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Abstract

The ability to make inferences about the current state of a dynamic process requires ongoing 

assessments of the stability and reliability of data generated by that process. We found that these 

assessments, as defined by a normative model, were reflected in non–luminance–mediated 

changes in pupil diameter of human subjects performing a predictive–inference task. Brief 

changes in pupil diameter reflected assessed instabilities in a process that generated noisy data. 

Baseline pupil diameter reflected the reliability with which recent data indicated the current state 

of the data–generating process and individual differences in expectations about the rate of 

instabilities. Together these pupil metrics predicted the influence of new data on subsequent 

inferences. Moreover, a task– and luminance–independent manipulation of pupil diameter 

predictably altered the influence of new data. Thus, pupil–linked arousal systems can help regulate 

the influence of incoming data on existing beliefs in a dynamic environment.

Introduction

Many decisions, from foraging to financial, depend on the ability to infer a state of the world 

from both historical and newly arriving information. Such inferences are particularly 

challenging when they must account for multiple sources of uncertainty. When the 

uncertainty results from noise, reflecting random fluctuations in the information generated 

by an otherwise stable state, the average over all historical information is most predictive of 

future observations. In contrast, when the uncertainty results from a change in the state 

itself, only the most recent information pertains to the new state. Thus, historical 

information should be discounted and beliefs should be updated rapidly to maximize their 

predictive power. Under certain conditions, human subjects appear to encode and respond 

appropriately to these different forms of uncertainty when making inferences in a dynamic 

environment1–3. Here we examined whether this ability is governed, at least in part, by 
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arousal systems that affect pupil diameter, which are thought to include the noradrenergic 

brainstem nucleus locus coeruleus4–7.

Non–luminance–mediated changes in pupil diameter have long been used as indicators of 

clinical, cognitive, and arousal states8–11. One interpretation of these pupil changes is that 

they reflect the amount of cognitive effort exerted at a given time, which can be related to 

task uncertainty11. Accordingly, changes in pupil diameter can be elicited via manipulations 

of the uncertainty associated with possible actions in certain choice tasks6,12. Changes in 

pupil diameter can also reflect perceived changes in the world, including perceptual switches 

during perceptual rivalry, detection of targets in oddball or near–threshold tasks, responses 

to low–probability go signals in a go/no–go task, and perceived changes in task utility that 

can affect task engagement7,12–15.

These kinds of uncertainty– and change–related signals are thought to contribute to rational 

inference in a dynamic environment, including helping to regulate the relative influence of 

historical and newly arriving information on existing beliefs2,3. Such regulation is a key 

feature of cognitive flexibility and can be equivalent to adjusting the learning rate in a 

reinforcement–learning framework1,16. Our goal was to determine how such learning–rate 

adjustments relate to pupil–linked arousal systems. We show that the arousal system and 

possibly the locus coeruleus can play important and computationally complex roles in 

rationally regulating the influence of incoming information on beliefs about a dynamic 

world.

Results

We measured pupil diameter in thirty human subjects while they performed an isoluminant 

version of a predictive–inference task2. Below we describe task performance, summarize a 

nearly optimal model that captures key features of performance, demonstrate that certain 

aspects of pupil diameter encode key variables in the model that can be used to predict 

performance, and finally show that a task–independent manipulation of arousal and pupil 

diameter can lead to predictable changes in task performance.

Behavior

The predictive–inference task required subjects to minimize errors in predicting the next 

number (outcome) in a series. The outcomes were picked from a Gaussian distribution with 

a mean that changed at random intervals (change points) and a standard deviation (set to 

either 5 or 10) that was stable over each block of 200 trials (Fig 1). After each prediction 

was recorded, the new outcome was shown using an iso–luminant display for 2 s, during 

which time the subject maintained fixation and pupil diameter was measured (Fig. 1). After 

this interval, the outcome disappeared and the previous prediction reappeared, to be updated 

for the subsequent trial. Payment scaled inversely with the subject’s mean absolute error 

during the session2.

We quantified the extent to which each new outcome influenced the subsequent prediction 

as the learning rate in a simple delta–rule model (Eq. 3)2. The learning rate was equal to the 

magnitude of change in the prediction expressed as a fraction of the error made on the 
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previous prediction. Thus, a learning rate of one indicated abandonment of the previous 

prediction in favor of the most recent outcome. A learning rate of zero indicated 

maintenance of the previous prediction despite a non–zero prediction error.

Subjects tended to use variable learning rates that spanned the entire allowed range, from 

zero to one. Within this range, learning rates tended to be higher for larger errors, scaled by 

the noise of the generative distribution (Fig. 2A). Learning rates also tended to be highest on 

the trial after a change point and then decay for several trials thereafter (Fig. 2B). These 

basic trends were similar across subjects, although individual subjects used dramatically 

different distributions of learning rates (Fig. 2C).

Reduced Bayesian model

The learning rates used by subjects were consistent with both a full and a simplified version 

of the optimal (Baysian) model2,17–19 One advantage of the reduced Bayesian model is that 

it updates beliefs according to a delta rule in which the learning rate is computed according 

to only two parameters computed per trial: change–point probability and relative uncertainty 

(Fig. 3A).

