
fgene-12-715731 August 28, 2021 Time: 10:7 # 1

ORIGINAL RESEARCH
published: 03 September 2021

doi: 10.3389/fgene.2021.715731

Edited by:
Shang-Qian Xie,

Hainan University, China

Reviewed by:
Jieqin Li,

Anhui University of Science
and Technology, China

Caiguo Tang,
Hefei Institutes of Physical Science

(CAS), China
Bin Zhang,

Temasek Life Sciences Laboratory,
Singapore

*Correspondence:
Jun Zheng

sxnkyzj@126.com
Jianguo Xu

xjg71@163.com
Huming Zhi

sxnkysx@126.com

†These authors have contributed
equally to this work and share first

authorship

Specialty section:
This article was submitted to

Plant Genomics,
a section of the journal

Frontiers in Genetics

Received: 27 May 2021
Accepted: 30 June 2021

Published: 03 September 2021

Citation:
Yan S, Wang X, Yang C, Wang J,

Wang Y, Wu B, Qiao L, Zhao J,
Mohammad P, Zheng X, Xu J, Zhi H

and Zheng J (2021) Insights Into
Walnut Lipid Metabolism From

Metabolome and Transcriptome
Analysis. Front. Genet. 12:715731.

doi: 10.3389/fgene.2021.715731

Insights Into Walnut Lipid
Metabolism From Metabolome and
Transcriptome Analysis
Suxian Yan1†, Xingsu Wang2†, Chenkang Yang1, Junyou Wang1, Ying Wang1,
Bangbang Wu1, Ling Qiao1, Jiajia Zhao1, Pourkheirandish Mohammad3,
Xingwei Zheng1, Jianguo Xu2* , Huming Zhi1* and Jun Zheng1*

1 State Key Laboratory of Sustainable Dryland Agriculture, Institute of Wheat Research, Shanxi Agricultural University, Linfen,
China, 2 College of Food Science, Shanxi Normal University, Linfen, China, 3 Plant Molecular Biology and Biotechnology
Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia

Walnut oil is an excellent source of essential fatty acids. Systematic evaluation of
walnut lipids has significance for the development of the nutritional and functional
value of walnut. Ultra-performance liquid chromatography/Orbitrap high-resolution mass
spectrometry (UHPLC-Orbitrap HRMS) was used to characterize the lipids of walnut.
A total of 525 lipids were detected and triacylglycerols (TG) (18:2/18:2/18:3) and
diacylglycerols (DG) (18:2/18:2) were the main glycerolipids present. Essential fatty
acids, such as linoleic acid and linolenic acid, were the main DG and TG fatty acid
chains. Many types of phospholipids were observed with phosphatidic acid being
present in the highest concentration (5.58%). Using a combination of metabolome and
transcriptome analysis, the present study mapped the main lipid metabolism pathway in
walnut. These results may provide a theoretical basis for further study and specific gene
targets to enable the development of walnut with increased oil content and modified
fatty acid composition.

Keywords: walnut, lipidomic, UHPLC-Orbitrap HRMS, metabolism, transcriptome

INTRODUCTION

As one of the four major nut crop species in the world, walnut (Juglans regia L.) is widely distributed
in Asia, Europe, North America, and Africa. In 2019, the world output of walnut was about 3.66
million tons (Zhou et al., 2018). The cultivated area and yield of walnut rank first among all types of
dried fruits, and the crop has high economic value (Martínez et al., 2010). The oil content of walnut
kernels is 52–70% and walnut oil is an excellent source of essential fatty acids with high nutritional
value. Walnut kernels can be eaten fresh or dried. Dried walnuts are currently the most important
walnut product. Less than 10% of dried walnuts are highly processed into walnut food. Walnut is
also a good source of vegetable oil, which can be used for cooking and as an ingredient in paint
and cosmetics (Zambón et al., 2000). The major constituents of walnut oil are triacylglycerols (TG)
and diacylglycerols (DG). TGs are the major storage lipids and are an important energy reserve
for the seed for germination and development (Shiu-Cheung and Randall, 2006). TG composition
indicates the quality and purity of vegetable oils and is increasingly being used by the food industry
to confirm oil authenticity. TG and DG constitute a good source of essential fatty acids of which
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linoleic acid and linolenic acid are the most common
(Bouabdallah et al., 2014). In walnut oil, the ratio of n-3
and n-6 unsaturated fatty acids is 4∼6:1, which is in line with
healthy dietary standards for humans (Croitoru et al., 2019).
Therefore, it is vital to analyze and compare the lipid composition
of walnut comprehensively from the perspective of the lipidome.

