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ABSTRACT: The present work aims at performing prediction
validation for the physical properties of coke layered and nonlayered
hybrid pelletized sinter (HPS) using artificial neural networks
(ANNs). Physical property analyses were experimentally performed
on the two HPS products. The ANN model was then trained to obtain
the best prediction results with the grid-search hyper-parameter tuning
method. The learning rate, momentum constant, and the number of
neurons varied over specified ranges. The binary variable conversion
was utilized to assess the two sintering processes. The nonlayered HPS
product of 4 mm micropellets at basicity 1.75 and using 8% coke
shows a good combination of physical properties, whereas HPS of 4
mm micropellets at 1.5 basicity using 4% coke as fuel and 2% coke as
layering gives a radical improvement in physical properties. The yield
of the HPS product is 96.07%, with the shatter index (SI), tumbler
index (TI), and abrasion index (AI) values being 86.12, 79.60, and 5.74%, respectively. Hence, HPS can be preferred by
implementing the layering of coke powder. The prediction analyses showed that the multilayer perceptron model (MLP) network
with a 4-29-5 structure showed prediction accuracies of over 99.99% and a mean squared error (MSE) of 2.87 × 10−4. It verifies the
accuracy and prediction effectiveness of the hyper-parameter-tuned ANN model.

1. INTRODUCTION
Iron ore is the most valuable, finite, and nonrenewable
resource for iron and steel making. High reaction efficiency
and enhanced heat transfer characteristics make the blast
furnace (BF) promising for modern iron production. There is a
growing tendency in the production of steel as iron and steel
are widely used in modern civilization. The growing tendency
has led to the depletion of high-quality iron ore resources and
the agglomeration processes to achieve a homogeneous
material’s size that could ensure a suitable operation in the
furnace. There are five iron ore agglomeration technologies
such as briquetting, nodulization, extrusion, pelletization, and
sintering. However, sinter and pellets are two dominant blast
furnace burdens. Indian iron ores are friable in nature, and this
leads to the generation of fines during various stages of mining.
These fines were of no use and usually get exported at very
fewer values because of their unsuitability for blast furnace
operations until sintering came into the scenario. Utilization of
fines in the blast furnace reduces surface porosity. However,
these fines are rich in minerals and utilization of fines is the
need of hour.
Iron ore, coke, sinter, and limestone are the primary raw

materials required to be fed into the blast furnace. Sintering
can be considered as a traditional thermal agglomeration
technique. Sinter is used as a feed material of the blast furnace

to enhance productivity and reduce fuel consumption. For a
successful sintering process, a mixture of iron ore (−10 mm +
100 μ), return fines, coke breeze, flux (limestone, dolomite,
olivine, serpentine, etc.), and moisture is mixed uniformly and
charged at the top of sinter strand. The feed sample is ignited
to a higher temperature of around 1200−1300 °C and the
blower attached at the bottom of the bed sucks the combustion
front, thus letting the hot air to roast the feed material and pass
through the sinter bed. The sintering process produces iron ore
agglomeration of size 10−40 mm with better reducibility
values than lumps. Utilization of a higher proportion of quality
agglomerates in the burden increases the productivity of the
blast furnace. The sintering process increases the productivity
and reduces the requirement of fuel, flux, and operation time.
Iron ore of Indian origin shows a typical characterization

result. These iron-bearing minerals are generally soft and
friable due to the presence of ochreous goethite.1 A bulk
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amount of fines is generated over time, mostly during the
classification of ores through crushing, grinding, screening, and
beneficiation processes. Even though a part of these generated
high-grade fines is used directly in the existing agglomeration
process as a feed material, most of its low and medium-grade
ores remain unused. Upgradation of the Fe value through the
beneficiation route is needed. The fine concentrate is
generated as the liberation of iron phase minerals is at finer
sizes. It can be used as a feed material for making pellets
through the pelletization route.
In general, the pelletization of iron ore is a process where the