Change–point probability approximates the posterior probability that the mean of the 

generative distribution changed since the previous trial, given all previous data. If the mean 

did change, then previous outcomes should be unrelated to future ones and not contribute to 

an updated prediction. Accordingly, the model uses learning rates that scale linearly towards 

one (thus discarding historical information) as change–point probability approaches one 

(Fig. 3A). Change–point probability is computed by comparing the probability of each new 

outcome given either the current predictive distribution or the occurrence of a change point 

(Eq. 5). Its value increases monotonically as a function of the absolute difference between 

predicted and actual outcome, scaled according to the standard deviation of the generative 

distribution (Eq. 6, Fig. 3B).

Relative uncertainty is a function of total uncertainty, which in our task arises from two 

sources. The first source, noise, reflects the unreliability with which a single sample can be 

predicted from a distribution with a known mean. The second source reflects the 

unreliability of the current estimate of the mean, which decreases as more data are observed 

from a distribution. Relative uncertainty is the magnitude of this second form of uncertainty 

as a fraction of total uncertainty, analogous to the gain in a Kalman filter. Relative 

uncertainty determines the learning rate when change–point probability is zero and sets the 

y–intercept of the relationship between change–point probability and learning rate otherwise 

(Fig. 3A). The effects of relative uncertainty on model learning rates are greatest on the 

trials following a change point, when its value peaks at 0.5 and then decays over several 

trials (Eq. 7; Fig 3C).

Like the human subjects, the model tended to compute learning rates that were highest just 

following a change point in the mean of the generative distribution and then decayed for 

several trials independently of noise. When applied to the exact same outcome sequences as 

the subjects, the model also tended to produce similar learning rates (Fig. 3D).
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We related change–point probability and relative uncertainty computed in the model to the 

mean pupil diameter (“pupil average”) and change in pupil diameter (“pupil change”) 

measured during the 2–s outcome–viewing period (Fig. 1 inset), using two linear regression 

models. The first, simpler model had four parameters: change–point probability and relative 

uncertainty computed from the reduced Bayesian model, the standard deviation of 

generative distribution, and a binary variable describing whether or not the prediction error 

was exactly zero. The second model included all of these parameters, as well as several 

potential confounding factors such as eye position and velocity (see Methods). The models 

are complementary: the first avoids potential interactions between large numbers of 

parameters and thus has coefficients that are more readily interpretable, whereas the second 

avoids missing out on the many factors that in principle could affect our pupil 

measurements. Both models captured a significant amount of variability in the pupil data 

(For pupil average/pupil change data, an F–test rejected the null model relative to the small 

model for 27/15 of the 30 subjects, and a nested F–test rejected the small model relative to 

the large model for 29/19 of the 30 subjects, p<0.05).

Below we first report the most prominent effects from these regression analyses, which were 

similar for the two models and include roughly monotonic relationships between pupil 

change and change–point probability and between pupil average and relative uncertainty. 

We later show that these relationships were in fact slightly more complicated and included a 

dependence on baseline pupil diameter that helps us to interpret the results in terms of 

known properties of the arousal system.

Pupil change reflected change–point probability

The change in pupil diameter during the outcome–viewing period, like change–point 

probability in our model, tended to increase as a function of error magnitude, scaled as a 

function of noise (Fig. 4A; compare to Figs. 3B). Accordingly, when computed by the 

model using the same sequence of outcomes experienced by each subject, change–point 

probability tended to be positively predictive of z–scored pupil change (Fig. 4B ordinate). 

The complement was also true: change–point probability varied systematically as a function 

of pupil change for data pooled across the population (Fig. 4C). In contrast, there was no 

consistent relationship between change–point probability and pupil average (Fig. 4B 

abscissa).

One notable exception to the positive relationship between pupil change and error 

magnitude occurred for trials in which the error was exactly zero, which corresponded to 

relatively large pupil changes (left–most data in Fig. 4A). Accordingly, a binary variable 

added to the linear model that described whether or not the subject correctly predicted the 

outcome was related to pupil change (the mean value of the regression coefficient was 0.180 

zPC for the four–parameter regression model and 0.156 zPC for the larger model; p<0.05 for 

H0: mean=0 for each model) but not pupil average (mean regression coefficient=−0.076 and 

−0.092 zPA for the smaller and larger regression models, respectively, p>0.05). Thus, pupil 

change reflected not only change–point probability, but also whether or not the subject 

correctly predicted the observed outcome.
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Average pupil diameter reflected belief uncertainty

The average pupil diameter during the outcome–viewing period, like relative uncertainty in 

our model, tended to peak on the trial after a change point and then diminish in magnitude as 

more relevant information reinforced the existing belief (Fig 5A; compare to Figs. 2B and 

3C). Accordingly, when computed by the model using the same sequence of outcomes 

experienced by each subject, relative uncertainty tended to be positively predictive of pupil 

average (Fig. 5B abscissa). This result did not simply reflect differences in motor output 

following change points (e.g., longer button presses to choose a learning rate near one), 

because similar results were obtained in a control experiment in which subject predictions 

were reset using a learning rate of 0.5 on each trial, thus requiring the same motor act to 

choose a learning rate of either zero or one (mean regression coefficient=0.30 and 0.35 

zPA/RU for the smaller and larger regression models, respectively, p<0.05). The complement 

was also true: relative uncertainty varied systematically as a function of pupil average for 

data pooled across the population (Fig. 5C). In contrast, there was no consistent relationship 

between relative uncertainty and pupil change (Fig. 5B ordinate).

