30 s and
elongation 72° C for 30s, final extension 72° C for 7 min; for
ESR1 gene 95° C for 2 min – initial denaturation, 35 cycles of
denaturation at 94° C for 30 s, annealing 62° C for 30 s and
elongation 72° C for 30 s, final extension 72° C for 7 min. Ten
µl of post-PCR solutions was digested with 10U of restriction
enzyme PvuII (for ESR1 PvuII detection) or SmaI (for
CYP2C19*2 detection) in 1xreaction buffer G or Tango,
respectively. Final sample volume was 31 µl and the reaction
was carried out in an incubator for 2 hours at 37° C (for PvuII)
or in a thermal cycler (Mastergradient, Eppendorf) at 30° C (for
SmaI). Enzymes were inactivated by the addition of EDTA pH 8
to a final concentration of 20 mM (for PvuII) or 20 min
incubation at 65° C (for SmaI). Samples were then separated
on 3% (CYP2C19) of 1.5% (ESR1) agarose gel in 1xTAE
buffer at 115V for 40 min. Gels were stained with Gel Red
(Gentaur, Belgium) and visualized under UV light in GelDoc
System (Bio-Rad, USA). ESR1 amplicon had a length of 1.3
kbp and it was digested to fragments of 850 bp and 450 bp by
PvuII enzyme if the wild-type (wt) T nucleotide was present in
the enzyme recognition sequence. Mutated allele containing C
nucleotide in the polymorphic locus (enzyme recognition
sequence) was not digested by the PvuII enzyme. CYP2C19
amplicon had a length of 169 bp and it was digested by SmaI
enzyme to achieve fragments of 120 bp and 49 bp if the wt
allele G was present, mutated allele containing A in the
recognition sequence was not digested.

Polymorphism in UGT2B15 gene was analyzed with high
resolution melting (HRM) on CFX96 thermal cycler (Bio-Rad,
USA) using Maxima SYBR Green qPCR Mastermix (Thermo
Scientific, USA). Primers were designed using Primer3
software and had following sequences: F 5’-CAC CAT ATA
TCC ATC TAT CGA GAA-3’ and R 5’-TCA ATG CCA GTA AAT
CAT CTG C-3’. Reactions were performed in duplicates in a
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final volume of 20 µl adding 10 ng of DNA per reaction and 300
nM of each primer. Applied real-time PCR conditions were: 10
min at 95° C, 40 cycles of denaturation at 95° C for 15 s and
annealing/extension at 60° C for 1 min. Melt curve analysis
began from gradual temperature increase from 55°C to 94°C in
0.2°C increments and 10 s plate read. Post-HRM data were
analyzed using Precision Melt Analysis Software version 1.0
(Bio-Rad, USA). Start and end fluorescence signal were
automatically normalized. Each curve on a fluorescence

difference plot was inspected visually in order to determine the
genotype. Every plate contained two positive control samples
(for each genotype) that were previously sequenced in order to
determine nucleotide composition of the polymorphic locus.

Statistical analysis
All statistical analyses were performed using the

STATISTICA software, version 10. Disease-free survival (DFS)

Figure 1.  Kaplan-Meier survival curves according to ESR1 gene amplification status.  Probability of disease-free survival (A,
C) and overall survival (B, D) in all patients (A, B) and in ER-negative patients (C, D).
doi: 10.1371/journal.pone.0072219.g001
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and overall survival (OS) were computed using Kaplan-Meier
method and compared using log-rank test. DFS was defined as
the time from surgery to an event (local or distant relapse,
second malignancy or death, whichever came first) or
censoring. Censoring was defined as lost to follow-up or
survival without relapse at the end of follow-up. OS was
defined as the time from surgery to death or censoring. Cox
proportional hazards regression analysis was used to identify
the independent predictors of DFS and OS. P values ≤0.05
were considered significant. The study was performed in
accordance with the REMARK criteria [25].