feed is a mixture of high-grade hematite/magnetite ore mixed
with a binder, coke breeze, and limestone as additives to form
green pellets. Then, pellets are indurated at high temperatures
to maintain requisite metallurgical properties for producing
iron and steel. The heat-hardening process of pelletization is an
energy-intensive process.2 The sintering process is an
alternative to using the fine concentrate through the hybrid-
pellet sintering process to maintain bed permeability by
reducing the overall energy consumption of making iron and
steel.3 Effective utilization of low and lean-grade iron ore fines
is a critical issue from both environmental and economic
points of view.
The hybrid pelletized sintering (HPS) process comes into

the frontline to overcome these problems and maximize the
utilization of iron ore fines. To utilize the iron ore fines in
plants, Nippon Kokan Keihin company (presently, JFE Steel
Corporation) developed the HPS process.4 Investigators have
tried to improve the utilization of iron ore fines in sinter beds
by making HPS.5,6 The HPS process is a modified form of the
conventional sintering process. In this HPS process, iron ore
fines are pelletized to produce micro pellets. Green micro-
pellets are then layered with coke powder before being charged
into the sinter strand. Sinter pot tests have confirmed the
benefits of the preferential addition of coke onto the surface of
the green balls and the superior properties of the final
agglomerates produced using the HPS process.7 In this
process, the return fines act as the nucleus, and lime acts as
the agglomerating agent. The HPS process allows the maximal
use of iron ore fines with no loss of productivity. Hence,
compared to the conventional sintering process, the HPS
process can produce lower SiO2 sinter of good strength due to
the formation of solid diffusion bonding during sintering.3

Implementing the sintering technique in blast furnaces came
into existence because of its uniqueness in obtaining a product
with a desirable composition to be used as a burden material
for the BF. Moreover, as an essential input parameter in blast
furnaces, the stable chemical composition of the sintered
product.8 Preference is given to the iron content (Fe), alumina
(Al2O3), calcium (CaO), and magnesium (MgO) and the
amount of basicity, while studying the chemical composition of
the sintered product.9−12 Sinters need to have high cold
strength (commonly defined by the tumbler index (TI)), low
reduction degradation index (RDI), and high reducibility index
(RI).8 Iron ore sinters’ structure and characteristics mainly
depend on the chemistry of the raw material fed into the sinter
pot, the size distribution of every particle, and the process
parameters like the percentage and size of the coke required,
the portion of the addition of the return fines and maintaining
basicity. Reports suggest that having 0.212−3.35 mm coke size
gives a stable, homogenous, and regular blast furnace
operation.13,14 Another vital parameter that needs to be
focused on during the experiment is the sinter bed’s

permeability. It has been conveyed that we get an adequately
packed sinter bed for a size range of 3−6 mm micropellets.15
Laitinen and Saxeń16 noted that understanding the relation-

ship between the composition of bedding pile, quality of sinter,
and plant performance is a highly complex study, and to date,
no suitable mathematical and statistical models have been
developed to describe these interdependent relations accu-
rately. Zhang et al.17 confirmed that multi-objective
optimization is necessary for better understanding of the
sintering process and its parameters. Specific parameters like
the complex systems of quality, cost, energy consumption, and
output must be mathematically correlated under transient
states with the corresponding emphasis on production.
Shigaki and Narazaki18 presented a multi-layered neural