Lipids are currently classified into eight accepted categories
by “The International Lipid Classification and Nomenclature
Committee” as follows: fatty acyls (FA), glycerolipids (GL),
glycerophospholipids (GP), sphingolipids (SP), saccharolipids
(SL), sterol lipids, prenol lipids, and polyketides (Fahy et al.,
2009). For lipidomic separation and investigation, thin-layer
chromatography (TLC) was first used, and it has been
gradually replaced by gas chromatography (GC) and liquid
chromatography (LC) for lower resolution and sensitivity. The
combination of GC/LC and mass spectrometry can efficiently
separate and accurately detect lipid molecules. However, GC
can only analyze small lipid molecules (e.g., fatty acids and
tocopherols) that are thermally stable and sufficiently volatile,
and long-chain unsaturated fatty acids are easily destroyed
(Hamide et al., 2015). High-performance liquid chromatography,
including high-performance liquid chromatography (HPLC),
ultra-high-performance liquid chromatography (UHPLC), and
two-dimensional HPLC (2D HPLC), can quickly achieve high
efficiency separation (Li et al., 2011). Modern mass spectrometry
(MS) mass analyzers offer very high mass resolution and
mass accuracy, such as Fourier transform ion cyclotron
resonance (FT-ICR) and Orbitrap and time of flight (TOF)
(Lee and Yokomizo, 2018). At present, ultra-performance liquid
chromatography-high-resolution mass spectrometry (UPLC-
MS) is the most used analytical platform for the analysis of
plant lipid metabolism. For instance, LC-ESI-MS was used to
extend our understanding of the dynamic changes in lipid
molecules in high oleic acid peanut at different development
stages (Liu et al., 2019). Three hundred phospholipid molecules
were detected by liquid chromatography-quadrupole time-
of-flight mass spectrometry (LC-Q-TOF) in the seeds of
Eryngium maritimum and Cakile maritima (Zitouni et al., 2016).
A total of 165 phospholipids were separated by hydrophilic
action chromatography-electrospray atomization-ion trap-time-
of-flight mass spectrometry (HILIC-ESI-IT-TOF-MS) in six nut
species (Song et al., 2018).

Transcriptomics can reflect the gene expression of cells,
tissues, and organisms at a specific time and location (Qi et al.,
2011). Many candidate genes related to lipid metabolism can
be found with transcriptomics. For example, 4,817 differentially
expressed genes were found from the dynamic changes of
the transcriptome associated with oil accumulation at different
developmental stages in walnut embryos. Among them, ACCase,
LACS, and FAD7 were identified as key genes for fatty acid

Abbreviations: DG, diacylglycerol; TG, triacylglycerol; PA, phosphatidic acid;
PG, phosphatidylglycerol; PS, phosphatidylserine; PC, phosphatidylcholine; PE,
phosphatidylethanolamine; PI, phosphatidylinositol; PIP, phosphatidylinositol
diphosphate; LPC, lysophosphatidylcholine; LPE, lysophosphatidylethanolamine;
LPG, lysophosphatidylglycerol; LPI, lysophosphatidylinositol; CL, cardiolipin; Cer,
ceramide; SM, sphingomyelin; MGDG, monogalactosyldiacylglycerol; DGDG,
digalactosyldiacylglycerol; SQDG, sulfoquinovosyldiacylglycerol.

synthesis (Zhao et al., 2018). Huang et al. (2021) found 108
genes related to lipid synthesis, including 60 genes for the
fatty acid synthesis pathway, 33 for the triglyceride synthesis
pathway, seven genes for the formation of oil bodies, and
eight transcription factors. By analyzing the miRNA and mRNA
transcriptome data of walnut kernels at different developmental
stages, 104 miRNAs related to oil accumulation were found
(Zhao et al., 2020). Lipid synthesis is the result of the interaction
of a multilayer network. Single omics data cannot fully reflect
the metabolic activity of cells. Multi-omics analysis is more
robust. For example, Rothenberg et al. (2019) analyzed the
molecular mechanisms driving anthocyanin accumulation in the
development of mutant pink tea flowers (Camellia sinensis L.)
by combining transcriptomics and metabolomics. Since multi-
omics analysis can more clearly identify the genes regulating
walnut oil metabolism, it was used in the present study.

UHPLC-Orbitrap HRMS was used to systematically compare
the kernel lipid composition of different walnut varieties. The
results provide a reference for studying walnut functional lipid
components and improving the nutritional quality of walnuts.

MATERIALS AND METHODS

Plant Materials
Xin 2, a precocious walnut variety, produces fruit early with
high yield. However, Xin 2 has an astringent taste. The variety
Qingxiang combines the advantages of precocious walnut and
late walnut with long storage life and good quality (Wang et al.,
2012). Walnut samples were collected in the XI county test
station in China (110◦57′E, 36◦42′N, elevation 1,100 m, annual
average precipitation 570 mm, annual average temperature
9.5◦C). Normal plants were selected from orchards with stable
yield. After harvest in mid-October, the green fruit husks were
removed and washed. The fruits were then dried at 32◦C for 10 h,
at 37◦C for 24 h, and at 35◦C for 15 h before further analysis.

Instruments and Reagents
The following were used in the experiments: UHPLC Nexera LC-
30A ultra-high-performance liquid chromatograph (Shimadzu
Co. Ltd., Tokyo, Japan), Q-Exactive mass spectrometer (Thermo
Fisher Scientific, Waltham, MA, United States), low-temperature
high-speed centrifuge (Eppendorf 5430R, Framingham, MA,
United States), Acquity UPLC CSH C18 column (1.7 µm,
2.1 mm × 100 mm, Waters Corporation, Milford, MA,
United States). Acetonitrile, isopropanol, methanol, methyl tert-
butyl ether and 13 isotopic internal standards: Cer, LPC, PC, LPE,
PE, PI, PS, PA, PG, SM, Chol Ester, DG, and TG (Thermo Fisher
Scientific, Beijing, China).