In the survival analysis, patients were divided into two
groups: ESR1-normal and ESR1-amplified applying a cut-off
value of 2.0, as described by other groups [6,7,26].
Correlations between ESR1 and other variables were
performed using ESR1 gene dosage as a continuous variable.

Results

Efficiencies of ESR1 and APP gene amplification were 1.91
and 1.93, respectively. Average ESR1 gene dosage in the
entire group of patients was 1.27±0.64 (median 1.11, range
0.12-4.74). Average ESR1 gene dosage in the ER-negative
and ER-positive subgroups was 1.36±0.80 (median 1.20, range
0.12-4.74) and 1.17±0.47 (median 1.10, range 0.24-2.66),
respectively. With the cut-off level of 2.0, 12% (33/281) of the
samples were classified as ESR1-amplified, in the ER-negative
subgroup 18% (22/120). The average ESR1 gene dosage in
healthy breast tissues was 0.94±0.20, in pooled genomic DNA
of healthy donors 1±0.05 and in ESR1-amplified sarcoma cell
line 5.37±0.25.

Correlation of ESR1 gene dosage with clinical and
pathological data

ESR1 gene dosage in the entire group of patients correlated
with higher T stage (P=0.01, Table 2) and lymph node
involvement (P=0.008, Table 2), whereas in the tamoxifen-
treated group the only correlation included younger age
(P=0.05) (Table 2). There was no correlation between ESR1
gene dosage and ER-status or surrogate intrinsic molecular
breast cancer subtypes (Table 2 and Figure S1).

Correlation of ESR1 gene dosage with survival
In the entire group of patients (N=276), ESR1 amplification

(defined as ESR1 gene dosage above 2) was associated with
decreased DFS (P=0.007, Figure 1A) and OS (only a trend,
P=0.06, Figure 1B). Similar results were obtained in the ER-
negative patients (N=118) (DFS P=0.03, Figure 1C, OS
P=0.07, Figure 1D); in the tamoxifen-treated subgroup (N=72)
ESR1 amplification showed no association with survival.

In the univariate analysis, ESR1 gene dosage showed to be
a poor prognostic factor for DFS and OS in the whole cohort of
patients (DFS: HR 1.68, CI 1.25-2.26; OS:HR 1.61, CI
1.07-2.41) (Table S1). No association was found in the
tamoxifen-treated subgroup of patients.

ESR1 gen dosage did not sustain its prognostic value in the
multivariate analysis (Table S1).

ESR1 PvuII, CYP2C19*2 and UGT2B15*2
polymorphisms

Frequencies of the polymorphic (variant) alleles were 46%,
10% and 46% for ESR1 PvuII (rs2234693), CYP2C19*2
(rs4244285) and UGT2B15*2 (rs1902023), respectively. The
details of expected versus observed genotypes frequencies are
presented in Table 3. Genotypes distribution did not show
significant deviation from the Hardy-Weinberg equilibrium as
assessed by χ2 test.

The presence of the ESR1 PvuII polymorphism correlated
with decreased ESR1 gene dosage (P=0.0003, Figure 2 and
Table 2) and tended to correlate with ER-negativity (P=0.07,
Table 4). Moreover, the lack of both ESR1 PvuII polymorphism
and UGT2B15*2 polymorphism (analyzed separately) showed
a trend towards decreased DFS (P=0.02 for ESR1 PvuII and
P=0.12 for UGT2B15) and OS (P=0.17 for ESR1 PvuII and
0.32 for UGT2B15) (Table 4). Combined status of ESR1 PvuII
and UGT2B15*2 polymorphism had stronger prognostic impact
than each of the polymorphisms assessed alone.

Patients with ESR1 PvuII genotype wt/wt and with UGT2B15
wt/wt or wt/*2 genotype had a worse DFS (P=0.03) and
showed a trend towards decreased OS (P=0.08) in comparison
to patients with ESR1 PvuII wt/vt or vt/vt genotype and
UGT2B15 *2/*2 genotype (Figure 3).