network using a machine learning approach. The operational
rules were optimized for the sintering process in the iron and
steel-making plant to obtain the products meeting the given
quality specifications. Song et al.19 developed a neural network-
based machine learning algorithm to predict the sinter quality.
The analysis was performed on the data collected from various
sources. The drum index and screening index were studied via
cluster analysis. The prediction accuracy of the classification
and regression models was observed to have good general-
ization ability, and accurate sinter quality indices were realized.
Shao et al.20 noted the strong input−output relation in the
sintering process parameters. The characteristic nonlinearity
and considerable time delays in the overall sintering processes
upon variations with process parameters led to the develop-
ment of neural network models with high prediction accuracy
and more vital self-learning ability. Er et al.21 performed a
prediction analysis for the quality of chemical components in
finished sinter minerals. The input and output data were
correlated using hybrid fuzzy neural networks (FNN) and
genetic algorithms (GA). The backpropagation algorithm was
employed in online operations to improve system precision.
The results demonstrated excellent prediction performance
and accuracy of the system. Wang et al.22 employed back
propagation neural networks for cost predictions in actual
sintering productions. The process employed conjugate
gradient algorithms with an inexact line search route on the
generalized curry principle. Prediction accuracies of over 94%
were observed.
The above-discussed models were developed for single

sintering processes and focused on limited quality indices. The
variations in the sintering process parameters significantly
affect the physicochemical properties of sintered products, as
well as the associated yields and productivity. Optimizing and
validating these processes can immediately prove beneficial for
industrial productivity, cost, energy benefits, and the quality of
sinter ores. The present ANN-based study correlates two
sintering processes (conventional sintering and HPS) in a
unified model. In varying percentages, the layered and
nonlayered samples were tested for sinter development with
varying basicity and micropellet sizes. The exact yield,
productivity, SI, TI, and AI were analyzed to distinguish the
effects of variations in sinter input parameters. The ANN
model employs hyperparameter tuning to predict and validate
resultant physical properties accurately. The consequent
predicted values are studied via statistical techniques and
plot presentations.
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2. MATERIALS AND METHODS
2.1. Materials. Iron ore having a Fe content of 60.46% and

a size fraction −10 mm was collected from a mine in the Barbil
region, Keonjhar, Odisha. Scrubbing followed by beneficiation
was carried out to improve the Fe (T) to 62.47%. The
scrubbing study of the said sample was reported in an earlier
published article by Sahoo et al.1 Coke breeze was used as solid
fuel and limestone as a flux for this sintering experiment. The
proximate analysis of the coke breeze used in the sintering
experiment is shown below in Table 1. The as-received coke
breeze was crushed and screened to obtain a −4 + 3 mm size.
The limestone was crushed and ground to 100 μm.

2.2. Experimental HPS Process. During the size
reduction and beneficiation process, iron ore fines were
generated. These iron ore fines were appropriately mixed and
considered for pelletization in a disc pelletizer (1 m diameter).
Different micropellets (1−5 mm) were produced to be used as
a feed material in the sinter pot for the HPS process. A
laboratory-scale sinter pot (25 kg) was used to carry out the
sintering experiments, where the experiments were done in
batch mode. Two sets of experiments were carried out to study
the improvement in sinter characteristics. The first sets of
experiments were carried out using micropellets without coke
layering called NL-HPS (Nonlayered: NL), and the second set
of experiments with coke powder layering called L-HPS
(Layered: L). Besides, the micropellet coating was done at the
end of the pelletization process by adding 2% of coke powder
to the disc pelletizer. However, the total coke percentage in
both sets of experiments was identical. For a broader range of
HPS-related experiments, parameters like the coke %, size of
micropellets, and basicity percentage are given in Table 2. The
schematic diagram depicting the sintering process is shown in
Figure 1. The sinter mechanical properties like SI, TI, AI, and
metallurgical properties like RI and RDI were tested for each
experiment to generate the datasheet for ANN modeling.
2.3. ANN Approach. The existence of multiple sintering

processes and a more extensive set of parametric variations
leads to the development of a complex and less accurate
correlation for predicting the input requirements as per
production needs. These problems are recently being
addressed using ANNs. The ANNs are an interconnected set
of artificial neurons to mathematically correlate the input set of
variables to their corresponding outputs. The networks possess
self-learning capability via algorithms, enabling them to
produce optimized results. It is primarily achieved via
backpropagation analysis, where the errors are evaluated at
each step to perfect the prediction outputs.