Sample Processing
Ten smooth, plump, uniform kernels each of Qingxiang and Xin
2 were selected. The embryos were frozen in liquid nitrogen
and ground into a homogenized powder. Thirty milligrams of
the powder was thoroughly mixed with 200 µl distilled water
and 20 µl internal standard solution. Next, 800 µl of methyl
tert-butyl ether and 240 µl of precooled methanol were added.

Frontiers in Genetics | www.frontiersin.org 2 September 2021 | Volume 12 | Article 715731

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-715731 August 28, 2021 Time: 10:7 # 3

Yan et al. Lipidome-Combined Transcriptome Analysis of Walnut

A vortex mixer was used to agitate the mixture throughout
the process. The samples were subjected to ultrasound mixing
in cold water for 20 min and then allowed to stand at
room temperature for 30 min. Samples were centrifuged at
14,000 × g at 10◦C for 15 min and the upper organic phase
was removed and blown dry with nitrogen. Before analysis,
200 µl of 90% isopropanol/acetonitrile solution was added to
redissolve the samples, and 90 µl of the sample solution was
centrifuged for 15 min at 14,000× g and 10◦C. Three microliters
of the supernatant was used for analysis. All reagents used
were chromatographically pure. Each sample was tested four
times in succession.

Chromatographic Conditions
The separation was performed on a UHPLC Nexera LC-
30A. The chromatography column was at 45◦C. The flow
rate was 300 µl/min. Mobile phase A was acetonitrile–water
solution (acetonitrile:water = 6:4, v/v) and phase B was
acetonitrile–isopropanol solution (acetonitrile:isopropanol = 1:9,
v/v). The gradient elution was programmed as follows: 0–
2 min with 30% B, 2–25 min with 30–100% B, and 25–35 min
with 30% B. The sample was placed in a 10◦C automatic
sampler for analysis.

Mass Spectrometry Conditions
The samples were separated by UHPLC and analyzed by
mass spectrometry with a Q Exactive mass spectrometer.
Electrospray ionization (ESI) was performed in positive and
negative ion modes. ESI source conditions were as follows:
sheath gas flow rate 45 arb, auxiliary gas flow rate 15 arb,
collision gas flow rate 1 arb, spray voltage 3.0 kV, capillary
temperature 350◦C, atomization temperature 300◦C, S-Lens
RF level 50%, and MS1 scanning range m/z 200–1,800. The
mass charge ratio of lipid molecules and lipid fragments was
obtained by collecting 10 fragment maps (MS2 scan, HCD)
after each full scan. MS1 had a resolution of 70,000 at
m/z 200 and MS2 had a resolution of 17,500 at m/z 200.
The above experiments were completed by Applied Protein
Technology Company.

Data Analysis
The internal standard method was used for absolute
quantification. The absolute content of the analyte was calculated
by the response abundance ratio (peak area ratio) of the analyte
and the internal standard when the concentration of the internal
standard was known. Lipid data were obtained using AnalystR TF
1.6 and Multi QuantTM software (Taguchi and Ishikawa, 2010),
and the peaks of lipid molecules and the internal standard lipid
molecules were identified by LipidSearch. The main parameters
were precursor tolerance 5 ppm, product tolerance 5 ppm, and
product ion threshold 5%. The identification of lipid molecular
species was mainly based on retention time, accurate m/z, and
fragmentation ion patterns. Quantitative statistics and lipid
composition analysis were performed with Microsoft Excel
2007 and Origin 8.5.

The original transcriptome sequencing data were obtained
from Huang et al. (2021). The BioProject accession number of

the data was PRJNA643637. Quality control of the downloaded
transcriptome raw data was performed with FASTP V0.20.1
(Chen et al., 2018). After quality control, the clean data
were aligned to a reference genome using HISAT2 (v2.0.5).1

FeatureCounts (Yang et al., 2014) was used for gene quantitative
analysis. EggNOG V5.0 (Huerta-Cepas et al., 2017) was used for
gene annotation.

RESULTS

Data Quality Assessment
For each sample, good repeatability of the experiment was
evidenced by both the response strength of the chromatographic
peak and retention time being nearly identical between
runs (Figure 1).

Lipid Separation
The elution order of the same type of lipid molecules is
determined by the number of carbon atoms and double bonds in
the fatty acid chains. Retention time increased and elution slowed
as the number of carbon atoms increased and vice versa. Nearly
all sample peaks were detected within about 25 min. The peak
shape, resolution, and response values were good. In the positive
ion mode, glycerides (TG, DG) and some phospholipids (PC,
PE, and LPC) had better mass spectrometry response intensity
(Figure 2A). TG and DG generated primarily [M + NH4]+, PC,
and PE, and LPC generated primarily [M + H]+. PI, PA, PS, PG,
PIP, CL, LPE, LPG, LPI, some PE, PC, and saccharolipids had
better responses under the negative ion mode (Figure 2B). PI,
PA, PS, PG, PIP, PE, CL, LPE, LPG, and LPI produced primarily
[M + H]− and PC and glycolipid produced [M + HCOO]−.