Overall uncertainty in our task depends on not only relative uncertainty but also noise, 

which we manipulated by varying the standard deviation of the generative distribution in 

blocks (STD=5 or 10). Consistent with our model, in which noise is only used to compute 

change–point probability (Eqs. 5 and 6), these manipulations of noise were reflected in pupil 

change but only insofar as pupil change represented change–point probability (Fig. 4A). 

These manipulations of noise did not have any other systematic effects on either pupil 

change or pupil average (p>0.1 for H0: a mean value of zero for the regression coefficient 

describing the influence of noise on the given pupil measurement for both regression 

models). Thus, for this task pupil average did not appear to reflect overall uncertainty about 

a future outcome but rather a specific form of uncertainty that arises after change points and 

signals the need for rapid learning.

Pupil metrics reflected individual learning differences

As noted above (Fig. 2C), there was a great deal of variability in the average learning rates 

used by individual subjects. These individual differences are thought to reflect biases that 

govern the extent to which subjects tend to interpret the cause of prediction errors in terms 

of either noise or change points2. One advantage of our reduced model is that it can simulate 

these individual differences in terms of the subjective hazard rate, which is the expected rate 

at which change points will occur. Accordingly, fitting the model to behavioral data from 

individual subjects with subjective hazard rate as a single free parameter yielded fit values 

that varied systematically with average learning rates (r=0.93, H0: r=0, p<0.001; Fig 6A).

These individual differences in the inferred (fit) subjective hazard rates corresponded to 

individual differences in both the temporal dynamics and magnitude of outcome–locked 

pupil responses. We quantified the temporal dynamics using an index that related the pupil 

response on a given trial to a mean–subtracted version of the template shown in Fig. 6B. 

This template describes the strength of the across–subject, linear relationship between pupil 

diameter and hazard rate in a sliding time window. This relationship was strongest soon after 

outcome onset, thus likely reflecting prior expectations about the newly arriving outcome. 
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There was a positive relationship between the mean value of this index and fit hazard rate 

for individual subjects (r=0.51, p<0.01). In addition, there was a positive relationship 

between pupil average and fit hazard rate for individual subjects (r=0.40, p<0.05).

Based on these relationships, we constructed a linear regression model using the temporal–

dynamics index and pupil average to explain individual differences in task performance. The 

model yielded strong, pupil–based predictions of per–subject values of both fit hazard rate 

(r=0.59, p<0.001) and average learning rate (r=0.59, p<0.001; Fig 6C). Thus, individual 

differences in average learning rate, which can be described computationally as differing 

expectations about the rate of change–points, could be predicted from the temporal 

dynamics and average magnitude of pupil diameter measured during outcome viewing.

Pupil metrics predicted trial–by–trial learning rates

The relationships between pupil metrics and parameters of the reduced Bayesian model 

suggest that measurements of pupil diameter during the outcome–viewing period can be 

used to predict the subsequent learning rate. For example, we found positive relationships 

between pupil change and change–point probability (Fig. 4) and between pupil average and 

relative uncertainty (Fig. 5). Thus, observing relatively high values of either pupil metric on 

a given trial should indicate that the subject will use a larger–than–average learning rate 

when adjusting beliefs according to the outcome observed on that trial. We tested this idea 

directly, as follows.

First, we examined the relationship between pupil change, pupil average, and learning rate 

for individual subjects. We used a regression model to describe learning rate (z–scored per 

subject) in terms of pupil change and pupil average. On average, this linear regression 

computed per subject yielded a positive coefficient for pupil change (mean=0.108 zLR/zPC, 

p<0.05 for H0: mean=0) and a smaller, not statistically significant, positive coefficient for 

pupil average (mean=0.085 zLR/zPA, p=0.13; Fig. 7A).

Second, we used a simple, weighted sum of pupil change and pupil average to assess their 

combined predictive power across subjects. Using weights equal to the mean value of the 

per–subject regression coefficients from the previous analysis (Fig. 7A), the weighted sum 

was moderately predictive of learning rate across all subjects (r=0.067, p<0.001). However, 

this analysis did not take into account a systematic, negative dependence of the sum of these 

per–subject coefficients (which is related to the overall ability of the weighted sum to 

account for learning rate) on subjective hazard rate predicted by pupil dynamics (Fig. 7B). 

Subjects with low pupil–predicted hazard rates had pupil responses that were good 

predictors of learning rate. Subjects with increasingly high pupil–predicted hazard rates had 

pupil responses that were increasingly less predictive, and in some cases negatively 

predictive, of learning rate.

Third, we used a more complicated linear model that also included across–subject 

differences in pupil dynamics that related to subjective hazard rates, which markedly 

improved our overall ability to use pupil metrics to predict learning rates. This model had 

three terms: 1) the sum of pupil change and pupil average computed per trial, weighted 

according to average regression coefficients in Fig. 7A; 2) the pupil–predicted hazard rate, 
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computed per subject (see Fig 6C); and 3) the multiplicative interaction between these two 

variables. Using this model, pupil measurements could effectively predict learning rates for 

all data from all subjects (r=0.38, p<0.001). These predictions accounted for variations in 

learning rates both across (Fig. 6B) and within (Fig. 7C) subjects.

