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Abstract

Members of the family Trypanosomatidae infect many organisms, including animals, plants and humans. Plant-infecting
trypanosomes are grouped under the single genus Phytomonas, failing to reflect the wide biological and pathological
diversity of these protists. While some Phytomonas spp. multiply in the latex of plants, or in fruit or seeds without apparent
pathogenicity, others colonize the phloem sap and afflict plants of substantial economic value, including the coffee tree,
coconut and oil palms. Plant trypanosomes have not been studied extensively at the genome level, a major gap in
understanding and controlling pathogenesis. We describe the genome sequences of two plant trypanosomatids, one
pathogenic isolate from a Guianan coconut and one non-symptomatic isolate from Euphorbia collected in France. Although
these parasites have extremely distinct pathogenic impacts, very few genes are unique to either, with the vast majority of
genes shared by both isolates. Significantly, both Phytomonas spp. genomes consist essentially of single copy genes for the
bulk of their metabolic enzymes, whereas other trypanosomatids e.g. Leishmania and Trypanosoma possess multiple
paralogous genes or families. Indeed, comparison with other trypanosomatid genomes revealed a highly streamlined
genome, encoding for a minimized metabolic system while conserving the major pathways, and with retention of a full
complement of endomembrane organelles, but with no evidence for functional complexity. Identification of the metabolic
genes of Phytomonas provides opportunities for establishing in vitro culturing of these fastidious parasites and new tools for
the control of agricultural plant disease.
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Introduction

Flagellated protists of the family Trypanosomatidae, class Kine-

toplastea, infect a large variety of organisms including animals,

plants and humans [1]. While African and South-American

trypanosomes are responsible for sleeping sickness [2] and Chagas’

disease [3], respectively, different Leishmania spp. cause visceral,

cutaneous and mucocutaneous manifestations of leishmaniasis in

many tropical and subtropical regions [4].

Various eukaryotes, particularly filamentous microorganisms

like oomycetes and fungi have acquired the capacity to infect and

grow inside the plant tissues. While some of these organisms could

influence plant growth positively, in most cases they can cause

major diseases in plants of economic importance [5]. The genomes

of numerous of these filamentous plant pathogens have already

been sequenced, unveiling an amazing variety of genome sizes and

organization [6]. Certainly, a great number of these plant

pathogens were molded into larger genomes by repeat-driven

expansions, with the genes coding for proteins involved in host

interactions located within repeat-rich regions [6]. In contrast,

some filamentous plant pathogens have fairly small genomes, as a

consequence of intron or gene loss, like U. maydis;(21 Mb) [7] and

Albugo laibachii; (37 Mb) [8], or abridged transposon content as in

Sclerotinia sclerotiorum; (38 Mb) [9].

Like fungi and oomycetes, trypanosomatids also infect plants,

but using a radically different strategy to colonize and propagate

inside the host [10–12]. Multiple insect species of the order

Heteroptera act as the natural vectors of plant trypanosomatids,

both in the transmission to lactiferous hosts [10,13], and for

infection by intraphloemic plant trypanosomes [14–16]. Phytomonas

is the arbitrary genus name proposed for all trypanosomatids

specific to plants [17]; however this rather restricted taxonomic

description fails to fully capture the wide diversity of trypanoso-

matids encountered in plants, both with respect to their biological

properties and their impact on the host [18–22]. Indeed,

Phytomonas spp. infect more than 100 plant species, distributed

primarily in tropical and subtropical zones, by multiplying in latex

tubes, fruits and seeds or colonizing the phloem sap inside the sieve

tubes. Phytomonas infection can occur without apparent pathoge-

nicity, but conversely it can cause lethal disease in plants of

substantial economic value, including the coffee tree, coconut and

oil palms [10,23]. This results in important economic losses in

Latin America and the Caribbean [24–27]. Ten distinct subgroups

of plant trypanosomatids have been defined using the internal

transcribed spacer region of the ribosomal RNA locus [22].

Only Group H, encompassing the Latin American intraphloemic

trypanosomatids responsible for severe wilts, can be distinguished

both by rRNA markers as well as biological and serological

properties [19]. A full definition of the diversity of trypanosomatids

within the overarching Phytomonas genus is still outstanding.

The whole genome sequences of Trypanosoma cruzi, Trypanosoma

brucei and Leishmania major were released in 2005 [28–31]. Since

then, the genomes of several additional trypanosomatids, including

several pathogens of mammals, have been completed and

described [32–35]. These databases have provided an essential

platform for investigations of basic biology and mechanisms of

pathogenesis and facilitated the exploration of novel therapies.

However, to date genome level analysis of Phytomonas spp. is

limited. The biology of these parasites is reasonably well described

[11,36], but little information exists on their effective control

by chemicals or, most critically, on their specific adaptations to the

plant host and the mechanisms underpinning pathogenesis.

Moreover, few genes are available in sequence databases, and

little is known about genome size, chromosomal organization and

ploidy [37,38].