For lipid identification, the databases LIPID MAPS2 and
Lipid Bank3 were searched. In addition, walnut lipids can be
distinguished by retention time in either positive or negative
ion modes and by MS1 (primary mass spectrum) and MS2
(secondary mass spectrum) data. For example, the mass spectrum
behavior of DG (18:2/18:2) can be explained as follows. The
main mass spectral peak of DG (18:2/18:2) in positive ion
mode was [M + NH4]+ (m/z 634.5405). The secondary mass
spectrometry of DG generated fragmentation ions m/z 599.5035
and m/z 337.2734, corresponding to M-OH and NL [FA (18:2)-
H + NH4]+, and generated characteristic fragmentation ion
m/z 263.2367 after dissociation (Supplementary Figure 2A)
corresponding to fatty acid C18:2. The molecule was identified
as DG (18:2/18:2).

Variance Analysis
Using partial least squares discrimination analysis (PLS-DA)
(Supplementary Figure 3A), the model evaluation parameters
(R2Y, Q2) obtained are listed in Supplementary Table 1.
Generally, if Q2 is greater than 0.5, the model is the most stable

1http://daehwankimlab.github.io/hisat2/
2https://www.lipidmaps.org/
3http://www.lipidbank.jp/
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FIGURE 1 | Chromatogram in ESI-positive (A) and ESI-negative ion modes (B).

FIGURE 2 | Chromatogram in ESI-positive (A) and ESI-negative ion modes (B) of XE.

and reliable; if 0.3 <Q2
≤ 0.5, the model is stable; and if Q2 < 0.3,

the reliability of the model is low.
Difference analysis of all detected lipid molecules was

performed and the results are expressed in a volcano
graph (Figure 3A).

Of 525 lipid molecules in the two walnut samples, 12
molecules with significant differences (OPLS-DA variable
importance for the projection > 1 and p < 0.05) were identified
using the OPLS-DA model (Supplementary Figure 2B). Among
these, there were seven TG molecules—TG (14:0/18:2/18:3), TG
(18:1/14:0/18:3), TG (15:0/18:1/18:3), TG (16:1/18:3/18:3), TG
(16:0/18:3/18:3), TG (18:3/17:1/18:3), and TG (17:0/18:2/18:3);
one DG molecule—DG (16:0/18:3); three PC molecules—PC
(34:1), PC (16:0/18: 2), and PC (18:0/18:1); and one LPC
molecule—LPC (18:1) (Table 1).

Hierarchical clustering of the differential lipid molecules based
on the expression levels showed that the contents of PC (34:1),
PC (18:0/18:1), and LPC (18:1) were higher in Qingxiang, and

the contents of TG (14:0/18:2/18:3), TG (18:1/14:0/18:3), TG
(15:0/18:1/18:3), TG (16:1/18:3/18:3), TG (16:0/18:3/18:3), TG
(18:3/17:1/18:3), TG (17:0/18:2/18:3), DG (16:0/18:3), and PC
(16:0/18:2) were higher in Xin 2 (Figure 3B).

Lipid Species in Walnut Kernels
A total of 525 lipid molecules representing 20 lipid subclasses
were identified. The number of lipid molecules in different
subtypes varied greatly (Figure 4). A total of 250 types of GLs
were detected, of which TG was most frequent, with 207 types of
TGs, and DGs were the next most common with 43 types. There
were 221 types of GPs consisting of 50 PCs, 31 PAs, 36 PEs, 35 PSs,
19 PIs, 14 PGs, 12 LPCs, 5 LPEs, 2 LPGs, 2 LPIs, 5 PIPs, and 10
CLs. There were 36 kinds of SPs, consisting of 28 Cers, 7 CerG1s,
and 1 SM. There were 18 kinds of SLs, including 3 MGDGs, 3
DGDGs, and 6 SQDGs.

In addition, there was a rich array of fatty acids present,
including 21 saturated fatty acids, namely, C4:0, C8:0, C10:0,
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FIGURE 3 | Analysis of differential lipid molecules in walnut seed kernels. (A) Volcano plot. The dots represent lipid molecules, among which the blue and red dots
are differential lipid molecules that satisfies FC < 0.5, FC > 2, and p < 0.05. (B) Hierarchical and clustering analysis.

TABLE 1 | Lipid molecules showing significant differences between two walnut varieties (p < 0.05).

Lipid group Class Fatty acid Ion formula Cal Mz QX (µg/g) ± SD XE (µg/g) ± SD p-value