Task–independent pupil manipulation altered behavior

To examine whether the correlations between pupil measures and learning behavior might 

reflect an underlying causal process, we used an arousal manipulation that affected pupil 

diameter and measured its effects on learning behavior. In particular, we occasionally and 

without warning switched the auditory cue that preceded fixation. Subjects were told that 

these auditory–cue switches were unrelated to the task and they therefore should ignore the 

specific sounds. Nevertheless, this manipulation led to increases in both pupil average and 

pupil change on trials in which the fixation cue was switched (Fig 8A; t–test for H0: mean 

effect size=0, p<0.001 for both pupil average and pupil change). Thus, we caused consistent 

changes in the pupil measures that were correlated with the computational variables needed 

to solve the task.

This manipulation caused systematic changes in task performance that depended on baseline 

pupil diameter (Fig. 8B). For trials with relatively small baseline diameter (i.e., less than its 

per–subject median value), individual subjects tended to use larger learning rates on 

auditory–switch trials than otherwise (Fig 8B abscissa; mean across subjects=0.113, t–test 

for H0: mean=0, p<0.01). For trials with relatively large baseline diameter, subjects used 

slightly smaller learning rates on auditory–switch trials than otherwise, although this trend 

was not statistically significant (Fig 8B ordinate; mean=−0.037, p=0.35). The average 

difference in the size of these effects from small– versus large–diameter trials was >0, 

implying that the effects of this manipulation depended on baseline pupil diameter (Fig 8B 

diagonal; paired t–test, p<0.001). These effects did not result from systematic differences in 

task conditions for switch versus non–switch trials, because the same three analyses yielded 

no effects when applied to learning rates computed by our reduced Bayesian model (p>0.5).

This dependence on baseline pupil diameter is suggestive of the Yerkes–Dodson “inverted 

U” relationship between arousal and learning. According to that idea, learning is highest for 

moderate levels of arousal and lowest for either overly high or overly low levels of 

arousal20. Our subjects appeared to be consistently engaged during task performance, 

implying that we were probably not sampling overly low or high arousal states. 

Nevertheless, in a narrower range and assuming a correspondence between arousal state and 

baseline pupil diameter, we found that the relationships between learning behavior and our 

arousal manipulation were qualitatively consistent with an “inverted U.” In particular, 

auditory–switch trials tended to correspond to the largest increases in learning rate when 

baseline pupil diameter was relatively low (steepest ascent in the “inverted U”) and the 

largest decreases in learning rate when baseline pupil diameter was relatively high (steepest 

descent in the “inverted U”; Fig. 8C, open circles).

This “inverted U” relationship was also apparent in our previous pupil measurements, in two 

ways. First, across subjects, those with larger average pupil diameters during outcome 

viewing tended to use learning rates that were less, or even negatively, predicted by 
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fluctuations in pupil metrics relative to other subjects (Fig 7B). Second, subjects that had 

lower pupil–predicted hazard rates used learning rates that were positively correlated with 

pupil metrics when their baseline pupil diameter was low but negatively correlated when 

their baseline pupil diameter was high (Fig 8C, filled circles). Thus, results from both our 

pupil-manipulation and pupil-measurement experiments were consistent with an important 

role for the arousal system in the rational regulation of learning.

Discussion

We examined the relationship between pupil diameter, which is related to arousal and 

autonomic state, and learning rate, which describes the extent to which new information is 

used to adjust existing cognitive beliefs. Consistent with previous work2,22,23, we found that 

human subjects performing a predictive–inference task were most heavily influenced by 

outcomes that occurred shortly after a change point in the outcome–generating process. One 

possible mechanism for this effect is a dynamic regulation of the relative influence of 

incoming information on cortical processing3. Insights into the computations required for 

such a regulator are provided by a reduced model that approximates the ideal observer for 

the task, describes subject behavior, and bases learning rates on two parameters that we 

found to be represented in pupil measurements: change–point probability and relative 

uncertainty.

In our model, change–point probability depends on the absolute value of the most recent 

prediction error and drives increased learning after surprisingly large errors. We found that 

change–point probability was positively correlated with changes in pupil diameter. This 

relationship is consistent with early pupillometry studies that showed an inverse relationship 

between stimulus–evoked pupil responses and stimulus probability, as well as more recent 

work interpreting outcome–locked pupil responses in terms of the surprise associated with 

errors in judging uncertainty, called the risk prediction error23–25. We also found that pupil 

change was not always directly related to change–point probability, with particularly large 

pupil changes on trials with exactly zero error that might have been surprisingly rewarding 

and/or reflected an association with an atypical consequence (i.e., no possibility of updating 

the next prediction).

Relative uncertainty, the second parameter in our model, represents uncertainty about the 

true underlying mean and drives learning from outcomes that occur after a change point. We 

found that relative uncertainty was correlated with average pupil diameter. We also found 

that changes in another form of uncertainty that should not drive learning (i.e., changes in 

the standard deviation of the generative process in our task) did not lead to similar effects on 

pupil diameter. These results are complementary to a recent finding that pupil diameter 

tends to increase during exploratory decisions that occur during periods of uncertainty about 

the best available option6. These findings suggest that pupil–linked arousal systems encode 

an uncertainty signal that facilitates both learning and information–seeking behaviors.

We also found strong individual differences in task behavior that could be captured by 

fitting a prior expectation about the rate of change points (hazard rate) to behavioral data. 

We found that subjects who were fit by higher hazard–rate models tended to have larger 
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pupil dilations during the outcome–viewing period. This physiological difference arose early 

in the viewing period, consistent with the idea that these individual differences reflected a 

prior expectation about the source of the upcoming error.