We describe here the genome sequences of two plant

trypanosomatids, one phloem-restricted pathogenic isolate from

a diseased coconut from Guiana (HART1 from Group H) and

the other a non-symptomatic latex isolate from Euphorbia (EM1

from Group D) [22]. The comparison of these two plant parasite

genomes with each other and with those of other trypanosomes

reveals a common simplified genome organization for the plant

trypanosomes. Identification of the genes involved in Phytomonas

metabolism is an important step for improving in vitro culture

protocols and for development of new and better tools for the

control and diagnosis of Phytomonas-mediated diseases.

Results and Discussion

General features of Phytomonas EM1 and HART1
genomes

Recently, the molecular karyotype of several different latex

plant symbiont-like (i.e. not associated with apparent pathology

in the host) Phytomonas isolates were analyzed by pulsed-field gel

electrophoresis (PFGE), showing 21 chromosomal bands for EM1

(group D) [37]. Similar analysis performed on phloem-restricted

trypanosomatids allowed the identification of 7 chromosomal

bands for the Hartrot wilt pathogen isolate (HART1, Group H)

[38]. A systematic genome sequencing project of these two

Phytomonas isolates was initiated, as they represent two distinct

phenotypes in terms of impact on the host. Both EM1 and

HART1 genomes were assembled using 106454-technology and

0.16Sanger reads, together with deep coverage Illumina sequenc-

ing reads for correction of sequencing errors [39] (European

Nucleotide Archive accession numbers CAVQ010000001-

CAVQ010001400 for EM1 and CAVR010000001-CAVR010002560

for HART1; details in Text S1). Ninety percent of the EM1 genome

assembly was placed in 45 scaffolds longer than 100 kb, with one third

in the size range of the Phytomonas EM1 chromosomes previously

observed by PFGE [37]. In the case of EM1, the scaffold N50 (the

Author Summary

Some plant trypanosomes, single-celled organisms living
in phloem sap, are responsible for important palm
diseases, inducing frequent expensive and toxic insecticide
treatments against their insect vectors. Other trypano-
somes multiply in latex tubes without detriment to their
host. Despite the wide range of behaviors and impacts,
these trypanosomes have been rather unceremoniously
lumped into a single genus: Phytomonas. A battery of
molecular probes has been used for their characterization
but no clear phylogeny or classification has been estab-
lished. We have sequenced the genomes of a pathogenic
phloem-specific Phytomonas from a diseased South Amer-
ican coconut palm and a latex-specific isolate collected
from an apparently healthy wild euphorb in the south of
France. Upon comparison with each other and with human
pathogenic trypanosomes, both Phytomonas revealed
distinctive compact genomes, consisting essentially of
single-copy genes, with the vast majority of genes shared
by both isolates irrespective of their effect on the host.
A strong cohort of enzymes in the sugar metabolism
pathways was consistent with the nutritional environ-
ments found in plants. The genetic nuances may reveal the
basis for the behavioral differences between these two
unique plant parasites, and indicate the direction of our
future studies in search of effective treatment of the crop
disease parasites.
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scaffold size above which 50% of the total length of the sequence

assembly can be found) was 429 kb (Figure 1A). Meanwhile, the scaffold

N50 for HART1 isolate was 1.2 Mb, with 90% of the genome located

in 15 of the scaffolds, again in the size range previously estimated for the

HART1 chromosomes [38] (Figure 1A). These assembly statistics

indicate that majority coverage of both EM1 and HART1 genomes

was achieved. A striking feature of these two plant parasite genomes is

their small size (18.1 Mb for HART1; 17.8 Mb for EM1), when

compared to that of the human pathogenic trypanosomatids (26.3 Mb

for T. brucei; 32.5 Mb for T. cruzi and 32.9 Mb for L. major) [31].

Phytomonas EM1 and HART1 are likely fundamentally diploid

with some supernumerary chromosomes, with an unknown level

of polymorphism between the two haplotypes [37,38], a feature

they have in common with other trypanosomatids. The massively

parallel sequencing strategy provided important read depth

coverage across both EM1 and HART1 assemblies (Table S1),

which was used to establish ploidy for both Phytomonas genomes

(details in Text S1). Median read depth analysis revealed an even

depth across both Phytomonas assemblies (Figure S1), pointing

towards an underlying euploidy of diploid for both Phytomonas

isolates. The use of allele frequency for heterozygous single

nucleotide polymorphisms (SNPs) across the scaffolds revealed a

consistent diploid distribution of frequencies (Figure S2; method as

described by [40]). Clusters of duplicated genes were found to be

biased towards disomic scaffolds using a Monte Carlo simulation

(p = 761024 hypergeometric distribution). These results were

similar to the distribution of multicopy genes observed in

Leishmania spp. chromosomes [40], suggessting the existence of

separate mechanisms for gene duplication and chromosome

(scaffold) duplication in Phytomonas spp.