PC (34:1) + H PC (34:1) C42 H83 O8 N1 P1 760.58 241.96 ± 75.77 119.26 ± 56.20 0.0337

TG (50:5) + NH4 TG (14:0/18:2/18:3) C53 H96 O6 N1 842.72 119.48 ± 16.05 181.00 ± 15.00 0.0052

TG (50:4) + NH4 TG (18:1/14:0/18:3) C53 H98 O6 N1 844.73 259.03 ± 42.34 381.81 ± 51.73 0.0382

TG (51:4) + NH4 TG (15:0/18:1/18:3) C54 H100 O6 N1 858.75 167.36 ± 9.22 235.70 ± 36.14 0.0344

TG (52:7) + NH4 TG (16:1/18:3/18:3) C55 H96 O6 N1 866.72 106.63 ± 22.35 200.55 ± 23.52 0.0024

TG (52:6) + NH4 TG (16:0/18:3/18:3) C55 H98 O6 N1 868.74 416.58 ± 125.62 751.36 ± 165.34 0.0204

TG (53:7) + NH4 TG (17:1/18:3/18:3) C56 H98 O6 N1 880.74 124.57 ± 23.16 274.53 ± 12.97 0.0050

TG (53:5) + NH4 TG (17:0/18:2/18:3) C56 H102 O6 N1 884.77 207.39 ± 58.96 382.70 ± 60.74 0.0252

DG (34:3) + NH4 DG (16:0/18:3) C37 H70 O5 N1 608.52 945.60 ± 310.82 1,443.94 ± 394.57 0.0352

LPC (18:1) + HCOO LPC (18:1) C27 H53 O9 N1 P1 566.35 69.83 ± 14.88 16.00 ± 7.11 0.0178

PC (34:2) + HCOO PC (16:0/18:2) C43 H81 O10 N1 P1 802.56 442.17 ± 83.06 535.81 ± 71.90 0.0494

PC (36:1) + HCOO PC (18:0/18:1) C45 H87 O10 N1 P1 832.61 43.45 ± 7.17 9.50 ± 5.11 0.0327

Cal Mz means mass-to-charge ratio. QX (µg/g) ± SD and XE (µg/g) ± SD are the means of four replicates ± standard deviation.

C12:0, C13:0, C15:0, C14:0, C16: 0, C17:0, C18:0, C19:0, C20:0,
C21:0, C22:0, C23:0, C24:0, C25:0, C26:0, C27:0, C29:0, and
C30:0, and 27 unsaturated fatty acids, namely, C10:1, C10:2,
C12:1, C14:1, C14:2, C14:3, C16:1, C17:1, C18:1, C18:2 C18:3,
C18:4, C19:1, C20:1, C21:1, C20:2, C20:4, C20:5, C22:4, C22:5,
C22:6, C24:1, C24: 2. C26:1, C28:1, C29:1, and C30:1. Some rare
medium-chain fatty acids (C4:0, C8:0, C10:0, C10:1, C10:2) and
ultra-long-chain fatty acids (C24:2, C25:0, C26:0, C27:0, C26:1,
C28:1, C29:1, C30:1) were present.

Lipid Content in Walnut Kernels
Comparing the lipid content of the two walnut varieties,
Qingxiang had 140,711 µg/g and Xin 2 had 155,801 µg/g.
The content trends of the lipid components of Qingxiang and
Xin 2 were nearly identical, with both having the highest
content of glycerides (including DG and TG) accounting for
88.37 and 86.18% of the total lipid content, respectively.
Phospholipids were the second most common type (including
PA, PG, PS, PC, PE, LPC, PI, LPG, LPI, LPE, PIP, and CL)
accounting for, respectively, 10.9 and 13.2% of the total lipids.

FIGURE 4 | Walnut kernel lipid composition.

Glycolipids (including DGDG, MGDG and SQDG) accounted
for 0.7 and 0.61% and sphingolipids (including Cer and
SM) accounted for 0.03 and 0.01%, respectively. In addition,
comparing the lipid subtypes (Figure 5), the content of DG,
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FIGURE 5 | The content of lipid subtypes in two walnut varieties. The ordinate represents the sum of the lipid molecules with the same lipid subtypes.

TG, PA, and PS in Xin 2 was relatively high compared with
that in Qingxiang.

In both walnut varieties, the main molecules among
the TGs were TG 54:7 (18:2/18:2/18:3, LLLn), TG 54:6
(including TG 18:1/18:2/18:3, OLLn; and TG 18:2/18:2/18:2,
LLL), TG 54:3 (18:1/18:1/18:1, OOO), TG 52:4 (16:0/18:1/18:3,
POLn), and TG 52:5 (16:0/18:2/18:3, PLLn), with mainly
four kinds of fatty acids: C16:0, C18:1, C18:2, and C18:3
(Figure 6A). TG (14:0/18:2/18:3), TG (18:1/14:0/18:3), TG
(15:0/18:1/18:3), TG (16:1/18:3/18:3), TG (16:0/18:3/18:3), TG
(18:3/17:1/18:3), and TG (17:0/18:2/18:3) (p < 0.05) were
significantly higher in Xin 2. Linoleic acid (18:2) and linolenic
acid (18:3) contents were higher in Qingxiang, whereas the
palmitic acid content was greater in Xin 2 (P: palmitic
acid; S: stearic acid; O: oleic acid; L: linoleic acid; Ln:
linolenic acid).

Analysis of the degree of unsaturation of the TG molecules
indicated that seven double bonds were the most common, thus
showing a higher degree of unsaturation. Eight TG molecules had
saturated carbon chains, but their content was lower (≤ 10 µg/g).
The remainder of the TG molecules were unsaturated. This result
shows that both Qingxiang and Xin 2 contain large amounts of
unsaturated fatty acids.