We used these relationships between pupil metrics and change–point probability, relative 

uncertainty, and the hazard–rate prior to predict the extent to which subjects were influenced 

by each new outcome. We also manipulated pupil diameter using a task–irrelevant auditory 

manipulation that resulted in changes in task performance that were consistent with our 

measured relationships between pupil metrics and key task variables. These results provide 

new insights into the specific computations that are reflected in pupil diameter and establish 

their causal role in belief updating.

These computations likely involve, at least in part, neural activity in the locus coeruleus. 

One intriguing possibility is that the two key variables from our model are encoded by two 

distinct modes of locus coeruleus activation5: change–point probability, reflected in pupil 

change, is encoded by phasic activation of the locus coeruleus, whereas relative uncertainty, 

reflected in pupil average, is encoded by tonic activation of the locus coeruleus. Although 

direct confirmation is still needed, this idea is supported by several lines of evidence, 

including: 1) a compelling example of simultaneous measurements of locus coeruleus 

activity and pupil diameter in a monkey that are closely correlated5; 2) similar modulations 

of pupil diameter and locus coeruleus activity under certain task conditions, such as changes 

in utility in that affect behavioral engagement6,7; and 3) a proposed anatomical substrate 

involving common activation from the nucleus paragigantocellularis, which contributes to 

both locus coeruleus and sympathetic nervous system function4,26. The consequence of 

locus coeruleus involvement would be the task–related release of norepinephrine throughout 

the nervous system. Consistent with our results, norepinephrine release is thought to permit 

or facilitate changes in behavior that follow unexpected changes in the environment and 

learning in general, possibly by modulating experience–dependent neural plasticity3,27–32.

More generally, our results are consistent with the idea that brain areas that regulate the 

influence of newly arriving information on existing beliefs are also strongly linked to 

arousal and autonomic function1,3,6,7,25,33,34. These areas likely include not just the locus 

coeruleus but also the anterior cingulate cortex (ACC), which has strong reciprocal 

connections with the locus coeruleus and whose activity encodes several signals closely 

related to change–point probability, including unsigned prediction errors and learning 

rates1,5,21,35. This arousal system appears to govern not simply overall alertness or other 

non–specific factors that might affect overall task performance, but rather a computationally 

sophisticated process that rationally regulates the influence of new sensory information in a 

dynamic environment. These computations take into account both ongoing processing of 

task–relevant variables like change–point probability and relative uncertainty and state 

variables including prior expectations about the rate of change. These factors are combined 

in a manner that is consistent with the Yerkes–Dodson “inverted U” relationship between 

arousal level and learning rate (Fig. 8C)20.

In summary, our work suggests a relationship between arousal state and learning rate that is 

likely a result of a coordinated learning–arousal network including the locus coeruleus and 
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ACC. The representation of normative learning variables in this network suggests that subtle 

changes in arousal might reflect rational regulation of the influence of new information on 

ongoing inferences about a dynamic world.

Methods

Predictive–inference task

Human subject protocols were approved by the University of Pennsylvania Internal Review 

Board. Thirty subjects (19 female, 11 male; age range = 19–29 years) participated in the 

primary study and an independent sample of 29 subjects (17 female, 12 male; age range = 

19–25 years) participated in the arousal manipulation study after providing informed 

consent. Both studies used a predictive–inference task that required subjects to predict each 

subsequent number to be presented in a series2. For each trial t, a single integer (Xt) was 

presented that was a rounded pick sampled independently and identically from a Gaussian 

distribution whose mean (µt) changed at unsignaled change points and whose standard 

deviation (σt) was fixed to either 5 or 10 within each block of 200 trials. Change points 

occurred with a probability of zero for the first three trials following a change point and 0.1 

for all trials thereafter.

To facilitate measurements of non–luminance–mediated effects on pupil diameter, we used a 

different visual display and task timing than in our previous study2. Subjects were shown a 

numeric representation of their current prediction at a central location on a CRT monitor. 

Background screen pixels were a checkerboard of light and dark pixels (mean±STD 

luminance in a circle with radius 6.5 cm= 0.457±0.010 cd/m2). Numbers were drawn in an 

intermediate gray color (0.445±0.005 cd/m2). When viewed passively by a control group of 

four subjects outside of the context of the predictive–inference task, no individual stimulus 

(number) had a significant effect on average pupil diameter or evoked changes in pupil 

diameter (t–test for H0: equal means between each stimulus and all others, p>0.3 for all 

stimuli after correcting for multiple comparisons), nor did the number of digits contained 

within the stimulus affect either pupil variable (p>0.4).

For each trial, the subject indicated his or her updated prediction using a video gamepad. 

Each prediction was constrained to be between the previous prediction and the most recent 

outcome, thus limiting learning rates to between zero and one. After the new prediction was 

chosen, the numeric representation of this prediction disappeared, an auditory cue was 

played, and a numeric representation of the new outcome was shown. Subjects were 

instructed to fixate centrally for 2 s at this point; failure to do so (within a square window, 9° 

per side) resulted in a tone indicating a fixation error. After 2 s the new outcome 

disappeared, the prediction re–appeared, and an auditory cue was played to indicate that the 

prediction should be updated. Fourteen subjects also participated in a control version of the 

task in which the prediction was reset after viewing the new outcome to reflect an update 

equivalent to a learning rate of 0.5. For this task, the same motor output (in terms of number 

or duration of button presses) was required to use a learning rate of either zero or one on 

each trial.
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Subjects were told that the numbers were generated from a noisy process and that several 

discreet change points would occur over the course of the task. They were instructed to 

make a prediction on each trial (Bt) such that the average error made on all predictions, ‹|Bt – 

Xt|›, would be minimized. Payout depended on how well they achieved this goal, as 

described previously2.