3. RESULTS AND DISCUSSION
The physical properties of all sets of sinters from the two
groups of the experiment by varying the size of micropellets (1,
2, 3, 4, and 5) were carried out, and it was noted that 4 mm
micropellet size improved yield and productivity with relatively
higher SI and TI values and lower AI values. Tables 3 and 4
represent the best set of results. From all stages of data
generated using without layering of coke, it is observed from

Table 3 that L043 gives the best physical properties. As
presented in Table 3, to conduct the L043 experiment, 8% coke
and 2% basicity were used. Table 4 shows the physical
properties of data generated using 2% coke layering on the
micro-pellet size of 4 mm. It is perceptible that H43 gives the
best result for physical properties, considering 6% coke and
1.75% basicity. There is a minor variation in the physical
properties of G43 and H43. From Table 4, it is seen that G43
requires 4% coke and 1.5% as basicity. As the consumption of
both coke and limestone is comparatively less in G43 than in
H43, G43 is preferable. Comparing all data sets from Tables 3
and 4 shows the necessity of coke layering on micropellets to
get results with higher yield and productivity, better SI and TI,
and low AI.
3.1. ANN Model Development. The qualitative and

quantitative evaluation techniques in the sintering processes
are discussed in the previous sections. The experimental
limitations of repetition and optimization occur via resource
availability, process cost, and testing. This limits the validation
of the performance parameters via standard statistical
techniques. An ANN simulates the biological nervous system
structure to model nonlinear relationships and develop data
prediction methods. This is achieved by similar learning and
training methods to correlate the input and target variables. In
the present work, a unified ANN model is developed and
tuned by performing analysis over a range of hyperparameters,
viz., the learning rate, the momentum constant, and the
number of neurons.23 The grid search-based hyper-parameter
tuning method was employed in the present model. The

Table 1. Proximate and Ultimate Analysis of Coke Breeze

fixed carbon, % moisture, % ash, % volatile matter, %

85.71 2.7 8.42 3.16

Table 2. Different Parametric Studies for Coke-Coated and
Uncoated Micro-Pellets Based on HPS Experimentsa

experiment code

details of the experiment

coke % basicity

without coke powder layering
A0i3 2 1.5
B0i3 4 1.5
C0i3 6 1.5
D0i3 8 1.5
E0i3 2 1.75
F0i3 4 1.75
G0i3 6 1.75
H0i3 8 1.75
I0i3 2 2
J0i3 4 2
K0i3 6 2
L0i3 8 2

2% coke powder layering
Ai3 0 1.5
Bi3 2 1.5
Ci3 4 1.5
Di3 6 1.5
Ei3 0 1.75
Fi3 2 1.75
Gi3 4 1.75
Hi3 6 1.75
Ii3 0 2
Ji3 2 2
Ki3 4 2
Li3 6 2

ai denotes the micropellet size of 1, 2, 3, 4, and 5 mm. 1 mm refers to
−2 + 1 mm and so for other sizes of micropellets.
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method uses the brute force approach to explore every possible
combination of hyper-parameters in the model to estimate
model performance and then select the best possible
performance combinations. The coke %, basicity, and micro-
pellet size are input parameters. The output parameters are
yield percentage, productivity, SI, TI, and AI. Besides,
Beskardes et al.24 opted a similar procedure for the RDI
estimation of the sinter via correlating multiple input and
output parameters. The best model performance is obtained by
the least mean squared error values (eq 1).25

=
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ÅÅÅÅÅ
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ÑÑÑÑÑX X

n
MSE

( )Exp ANN
2

(1)