Discussion

The issue of ESR1 gene amplification in breast cancer has
recently gained a lot of interest [5,7,26–29]. In the study from
2011, Nielsen et al. [8] hypothesized that “copy number
changes of the ESR1 gene confer resistance to tamoxifen
because amplification is an abnormal status and normal ER
protein expression (ER positive status) is requisite for response
to tamoxifen“. Their study included only tamoxifen-treated
patients for whom amplification of ESR1 gene indeed conferred

Table 3. Number of cases (N) and percentages of observed
and expected genotypes of ESR1 PvuII, CYP2C19 and
UGT2B15 in tamoxifen-treated patients.

 N observed % observed N expected % expected P

ESR1 PvuII      
wt/wt 22 32 20.4 29.5 0.43
wt/vt 31 45 34.2 49.6  
vt/vt 16 23 14.4 20.8  
Total 69 100 69 100  

CYP2C19      
wt/wt 57 83 55.7 80.7 0.09
wt/*2 10 14 12.6 18.2  
*2/*2 2 3 0.7 1  
Total 69 100 69 100  

UGT2B15      
wt/wt 20 29 19.8 28.8 0.94
wt/*2 34 49 34.4 49.7  
*2/*2 15 22 14.8 21.5  
Total 69 100 69 100  
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poor prognosis. We have extended this hypothesis assuming
that ESR1 amplification, as an abnormal state, could be a
negative prognostic factor in a general population of breast
cancer patients as it affects the natural course of breast cancer
progression. Tumors that have amplification of ESR1 rely more

on endogenous estrogen and thus estrogen-driven mitogenic
effect could be manifested in general population of breast
cancer patients, independently of tamoxifen treatment.

Amplification of the ESR1 gene was assessed in a number of
studies using a variety of techniques, including real-time PCR,

Table 2. Correlation between ESR1 gene dosage and clinico-pathological data in the entire group and in the tamoxifen-
treated patients.

Variable All patients Tamoxifen-treated patients

 N Median ESR1 gene dosage (25-75 percentile) P N Median ESR1 gene dosage (25-75 percentile) P

T stage       
T1-2 219 1.11 (0.85-1.39) 0.01 67 1.10 (0.86-1.24) 0.85
T3-4 59 1.25 (0.88-1.97)  7 1.13 (0.63-1.18)  

N stage       
0 148 1.08 (0.82-1.31) 0.008 54 1.11 (0.85-1.24) 0.78
1 129 1.17 (0.91-1.65)  19 1.07 (0.85-1.17)  

Grade       
1-2 121 1.11 90.89-1.41) 0.87 29 1.08 (0.85-1.17) 0.54
3 85 1.16 (0.87-1.47)  15 1.10 (0.92-1.21)  

Histological type       
Ductal 191 1.13 (0.87-1.56) 0.12 42 1.10 (0.91-1.23) 0.45
Lobular 51 1.01 (0.82-1.31)  19 0.95 (0.74-1.24)  

ER status       
Negative 120 1.20 (0.86-1.64) 0.12 22 1.10 (0.90-1.49) 0.26
Positive 161 1.10 (0.85-1.37)  53 1.08 (0.84-1.20)  

PR status       
Negative 131 1.11 (0.83-1.65) 0.75 22 1.10 (0.84-1.25) 1
Positive 150 1.11 (0.88-1.39)  53 1.10 (0.85-1.23)  

HER2 status       
Negative 182 1.10 (0.83-1.37) 0.75 47 1.08 (0.83-1.21) 0.50
Positive 29 1.11 (0.90-1.31)  9 1.20 (0.88-1.23)  

Age       
<50 yr. 68 1.18 (0.88-1.51) 0.53 19 1.20 (0.99-1.55) 0.05
≥50 yr. 213 1.10 (0.85-1.47)  56 1.06 (0.80-1.17)  