In the TG molecules, 50–56 carbon atoms were present.
The main fatty acids connected with TG were medium-chain
C16, C17, and C18 and the content of long-chain fatty acids
was low (≤ 10 µg/g). There were more C54 TG molecules in
Qingxiang, whereas C52 TG molecules were slightly higher in Xin
2 (Supplementary Figure 3B).

Phospholipids were rich in walnut kernels, including PA,
PG, PS, PC, PE, LPC, PI, LPE, CL, PIP, LPI, and LPG.
The phospholipids in Qingxiang and Xin 2 accounted for
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FIGURE 6 | The content of the main lipid molecules in kernels of the two walnut varieties. Major molecular species composition of TG (A), PA (B), PC (C), and PS
(D) determined by UHPLC-Orbitrap HRMS in the walnut varieties Qingxiang and Xin 2.

approximately 10.9 and 13.2% of the total lipids, respectively.
The phospholipid content in Xin 2 was relatively high. PA was
the main phospholipid subtype, which accounted for 4.65% of
the total lipids in Qingxiang and 7.45% in Xin 2. The main
molecular species detected in Qingxiang were PA 35:2 (17:0/18:2)
(32.23%), PA 35:1 (17:0/18:1) (20.24%), and PA 36:4 (18:2/18:2)
(13.29%), while PA 35:2 (17:0/18:2) (40.91%), PA 37:2 (14.21%),
and PA 37:2 (14.79%) were main PAs in Xin 2 (Figure 6B). In
both walnut varieties, PA containing C16:0, C18:1, and C18:2
accounted for more than 50%, and a small content of long-chain
fatty acids, such as 40:2, 40:3, 41:2, 41:3, 42:2, 43:2, and 44:3,
was also detected.

There was a little difference in PC content between Qingxiang
and Xin 2, accounting for 1.17 and 1.07% of the total lipids,
respectively. The main molecules in PCs were PC 34:1 (16:0/18:1),
PC 34:2 (16:0/18:2), PC 36:2 (18:0/18:2), and PC 36:4 (18:2/18:2).
PC mainly contained fatty acids C16:0, C18:0, and C18:1
(Figure 6C). The content of PC 34:1 (16:0/18:1) (p = 0.0337)
and PC (18:0/18:1) (p = 0.0494) was higher in Qingxiang and the
content of PC 34:2 (16:0/18:2) (p = 0.0327) was higher in Xin 2.

PS contains amino groups, which have antioxidant effects.
Of the total lipids present, PS accounted for about 1.25% in
Qingxiang and for 1.47% in Xin 2. The main PS molecules were
PS 37:0, PS 39:2, PS 36:4, and PS 39:4 (Figure 6D).

SL (DGDG, MGDG, SQDG) in Qingxiang and Xin 2
accounted for 0.7 and 0.61% of the total lipids, respectively.
DGDG was the main component of SL, accounting for 76.32
and 65.23% in Qingxiang and Xin 2, respectively. The more

abundant molecules were DGDG (18:2/18:2), DGDG (18:2/18:3),
and SQDG (39:12). Saccharolipids are the main components of
the membrane lipid in walnut, although the content is relatively
small. Saccharolipids have a variety of pharmacological functions,
such as antiviral, antioxidant, antitumor, and anti-atherosclerosis
activities (Schinitz and Ruebsaamen, 2010).

The SP in Qingxiang and Xin 2 walnut kernels accounted for
only 0.03 and 0.01% of total lipids, respectively. The contents of
Cer (d32:0) and Cer (d34:0) were higher in SP (including Cer
and SM). As a secondary signal molecule of cells, SP promotes
cell proliferation, apoptosis, and growth arrest; inhibits the
occurrence and metastasis of tumors; and increases the sensitivity
of tumors to chemotherapeutic drugs (Goldkorn et al., 2013).
A small amount of sphingomyelin SM (d22:1) was detected in the
two walnut lipids.

Lipid Metabolism of Walnut Analysis
Using the functional annotations of the expressed genes, the lipid
metabolism-related genes in the transcriptome were identified.
The proposed walnut lipid metabolism pathway map was
generated corresponding to the main lipid molecules in the
lipidome (Figure 7). A higher content of lipid molecules
was detected in the lipid group, such as TG (36:4/18:3), TG
(34:2/18:3), and TG (34:3/18:3). DGAT and PDAT related to
TG synthesis were expressed in the transcriptome. In addition,
there were many oleic acids (18:1) and the expression of PDH
and ACCase related to oleic acid synthesis was also high. The
content of lysophospholipids, saccharolipids, and sphingolipids
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was low, and the expression of the corresponding synthetase
genes was either low (CERS and MGD1) or undetected (LPGAT,
LPGAT, and DGD) (Supplementary Table 2). Genes with high
expression levels in the transcriptome corresponded to high
levels of lipid metabolism molecules. Some genes related to lipid
metabolism molecules with lower content were not detected in
the transcriptome. Perhaps, low abundance RNA was below the
detection sensitivity of our methods, or perhaps, an undescribed
gene was present which would require further study.