The neural network hyper-parameters are deterministic
variables defining the network structure for training, learning,
prediction fitting, and obtaining the best possible overall

minima/maxima. The number of layers in the neural network
is noted to improve the accuracy of the network. The direct
correlation between the input and output layer is often
reported to cause network under-fitting. It is resolved by
adding a hidden layer(s) with varying numbers of neurons.
The addition of multiple hidden layers might improve the
model’s accuracy. The parallel consequence of the same exists
in the form of significantly larger training times and a higher
probability of over-fitting validation curves. The learning rates
in the neural networks control the weight variation factors for
prediction optimizations. The lower learning rates cautiously
increase weights, leading to higher precision, but with more
significant analysis times.
Similarly, higher learning rates lead to nonconvergence of

the solution, as no optima may occur due to higher losses and
overshooting ranges. The momentum constants are added to
the neural networks to increase weights over previous
iterations, which speeds up the learning rates and simulta-
neously assists in overcoming the local minima of the
prediction topologies via overshooting against minor opposing
gradients. The neurons determine the learning behavior of the
neural networks.
Figure 2 represents the flowchart adopted for data prediction

model development using the ANN. The statistical analysis
and hyper-parameter tuning methodologies are accounted for
using the workflow method presented above. The input and
output data sets are normalized between −1 and 1 using eq
2.26 This plays significance in evaluating the dataset on a
common scale as opposed to varying orders of values found in
experimental techniques. The layered and nonlayered surfaces
are presented as input parameters using the data trans-
formation technique to perform simultaneous assessment for
both experimental methodologies. This is enabled by giving
the value ’1′ and ’0′ for prioritizing and limiting, respectively,
the methods during the training of the ANN model (Table 5).

=Y
X X X

X X
2

i
i max min

max min (2)

The dataset matrix obtained after normalization and data
transformation is then divided into training, validation, and
testing subsets with a ratio of 70, 15, and 15%, respectively.
The 120 points data set is analyzed from the experiments
performed at the research facility at CSIR-IMMT, Bhubanes-
war, Odisha, India. The Levenberg−Marquardt (LM) back-
propagation algorithm has been selected as the training
algorithm for the present model that employs the Gauss−
Newton and gradient descent techniques for updating the

Figure 1. Process flowsheet for the HPS process.

Table 3. Physical Properties of NL-HPS Sintered Products

sinter code yield, % productivity, t/(m2 d) SI, % TI, % AI, %

A043 47.30 36.50 37.48 36.23 8.50
B043 57.19 44.13 50.02 49.38 8.49
C043 62.01 47.85 55.05 53.39 7.05
D043 64.92 50.09 58.20 57.61 5.53
E043 48.84 37.68 43.09 42.26 8.41
F043 60.76 46.88 63.29 62.90 8.02
G043 68.50 52.85 70.00 69.37 6.40
H043 71.00 54.78 70.58 69.80 5.30
I043 48.05 37.08 44.16 43.05 8.20
J043 60.33 46.55 65.29 63.60 8.12
K043 68.93 53.19 69.02 68.97 7.10
L043 71.43 55.12 70.23 69.00 5.52

Table 4. Physical Properties of L-HPS Sintered Products

sinter code yield, % productivity, t/(m2 d) SI, % TI, % AI, %

A43 20.00 15.43 53.61 43.82 12.03
B43 75.20 58.02 73.61 63.82 10.03
C43 98.26 72.54 86.06 79.04 5.80
D43 98.31 73.00 86.85 80.27 5.01
E43 22.74 17.51 53.63 43.93 11.57
F43 76.49 58.95 73.50 63.93 9.57
G43 96.07 72.07 86.12 79.60 5.74
H43 98.39 73.01 86.00 79.85 5.32
I43 22.80 17.59 53.84 44.05 11.53
J43 76.93 59.35 73.84 64.05 9.60
K43 96.00 72.00 80.00 79.50 5.74
L43 98.00 72.19 86.17 79.30 5.77
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solutions after each iteration by minimizing the damping factor
and smoothening the solution to optimal values. The gradient
descent with momentum (LEARNGDM) learning function,
tangent sigmoid (TANSIG) (eq 3), and linear activation
(PURELIN) (eq 4) transfer functions are employed in the
present work. This enables the update of weights and biases by
backpropagation while simultaneously calculating multiple
nonlinear regressions at high speeds. The transfer functions
allow the communicating medium between the neural layers.27