Molecular subtype       
Luminal A 60 1.10 (0.85-1.39) 1 13 1.08 (0.85-1.11) 0.71
Luminal B (HER2-) 38 1.13 (0.40-2.07)  11 1.05 (0.83-1.21)  
Luminal B (HER2+) 15 1.17 (0.92-1.27)  8 1.21 (0.90-1.27)  
HER2+ 14 1.02 (0.87-1.71)  1 0.87  
Triple negative 56 1.07 (0.80-1.43)  5 1.13 (0.63-1.16)  

Allred score       
0-2 20 1.03 (0.88-1.29) 0.56  -  
3-6 27 1.12 (0.87-1.41)     
7-8 41 1.18 (0.90-1.58)     

ESR1 PvuII       
wt/wt  Not analyzed  22 1.19 (1.10-1.31) 0.0003
wt/vt    30 1.07 (0.85-1.17)  
vt/vt    16 0.77 (0.64-1.03)  

CYP2C19       
wt/wt  Not analyzed  56 1.10 (0.84-1.24) 0.58
wt/*2    10 1.11 (0.97-1.18)  
*2/*2    2 0.89 (0.72-1.05)  

UGT2B15       
wt/wt  Not analyzed  19 1.04 (0.73-1.18) 0.54
wt/*2    33 1.10 (0.90-1.20)  
*2/*2    15 1.11 (0.88-1.31)  
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multiplex ligation-dependent probe amplification, fluorescent in
situ hybridization (FISH), chromogenic in situ hybridization
(CISH) and comparative genomic hybridization (CGH). To the
best of our knowledge, we have used for the first time real-time
PCR with locked nucleic acids (LNA) hydrolysis probes for
ESR1 gene dosage analysis. This approach combines
advantages of real-time PCR method, such as high resolution,
cost-effectiveness as well as higher sensitivity with increased
specificity of LNA probes [30]. Moreover, in a recent overview
of data from a number of publications studying ESR1 gene
dosage in breast cancer, PCR was shown to give the most
coherent results across different studies [31]. Despite several
studies, the significance of ESR1 as a prognostic and
predictive function remains unclear. In the study of Holst et al.

Figure 2.  Correlation between ESR1 gene dosage and
ESR1 PvuII polymorphism.  
doi: 10.1371/journal.pone.0072219.g002

[7] ESR1 amplification was associated with longer OS of
tamoxifen-treated patients; and Tomita et al. [6] showed longer
DFS in a consecutive group of breast cancer patients. In
contrast, in the study of Nielsen [8] including tamoxifen-treated
patients, OS and DFS of breast cancer patients with ESR1
amplification were decreased. Similar results were also
reported by Lin et al. in a consecutive series of breast cancer
patients [32]. ESR1 amplification/gain was also not uniformly
correlated with increased expression of ER protein [26] and
was also found in ER-negative breast cancer patients [5,33],
currently confirmed in our study.

We have found ESR1 amplifications (ESR1 gene dosage
above 2.0) in 12% of the samples, and the association of this
abnormality with T stage, lymph node involvement and
decreased DFS and OS. We have not found such correlations
in the tamoxifen-treated patients, therefore we sought for other
factors that could affect tamoxifen-responsiveness. To this end,
we have analyzed the occurrence of polymorphisms in three
genes (ESR1, CYP2C19 and UGT2B15) that were earlier
shown to have prognostic significance in tamoxifen-treated
breast cancer patients [16]. In our study, the presence of at
least one UGT2B15 wt allele combined with the wt/wt ESR1
PvuII genotype was associated at a borderline level with
decreased DFS and OS. ESR1 PvuII wt allele also correlated
with increased ESR1 gene dosage and negative status of PgR
protein. Poor prognosis of patients with ESR1 PvuII wt/wt and
UGT2B15 wt/wt or wt/*2 genotype could be a result of
insufficient inhibition of ER receptors by tamoxifen due to
increased level of ER-protein and decreased level of active
tamoxifen metabolites that are eliminated from the system at
higher rates due to increased activity of UGT2B15 wt allele (A).
A trend toward increased recurrence was also observed in
tamoxifen-treated breast cancer patients carrying UGT2B15A
allele [18] and in patients with ESR1 PvuII vt allele [34]. No
prognostic impact of CYP2C19*2 polymorphism in tamoxifen-