The pupil–manipulation task was identical to primary version of the task, except that the 

auditory cue played at the beginning of fixation was occasionally switched to another sound 

from a library of 31 sound effects downloaded from an online library. Sounds were 0.09–1.4 

s in duration (mean±STD = 0.72±0.42 s) and played at 56–70 dB (A–weighted; mean±STD 

= 62.5±3.9 dB). Switch trials occurred at random, with a probability of 0.1 on the 9 trials 

following a switch, 0.8 thereafter. On switch trials, the given sound was played, on average, 

7 dB louder than otherwise. Seven of 29 subjects completing the pupil–manipulation task 

were excluded from further analyses because of an excessive number of fixation errors 

(blinks or lost fixation on >40 percent of trials).

Pupil–diameter measurements

Pupil diameter was sampled at 120 Hz and recorded throughout the task using an infrared 

video eye–tracker (ASL, Inc.). Blinks were identified using a custom blink filter based on 

pupil diameter and vertical and horizontal eye position, then removed by linear interpolation 

of values measured just before and after each identified blink. Blink–filtered diameter was 

low–pass filtered using a Butterworth filter with a cutoff frequency of 3.75 Hz. These 

filtered measurements were then z–scored within each session.

All analyses excluded trials in which blinks or fixation errors during outcome viewing were 

detected online (these events were followed by a beep to remind the subject to minimize 

their occurrence). The first 20 trials from each block were also excluded to avoid possible 

changes in average luminance at block boundaries. Pupil average was computed for each 

trial by taking the mean of all 240 z–scored pupil measurements from the 2 s–long outcome–

viewing period of the trial. Pupil change was computed for each trial by subtracting the 

average pupil measurement from early in the outcome–viewing period (0–1 s after outcome 

presentation) from the average pupil measurement from late in the outcome–viewing period 

(1–2 s after outcome presentation). Trials that included blinks that were detected offline (but 

not online) were used to compute pupil average by interpolating values from just before and 

just after the blink. These trials were not used to compute pupil change, which was much 

more sensitive to the timing of blinks.

Reduced Bayesian model

Optimal performance on the predictive–inference requires inferring the probability 

distribution over possible outcomes on the next timestep, given all previous data and the 

process by which those data were generated: p(Xt +1|X1:t). Because the relationship between 

the data on the next timestep is independent of all previous data conditioned on the mean of 

the current distribution (µ), the solution can be formulated in terms of µ:
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[1]

and the probability distribution over possible means given previous data can be inverted 

according to Bayes’ rule:

[2]

Although computationally tractable solutions to this problem exist, these solutions specify 

learning rates that are complicated functions of either the probability distribution over all 

possible means1 or over all possible "runs" of non–change–point trials 19. To simplify the 

algorithm, the reduced model computes the posterior probability distribution over possible 

means as described above but maintains only the first two moments of this distribution. This 

assumption massively reduces the number of required computations but has minimal effects 

on performance2. An added advantage of this model is that it can be formulated as a delta 

rule:

[3]

where B is the belief about the mean of the underlying distribution; α is the learning rate; 

and δ is the prediction error, which is the difference between the actual and predicted 

outcome. The learning rate depends on two variables that are updated on each trial:

[4]

where change–point probability (Ω) reflects the probability that µt is not equal to µt−1, and 

relative uncertainty (τ) reflects the variance on the predictive distribution in µ(i.e., 

uncertainty about the location of the mean) divided by the variance on the predictive 

distribution in X (i.e., total uncertainty about the location of the next outcome).

Performance of the reduced Bayesian model also depends on an expectation about the prior 

probability on change points, or the hazard rate. Specifically, hazard rate directly influences 

the computation of change–point probability on each trial:

[5]

Where U and N represent uniform and normal distributions, respectively; H is the hazard 

rate; Bt is the model’s prediction on trial t; and σ2 is the total variance on the predictive 

distribution, which is discussed below. We incorporated hazard rate into the model in two 

ways: 1) using the true generative hazard rate for trials in which a change point did not 

recently occur (0.1) or 2) by fitting the model to behavior by minimizing the total squared 

difference between subject and model predictions using a constrained search algorithm 

(fmincon in MATLAB) with hazard rate as a free parameter.
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The total variance on the predictive distribution in the model comes from two sources:

[6]

The first source is the standard deviation on the outcome–generating distribution (N). The 

second source is uncertainty about the mean of that distribution and depends on both N and 

relative uncertainty (τ). Here we set N to be the actual experimental standard deviation, but 

we update τ after each outcome according to the variance on the predictive distribution over 

possible means:

[7]

such that if a change point occurs, relative uncertainty is reset to 0.5 (first term in 

numerator); if a change point does not occur, relative uncertainty is reduced (second term in 

numerator); and if the model is uncertain about whether a change point occurred, relative 

uncertainty is increased to reflect this uncertainty (third term in numerator).