The learngdm function updates the weights using eq 5, where,

=
+

x
x

Tansig( )
2

1 exp( 2 )
1

(3)

=x xPurelin( ) (4)

= × + × ×dw mc dw mc lr w(1 )i i 1 r (5)

The present work used a multilayer perceptron model
(MLP) using a single hidden layer with a varying number of
neurons (1 to 30) to correlate input−output nonlinearity. The
learning rates varied logarithmically from 0.0001 to 10. The
momentum constants are linearly increased in the range of 0.1
to 0.9. The momentum constants update weights utilizing the
history of gradient descent. The low and high momentum and
learning rates values lead to variations in analysis duration and
insensitiveness to the local stochastic gradients. The neural
layers carry out the mathematical operation under the transfer
function with suitable weights and biases. This is described
using eq 6, where weight (w), bias (b), activation function ( f),
input (x), and output (y) are employed in mathematical
evaluations. The individual neuron in the layers of the network
takes the target value with a weighted sum and suitable bias.
This operation is then followed by mathematical evaluation via

Figure 2. ANN flowchart (a) model development and (b) hyper-parameter optimization.

Table 5. Binary Variable Conversion

layered nonlayered

layered 1 0
nonlayered 0 1

Figure 3. Variation of least MSEs with varying learning rates and constant momentum hyper-parameters.
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the convenient activation function for feeding to the next layer
of mathematical operations.

= +
=

i
k
jjjjjj

y
{
zzzzzzy f w x bj

i

n

j i i j
1

,
(6)

After analysis using various models, the predicted dataset is
then de-normalized and statistically analyzed. The least mean
squared errors are noted for each model. The best model is
then selected and evaluated using parameters viz. mean
squared errors, regression coefficients, and mean absolute
percentage errors.
3.2. ANN Model Performance. As mentioned in the

previous section, the unified ANN model was trained using the
range of hyper-parameters. The least MSE values were selected
for each momentum constant and learning rate set under a
varying number of neurons, as shown in Figure 3. The lower
MSE value was observed for varying learning rates at 0.7
momenta constant value. The least MSE was obtained at a 0.01
learning rate.
Table 6 shows the variation of MSE values of training,

testing, and validation data sets for a varying number of
neurons at 0.7 momenta constant and 0.01 learning rate. As
mentioned above, Figure 4 shows the variation in MSEs with
varying numbers of neurons under momentum and learning
rate hyper-parameters. The present analysis noted the least
MSEs at 29 neuron combinations.

Figures 5 and 6 show the parity plots for experimental
physical properties against the predicted physical properties for
the sintered processes employed in the present work. The
ANN predicted values were compared against the experimental
values after de-normalization. The predicted values were noted
to be the best fit within ±1% of the experimental data set. This
nature was observed for physical property analysis after the
previously discussed sinter processes. The extended statistical
analysis showed an MSE of 0.000278 and regression coefficient
(eq 7) values above 0.999, representing that the predicted data
set is in excellent agreement with the experimental output
dataset. It also assures the reliability of the designed neural
network model obtained via the hyper-parameter tuning
methodology.

Table 6. Performance Statistics of the ANN Model for Varying Numbers of Neurons at a Constant Learning Rate at
Momentum Constant

learning rate momentum constant number of neurons in the hidden layer MSE training MSE testing MSE validation