Comparing the lipid data of the walnut varieties, the content
of glyceride TG (18:2/18:2/18:3) was the highest in two kinds
of walnuts, while the contents of TG (15:0/18:1/18:3), TG
(16:1/18:3/18:3), TG (16:0/18:3/18:3), TG (17:0/18:2/18:3), TG
(16:0/18:3/18:3) were higher in Xin 2. The fatty acid composition
differed significantly between the oils of Qingxiang and Xin 2.
TG synthesis in walnut has two pathways. The Kennedy pathway
relies on acyl-CoA. The three acyltransferases (GPAT, LPAT, and
DGAT) transfer the fatty acids of acyl-CoA to glycerol. Another
pathway uses direct transfer of FA from PC to DG producing
TG and LPC by the PDAT (Bates et al., 2013). Both DGAT and
PDAT cooperated to produce TG. DGAT and PDAT can be used
as target genes to regulate the oil content of walnut through
molecular technology.

DG (36:4) had relatively higher content in the two kinds
of walnuts, whereas DG (34:2) and DG (34:3) contents were
relatively higher in Xin 2. The phospholipids were mostly C36
molecules. PA and DG are important intermediate products
in lipid metabolism. Their synthesis starts with G-3-P and
fatty acids as initial substrates and includes the endoplasmic
reticulum pathway (eukaryotic pathway) and the plastid pathway
(prokaryotic pathway), which occur in different subcellular
locations (Hong et al., 2017). The sn-2 position of glycerolipid
molecules synthesized by the prokaryotic pathway generally
prefers C16:0, while the sn-2 position of the lipids derived from
the eukaryotic pathway is C18:1 (Schmid-Siegert et al., 2016).
There were many C18 fatty acids in the lipid molecules of
Qingxiang and Xin 2, thus showing that the eukaryotic pathway
is the primary pathway of glycerolipid synthesis in walnut. The
analysis also found that MGDG and DGDG in the walnut lipid
were mainly 36:5, indicating that the intermediate products DG
and PA produced by the ER pathway were likely the main
substrate sources of MGDG and DGDG.

DISCUSSION

Comparative Analysis of Lipid
Composition
As an important oil tree species, walnut has high economic and
nutritional value. Compared with other main nut crops, such
as pistachios, cashews, peanuts, pecans, and almonds, walnuts
have the most abundant phospholipids, accounting for 96 species
(Song et al., 2018). Triglycerides were detected in the oils of
walnut, sesame, water chestnut, hazelnut, and beechnut, with
walnut oil mainly composed of highly unsaturated TG (54:6–
8) (Bail et al., 2009). Research on the lipid composition of
walnuts has been limited to the identification of the composition

and content of single lipids such as fatty acids, phospholipids,
and glycerides, and a systematic comparison of the total lipid
composition of walnuts has not been done previously. The
present study systematically analyzed and compared the lipid
composition of the walnut varieties Qingxiang and Xin 2 and
found a total of 525 lipid molecules in 20 subtypes. The
lipid molecule contains 21 species of saturated fatty acids
and 27 species of unsaturated fatty acids, including a low
content of rare ultra-long-chain unsaturated fatty acids. The
presence of these fatty acids indicates that special fatty acids
dehydrogenase and elongase enzymes were likely responsible
for the unsaturation and elongation of the glyceride chain
(Ivanova et al., 2016).

There were more C54 TG molecules in Qingxiang than
in Xin 2, and the C52 TG molecules in Xin 2 were slightly
higher than in Qingxiang, both of which connected medium-
chain fatty acids. Compared with long-chain fatty acid glycerides,
medium-chain fatty acid triglycerides (MCT) in oils are easier to
hydrolyze to produce unsaturated fatty acids. These fatty acids,
which are absorbed easily by the body, can effectively reduce
the levels of triglycerides and apolipoproteins and improve lipid
metabolism (Fink et al., 2014). The unsaturation of TG molecules
in Qingxiang was higher with greater linoleic acid and linolenic
acid content. The quality of walnut oil mainly lies in the fact
that it contains a large amount of unsaturated fatty acids, which
can effectively reduce and prevent the occurrence of cholesterol,
atherosclerosis, and heart disease (Ibáñez et al., 2017). Moreover,
the oxidized linoleic acid will produce n-butyraldehyde and
other volatile components that determine the flavor and taste
of walnuts (Zhou et al., 2017). Qingxiang has good taste and
high nutritional value, but its unsaturated fatty acids are oxidized
easily, thus could reduce the shelf life of kernels and oil
(Emilio and Mataix, 2006).

Twelve kinds of phospholipids were found in walnut oil
encompassing 221 phospholipid molecules, which were the
most abundant species. PA is a lipid signaling molecule that
participates in various physiological processes, including signal
transmission and response to environmental stress. Yu et al.
(2010) found that under drought stress, PA 34:2, 34:3, 34:6,
36:3, and 36:6 increase significantly. The PA accounted for 7.45%
in Xin 2, a relatively high content, which shows that Xin 2 is
more resistant and adaptable. PG is rich in membrane lipids
and is a biologically active lipid with antioxidant effects (Yang
et al., 2007). PG (44:0) in Qingxiang and Xin 2 accounted
for 98.37 and 97.44% of the total PG, respectively. These
phospholipid molecules containing long-chain saturated fatty
acids have antioxidant effects. The PS content in the Qingxiang
and Xin 2 is low. However, PS contains amino groups,
which can have synergistic antioxidant effects with vitamin E
(Shen et al., 2013).