Figure 3.  Patients survival in relation to ESR1 PvuII and UGT2B15*2 polymorphisms in tamoxifen-treated
patients.  Disease-free survival (A) and overall survival (B) are shown in respective panels.
doi: 10.1371/journal.pone.0072219.g003
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treated breast cancer patients was also reported by other
groups [35,36]. ESR1 PvuII, CYP2C19*2 and UGT2B15*2
alleles frequencies observed in our study were within the

Table 4. Correlation between ESR1, CYP2C19, UGT2B15
polymorphisms and clinicopathological features.

 ESR1 PvuII CYP2C19 UGT2B15

 
wt/vt
vt/vt wt/wt P wt/wt

wt/*2
*2/*2 P wt/wt

wt/*2
*2/*2 P

T stage          

T1-2 43 18 0.15 51 10 0.68 15 46 0.09

T3-4 3 4  6 1  4 3  

N stage          

N0 34 16 0.51 41 9 0.43 13 37 0.51

N1 11 6  15 2  5 12  

Grading          

G1-2 20 6 0.31 21 5 0.59 6 20 0.31

G3 9 5  11 3  5 9  

Histological
type

         

Ductal 30 11 0.49 32 9 0.04 14 28 0.27

Lobular 11 5  16 0  3 12  

ER status          

0 12 6 0.55 15 3 0.62 7 11 0.22

1 35 16  42 9  13 38  

PR status          

0 9 11 0.01 18 2 0.25 7 14 0.40

1 38 11  39 10  13 35  

HER2 status          

0 31 12 0.54 36 7 0.49 14 28 0.34

1 7 2  7 2  2 8  

Age          

<50 yr. 10 6 0.40 13 3 0.57 4 11 0.55

≥50 yr. 37 16  44 9  16 38  

Molecular
subtype

         

Luminal A 10 2 0.72 9 3 0.73 3 9 0.31

Luminal B
(HER2-)

9 2  10 1  3 8  

Luminal B
(HER2+)

7 2  7 2  2 7  

HER2+ 0 0  0 0  0 1  

Triple negative 2 2  4 0  3 1  

Recurrence          

Yes 40 13 0.02 43 10 0.43 13 40 0.12

No 7 9  14 2  7 9  

Death          

Yes 42 17 0.17 49 10 0.56 16 43 0.32

No 5 5  8 2  4 6  

ranges reported for European population -31-51%, 7-22% and
49-54%, respectively [37].

We are aware of several limitations of this study, including its
retrospective nature and relatively small sample size.
Especially the lack of prognostic value of ESR1 gene dosage in
tamoxifen-treated patients cannot be interpreted as a definitive
result, as in this group the recurrence was still almost 2.5-times
more frequent in the ESR1-amplified in comparison to ESR1-
normal group of patients (29% vs. 12%). With the observed
survival rates of patients and assuming an alpha of 5% and
80% power, a replication study with a minimal sample size of
128 would be required to validate our results concerning the
impact of ESR1 amplification on patients’ overall survival.

In summary, we have showed that ESR1 amplification
measured by real-time PCR with LNA probes is a poor
prognostic factor in unselected breast cancer patients. In the
tamoxifen-treated subgroup poor prognosis was related to the
combined presence of ESR1 PvuII wt/wt and UGT2B15 wt/wt
or wt/*2 genotype. We hope that further validation of these
results and an attempt to understand basic biological changes
driven by increased ESR1 gene dosage as well as by ESR1
PvuII and UGT2B15*2 polymorphisms will contribute to the
understanding of breast cancer biology.
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