Statistical analyses

Trial–by–trial values of pupil average and pupil change were each z–scored for the full 

session (zPA and zPC, respectively) and then fit with a linear regression model using four 

parameters: 1) change–point probability, computed by the reduced Bayesian model for each 

trial; 2) relative uncertainty, computed by the reduced Bayesian model for each trial; 3) 

noise, the standard deviation of the outcome–generating distribution; and 4) a binary vector 

specifying whether or not the subject correctly predicted the outcome on that trial. We also 

used a larger model that, in addition to the above four parameters, included: the average 

horizontal and vertical eye position and the change in horizontal and vertical eye position 

measured during the outcome –viewing period; the subject’s prediction and the computer–

generated outcome from the current trial; the pupil change measured on the previous trial; 

and the trial number within the block and within the session.

Pupil–predicted hazard rates were derived from pupil measurements and the reduced 

Bayesian model as follows. First, we inferred the subjective hazard rate used by each subject 

by fitting his or her behavioral data to the reduced Bayesian model with hazard rate (H) as 

the only free parameter. Next, we fit a linear regression model explaining H in terms of 

pupil measurements. That model had two terms, computed per subject: 1) the mean value of 

pupil average, and 2) an index of pupil dynamics. The index was computed as the mean 

value of the dot product of trial–by–trial pupil measurements and the mean–subtracted curve 

shown in Fig. 6B. Finally, we used the coefficients from a linear fit that excluded the data 

from an individual subject to combine the mean pupil average and pupil–dynamics index 

(from the excluded subject) into a pupil–predicted hazard rate for that subject.

Pupil–predicted learning rates were computed according to the relationships between pupil 

metrics and model parameters. Linear fits to the relationship between pupil average and 

relative uncertainty were computed for each subject, and these fits were used estimate 
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relative uncertainty for each trial–by–trial measurement of pupil diameter. Linear fits to the 

relationship between pupil change and change–point probability were computed for each 

subject, and these fits were used to estimate change–point probability for each trial–by–trial 

measurement of pupil change. To compute predicted learning rates, the two predicted model 

quantities were combined according to Eq. 4. We also used a more complex linear model 

that took into account pupil–predicted hazard rates; see text for details.

Arousal-induced learning effects for the inverted–U analyses were computed separately for 

sound–manipulation and non–manipulation sessions. For sound–manipulation sessions, 

learning rates were fit to a cumulative Weibull as a function of error magnitude for each 

subject and noise condition, to account for the relationship shown in Fig. 4A. Residuals from 

this fit, which reflected error-independent variability in learning rate, were z–scored per 

subject. Initial pupil diameter, as measured by the average diameter during the first 100 ms 

of the outcome phase, was also z–scored per subject. Data were binned across subjects 

according to the initial diameter z–score. The effect of the sound manipulation was 

computed as a signed d’ describing the difference in the z–scored residual learning rates 

used on auditory shift versus non–auditory shift trials. For non–manipulation sessions, the 

relationship between pupil metrics and learning rate was characterized only for subjects with 

low pupil–predicted hazard rates (<0.6). Subjects with high pupil–predicted hazard rates 

tended to have small or negative relationships between pupil metrics and learning rate and 

thus were omitted from this analysis. Arousal effect size was computed as the correlation 

coefficient between the weighted sum of pupil metrics and learning rate, each z–scored per 

subject (positive/negative values indicate that learning rates tended to increase/decrease as 

pupil effects increased) for equally sized bins of baseline pupil diameter (z–scored per 

subject).
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Figure 1. 
Predictive–inference task sequence and pupillometry. Learning rate was computed by 

dividing the difference in the prediction from one trial to the next by the difference between 

the current outcome and the current prediction. Inset: mean±SEM pupil diameter, averaged 

across z–scores computed per subject, aligned to outcome presentation (time=0). Pupil 

average was computed for each trial as the mean pupil diameter, z–scored by subject, across 

the entire 2–s fixation window (vertical dashed lines). Pupil change was computed for each 

trial as the difference in mean diameter, z–scored by subject, measured late (time=1–2s) 

versus early (time=0–1s) during fixation.
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Figure 2. 
Task performance. A, Learning rates were highest after subjects made larger errors, scaled 

by noise (as indicated). Points and errorbars are mean±SEM from all subjects. B, Learning 

rates were highest on change–point trials and decayed thereafter, similarly for both noise 

conditions. Points and errorbars are mean±SEM from all subjects. C, Learning–rate 

distributions across all trials from each of the 30 subjects (abscissa), sorted by median 

learning rate. Horizontal line, box, and whiskers indicate median, 25th/75th percentiles, and 

5th/95th percentiles, respectively.
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Figure 3. 
Reduced Bayesian model. A, Learning rate as a function of change–point probability 

(abscissa) and relative uncertainty (line shading), as computed by the model. B, Change–

point probability computed by the model as a function of error magnitude (abscissa) for the 

two different noise conditions, as indicated, computed for a given relative uncertainty (equal 

to 0.02 for this figure). C, Mean±SEM relative uncertainty computed by the model aligned 

to change points from all sequences experienced by the subjects for the two different noise 

conditions. D, Trial–by–trial comparison of subject and model learning rates. Model 
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learning rates were computed using the same sequence of outcomes experienced by each 

subject. Points and error bars are mean±SEM data from all subjects grouped into 20 five–

percentile bins according to the corresponding model learning rate. The solid line is a linear 

fit to the unbinned data (r=0.33, p<0.001).
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Figure 4. 
Relationship between pupil change and change–point probability. A, Mean±SEM pupil 

change from all trials and all subjects for running bins of 150 trials, binned according to the 