Lipidome-Combined Transcriptome
Analysis
By combining the analysis of expressed genes and lipid
metabolism molecules, preliminary metabolic pathways of the
main lipid molecules in walnuts were constructed. Qingxiang
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FIGURE 7 | Proposed lipid metabolism pathway map for walnut. The purple enzymes represent genes that have been detected in the transcriptome and the brown
genes represent the undetected genes. The lipid molecules in blue have higher content of Xin 2 and those in red have higher content of Qingxiang. PYR, pyruvate;
ACP, acyl carrier protein; PDH, pyruvate dehydrogenase; ACCase, acetyl-CoA carboxylase; acyl CoA, acetyl-coenzyme A; FAS, fatty acid synthase; SAD,
stearoyl-ACP desaturase; LACS, long-chain acyl-CoA synthetase; CPT, CDP-choline:diacylglycerol cholinephosphotransferase; KASII: 3-ketoacyl-ACP synthase;
DGAT, diacylglycerol acyltransferase; FAD2, oleoyl desaturase; FAD3, linoleoyl desaturase; FAD4, FAD6, FAD7/8, fatty acid desaturase; GAP,
glyceraldehyde-3-phosphate; GPAT, glycerol-3-phosphate acyltransferase; LPAAT, lysophosphatidic acid acyltransferase; PDAT, phospholipid:diacylglycerol
acyltransferase; PDCT, phosphatidylcholine:diacylglycerol cholinephosphotransferase; PEP, phosphoenolpyruvate; MGD, monogalactosyldiacylglycerol synthase;
DGD, digalactosyldiacylglycerol synthase; SQD, sulfoquinovosyldiacylglycerol synthase; CLS, cardiolipin synthase; SPT, serine palmitoyltransferase; CERS, ceramide
synthase; SMS, sphingomyelin synthase; LPEAT, lysophosphatidylethanolamine acyltransferase; LPCAT, lysophosphatidylcholine acyltransferase; PLC,
phospholipase C; PLD, phospholipase D; PAP, phosphatidic acid phosphatase.

contained more linoleic acid (18:2), while Xin 2 contained more
palmitic acid (16:0) and long-chain fatty acids such as behenic
acid. FAD2 and FAD3 control, respectively, the conversion of
oleic acid to linoleic acid and linoleic acid to linolenic acid (Liu
et al., 2020). The expression levels of FAD2 and FAD3 in the
transcriptome were higher than those of FAD6 and FAD7/8.
Primarily, linoleic and linolenic acids were found in the present
study and their generation may have been catalyzed by FAD2
and FAD3 in the ER. ACCase is the key rate-limiting enzyme
for the assembly of fatty acids. Analysis of the transcriptome
showed that ACC-1 and ACC-2 expressed higher levels, which
is likely related to the high oil content in walnut kernels. The
genes of FATA and FATB were also expressed, with that of
FATA being the higher of the two. These relative expression
levels are likely the reason why many unsaturated C18 fatty
acids were present.

The molecular composition of TG differed greatly between
the two walnut varieties. Both DGAT1 and DGAT2 in
the transcriptome were expressed in varieties. A previous
work has shown that they may play different roles during
plant development and produce TG with different fatty acid
components (Oakes et al., 2011). It is likely that these
two enzymes are related to the varietal differences in TG

species observed in the preset study. Furthermore, PDAT has
different expression levels during walnut kernel development,
which may be related to the accumulation of walnut oil
(Bernard et al., 2018).

CONCLUSION

In the present study, the UHPLC-Orbitrap HRMS system
was used to compare the lipid content and composition
in the kernels of the walnut varieties Qingxiang and Xin
2. Combined with transcriptome data, we constructed a
preliminary molecular regulatory network of the main lipid
metabolism in walnut. A total of 525 lipid molecules were
identified in Qingxiang and Xin 2, consisting of 250 glycerides
(including DG and TG), 221 phospholipids (including PA,
PG, PS, PC, PE, LPC, PI, LPG, LPI, LPE, PIP, and CL),
18 types of glycolipids (including DGDG, MGDG, and
SQDG), and 36 types of sphingolipids (including Cer and
SM). The fatty acid chains in DG and TG are mainly
composed of essential fats such as oleic acid, linoleic acid,
and linolenic acid. The walnut lipid profile and the lipid
metabolism pathway constructed here have important theoretical
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and practical value for further study of walnut lipid metabolism
and functional development.
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Supplementary Figure 3 | (A) Score and loading plots generated from PLS-DA
classifying the lipid of QX and XE. (B) The content of different numbers of carbon
in TGs of two walnut varieties.

Supplementary Table 1 | Model evaluation parameters: R2X means the
explanatory rate for the model of variable X; R2Y means the explanatory rate for
the model of variable Y; Q2 evaluates the predictive power of PLS-DA model.

Supplementary Table 2 | The lipid molecules in lipid metabolism pathway of
walnut kernel. QX (µg/g) and XE (µg/g) are the means four
replicates ± standard deviation.

Supplementary Table 3 | The enzymes involved in main lipid metabolism
pathway of walnut kernel. FPKM means the genes of these enzymes expression
level. ND means the genes were not detected.
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