0.01 0.7 1 8.12 × 10−2 9.55 × 10−3 8.98 × 10−3

0.01 0.7 2 3.31 × 10−2 4.52 × 10−3 4.07 × 10−3

0.01 0.7 3 2.83 × 10−2 4.05 × 10−3 3.96 × 10−3

0.01 0.7 4 1.90 × 10−2 1.60 × 10−3 2.39 × 10−3

0.01 0.7 5 2.27 × 10−2 2.39 × 10−3 3.60 × 10−3

0.01 0.7 6 1.69 × 10−2 1.66 × 10−3 1.71 × 10−3

0.01 0.7 7 1.13 × 10−2 2.36 × 10−3 1.77 × 10−3

0.01 0.7 8 5.97 × 10−3 1.04 × 10−3 1.75 × 10−3

0.01 0.7 9 5.71 × 10−3 1.23 × 10−3 1.02 × 10−3

0.01 0.7 10 9.04 × 10−3 1.91 × 10−3 2.05 × 10−3

0.01 0.7 11 6.10 × 10−3 7.19 × 10−4 1.20 × 10−3

0.01 0.7 12 1.29 × 10−2 2.96 × 10−3 1.99 × 10−3

0.01 0.7 13 4.58 × 10−3 1.29 × 10−3 1.31 × 10−3

0.01 0.7 14 2.26 × 10−3 3.57 × 10−3 2.72 × 10−3

0.01 0.7 15 2.97 × 10−3 1.08 × 10−3 1.51 × 10−3

0.01 0.7 16 2.78 × 10−3 1.96 × 10−3 1.70 × 10−3

0.01 0.7 17 2.00 × 10−3 1.15 × 10−3 7.59 × 10−4

0.01 0.7 18 3.74 × 10−3 1.13 × 10−3 1.17 × 10−3

0.01 0.7 19 2.98 × 10−3 1.12 × 10−3 1.76 × 10−3

0.01 0.7 20 3.30 × 10−3 1.86 × 10−3 1.64 × 10−3

0.01 0.7 21 3.69 × 10−3 1.95 × 10−3 2.72 × 10−3

0.01 0.7 22 5.59 × 10−3 2.96 × 10−3 2.36 × 10−3

0.01 0.7 23 3.97 × 10−3 1.26 × 10−3 1.62 × 10−3

0.01 0.7 24 6.86 × 10−4 1.33 × 10−3 2.66 × 10−3

0.01 0.7 25 1.26 × 10−3 2.25 × 10−3 1.58 × 10−3

0.01 0.7 26 7.14 × 10−4 1.46 × 10−3 8.80 × 10−4

0.01 0.7 27 7.29 × 10−4 1.10 × 10−3 1.35 × 10−3

0.01 0.7 28 9.42 × 10−4 2.99 × 10−3 2.06 × 10−3

0.01 0.7 29 2.78 × 10−4 1.06 × 10−3 1.22 × 10−3

0.01 0.7 30 5.56 × 10−4 1.42 × 10−3 2.65 × 10−3

Figure 4. Variation of the MSEs with the number of neurons at a
constant learning rate and momentum constant.
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4. CONCLUSIONS
The experimental study was performed on iron ore sinters to
develop hybrid pelletized sinter and conventional sinters. The
yield, productivity, and physical property analyses were
performed for varying basicity, micropellet sizes, and coke
percentages. The experiments generated by coke powder
layering and without the coke powder layering process
conclude that the hybrid pelletized sintering process with
coke layering (L-HPS) is efficient; it is a nonconventional
sintering process taking into account future trends in iron ore
resources aiming radical improvements in yield, productivity,
and physical properties of iron ore sinter. The most significant
outcomes witnessed from this study are enlisted below.

(i) It was confirmed that at 1.5% basicity, using 4% coke as
fuel and 2% coke powder layering gives the desired yield
of 96.07%, having SI, TI, and AI values as 86.12, 79.60,
and 5.74%, respectively. HPS can be treated as an
environmentally sustainable process as we can utilize

iron ore fines and consume less coke, which is the need
of the hour.

(ii) The hyper-parameter-tuned ANN model showed a
prediction accuracy of over 99% and an MSE of 2.78
× 10−4. It offers the high accuracy of the proposed
prediction model. The developed network structure and
proposed hyper-parameters set the bench work for
sintering quality prediction for two independent
processes that can further prove helpful in optimizing
the metallurgical properties of the sinter based on the
proposed input parameters.

(iii) The developed ANN modeling work can be extended
for the plant scale, where the sinter plant data can be
used for better accuracy.
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