absolute prediction error and sorted by noise, as indicated. B, Regression coefficients 

describing the linear relationship between change point–probability (pCH) and z–scored 

pupil change (zpc, ordinate) versus the regression coefficients describing the linear 

relationship between pCH and z–scored pupil average (zPA, abscissa). Points are regression 

coefficients computed for each subject individually, using the four–parameter regression 

model. Arrows indicate mean values from this model (dark, equal to 0.174 zPC/pCH, t-test 

for H0: mean=0, p<0.001 for the ordinate, −0.022 zPA/pCH, p=0.58 for the abscissa) or from 

the full model (light, equal to 0.148 zPC/pCH, p<0.001 for the ordinate, −0.014 zPA/pCH, 

p=0.70 for the abscissa). Dark arrows are partially occluded by light ones. C, Change–point 

probability from the reduced Bayesian model versus pupil change. Points and error bars are 

mean±SEM data from all subjects grouped into 20 five–percentile bins. The solid line is a 

linear fit to the unbinned data (slope = 0.012 pCH/zPC, p<0.001 for H0: slope=0).
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Figure 5. 
Relationship between pupil diameter and relative uncertainty. A, Mean±SEM pupil average 

from all subjects as a function of trials relative to task change points. Asterisk indicates trials 

differing significantly from all other trials (permutation test for H0: equal means after 

correction for multiple comparisons, p<0.05). B, Regression coefficients describing the 

relationship between relative uncertainty (RU) and z–scored pupil change (zpc, ordinate) 

versus the regression coefficients describing the relationship between RU and z–scored pupil 

average (zPA, abscissa). Points are regression coefficients computed for each subject 

individually, using the four–parameter regression model. Arrows indicate mean values from 

this model (dark, equal to 0.135 zPC/RU, t-test for H0: mean=0, p=0.28 for the ordinate, 0.35 

zPA/RU, p<0.05 for the abscissa) or from the full model (light, equal to 0.127 zPC/RU, 

p=0.24 for the ordinate, 0.40 zPA/RU, p<0.01 for the abscissa). Dark arrows are partially 

occluded by light ones. C, Relative uncertainty from the reduced Bayesian model versus 

pupil average. Points and error bars are mean±SEM data from all subjects grouped into 20 

five–percentile bins. The solid line is a linear regression to unbinned data (slope = 0.0055 

RU/zPA, p<0.001 for H0: slope=0).
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Figure 6. 
Individual differences in learning rate, hazard rate, and pupil diameter. A, Mean learning 

rate per subject versus the hazard rate of the reduced Bayesian model that best fit that 

subject’s performance (points). The solid line is a linear fit (r=0.93, p<0.001). B, Regression 

coefficients describing the relationship between fit hazard rates and bin–by–bin pupil 

measurements across subjects, computed in sliding 8.3–ms bins and aligned to outcome 

presentation (time=0). Dotted lines indicate 95% confidence intervals. C, Relationship 

between pupil–predicted hazard rate and average learning rate for each subject (points). 

Pupil–predicted hazard rates were computed using a linear regression model that included 

both shape and magnitude of the average pupil response for each subject (see Methods). The 

solid line is a linear fit (r=0.59, p<0.001).
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Figure 7. 
Pupil metrics predict learning rate. A, Regression coefficients describing the linear, trial–

by–trial relationships between pupil change and the subsequent learning rate (ordinate) and 

between pupil average and the subsequent learning rate (abscissa). Points are regression 

coefficients computed for each subject individually, using a four–parameter regression 

model that also included trial number and block number as covariates. B, The relationship 

between learning rate and pupil parameters depended on the subject’s baseline pupil 

response. For each subject, the sum of the regression coefficients from panel A are plotted as 

a function of the pupil–predicted hazard rate from Figure 6C. The line is a linear fit (r= 

−0.059, p<0.001). C, Predicted versus actual learning rate. Both values are z–scored per 

subject. Data from all subjects are grouped into 20 equally sized bins of predicted learning 

rate. The line is a linear fit to the unbinned data (Slope = 0.052 zActual/zPredicted, p<0.001 

for H0: slope=0).
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Figure 8. 
Effects of the pupil manipulation. A, Evoked changes in pupil diameter. For each subject, 

pupil average (ordinate) and pupil change (abscissa) were z–scored across all trials. Each 

point represents the difference in the mean z–scores for auditory switch versus non–switch 

trials for an individual subject. Positive values indicate larger values on switch trials. B, 

Evoked changes in learning behavior. For each subject, learning rate was z–scored across all 

trials and fit to a cumulative Weibull as a function of error magnitude for each noise 

condition, to account for the relationship shown in Fig. 4A. Each point represents the 

difference in the mean value of the residuals from these fits for auditory switch versus non–

switch trials for an individual subject, separated by trials in which the initial pupil diameter 

was smaller (ordinate) or larger (abscissa) than its median value. Positive values indicate 

larger learning rates on auditory switch trials. C, A possible relationship between learning 

and arousal based on an “inverted U” (light gray, modeled as Gaussian). A given change in 

learning for a given a change in pupil metrics (ordinate), plotted as a function of baseline 

pupil diameter (abscissa), is shown for: 1) the hypothesized Gaussian (its derivative is 

shown in dark gray), 2) the measured effects of the auditory manipulation (open points), and 

3) the measured relationship between pupil metrics and learning rate during non-

manipulation sessions. See Methods for details.
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