Nonetheless, read depth reached values greater than twofold in

some cases (scaffolds 24 and 25 in Figure S1 A; scaffolds 13 and 22

in Figure S1 B), probably indicating, as for other parasite genomes,

aneusomy of certain chromosomal regions (Figure S3 and S4)

Figure 1. General features of Phytomonas EM1 and HART1 isolates. A. Statistics on Phytomonas EM1 and HART1 genome annotations. Results
of both Phytomonas genome annotations, together with statistics on T. brucei TRE927 (T. brucei), T. cruzi CL Brener Esmeraldo-like (T. cruzi) and L.
major Friedlin (L. major) genome annotations, either obtained by directly querying the TriTrypDB release 4.2 (*) or by using the same analysis pipeline
applied for both Phytomonas spp. ({), are summarized; B. Phylogenetic reconstruction of HSP90 evolution in the trypanosomatids. HSP90 sequence
data are taken from [127], together with the top BLAST hits retrieved from HART1 and EM1 genome sequence data using HSP90 as a query.
Orthology was established by reverse BLAST into the non-redundant database. Trees were constructed by multiple sequence alignment followed by
trimming of the N- and C-termini (the EM1 sequence is truncated), and reconstructions by Mr Bayes and PhyML. Statistical support is shown for all
nodes as Mr Bayes/PhyML posterior probabilities/bootstraps, respectively. The two Phytomonas isolates analysed here are colored in red, and the N.
gruberi sequence, included as an outgroup, is in gray. Note that branch lengths indicate that EM1 and HART1 are of similar divergence as T. brucei
brucei versus T. congolense or L. infantum versus L. mexicana. EM1 is more closely related to P. serpens than to HART1 based on this dataset.
doi:10.1371/journal.pgen.1004007.g001
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[40,41]. Possible aneusomy was already envisaged for the

Phytomonas HART1 isolate after study of its molecular karyotype

[38]. This increase in read depth is not likely due to the

amplification of specific regions of the scaffolds, since read depth

was constant along the whole of both the disomic and tetrasomic

regions (Figure S5).

Both assemblies were annotated using a combination of

evidence (Table S2; for details, see Text S1), with the major

features of the genome annotation presented in Figure 1 A. The

reference annotation of the Phytomonas EM1 and HART1 genomes

(European Nucleotide Archive Accession HF955061–HF955198

for EM1 and HF955199–HF955282 for HART1) harbor 6,381

and 6,451 putative protein-coding genes, covering 57.9 and 53.7%

of the genome respectively (Figure 1 A). The total number of

predicted genes in both Phytomonas isolates is lower than in other

sequenced trypanosomatids (EuPathDB-TriTryp 4.2: T. cruzi, CL

Brener Esmeraldo-like 10,342; T. cruzi CL Brener Non-Esmer-

aldo-like 10,834; T. brucei TREU927, 10,533; Figure 1 A), but

slightly closer to the Leishmania spp. (EuPathDB-TriTryp 4.2: L.

braziliensis, 8,357; L. infantum, 8,241; L. major, 8,412, Figure 1 A), as

expected by the close phylogenetic relationship of Phytomonas with

Leishmania [42]. Such a decrease in predicted gene numbers is the

consequence of an almost complete absence of tandemly-linked

duplicated genes in both Phytomonas genomes as observed when

compared to other sequenced trypanosomes [43,44]. Indeed, the

genomes of T. brucei, T.cruzi and L. major contain a high percentage

of repetitive genes (Figure 1A; 27% for T. cruzi, 9.6% for T. brucei

and 6.7% for L. major), whereas both Phytomonas isolates only

possess a very low percentage of such genes (Figure 1 A; EM1 and

HART1). This is the case for the NADH-dependent fumarate

reductase, arranged in several copies in the T. brucei (6 copies), T.

cruzi (7 copies) and L. major genomes (4 copies) but only detected as

a single-copy gene in both Phytomonas isolates (Table S3). The

uniform read depth coverage observed all along the Phytomonas

EM1 and HART1 scaffolds overrules a collapse of multiple

tandem repeats into fewer copies during assembly as an

explanation for the Phytomonas gene copy number observed (Figure

S5). A small fraction of EM1 genes were observed in multiple

copies on the genome: only 99 clusters of paralogous protein-

coding genes (corresponding to 171 genes; for details see Methods)

were identified, constituting 2.6% of the Phytomonas EM1 putative

genes. Typical cases are those of the chaperonin HSP60 (32 copies

(on average) in the T. cruzi CL Brener genome) and the

thioredoxin peroxidase, both identified in three copies in the

EM1 assembly. Excluding a multigene family (six genes) with a

histone-fold domain, most of the ‘‘duplicated’’ genes were present

in only two copies. A similar situation in which the genome was

almost exclusively comprised of single-copy genes was observed in

HART1, with the exception of a gene family homologous to a

major surface metallopeptidase of Leishmania promastigotes [45].

The metalloprotease gp63/leishmanolysin (EC 3.4.24.36) was

originally described as the most abundant surface protein of

Leishmania spp, but has been subsequently demonstrated to be pan-

eukaryotic. A massive expansion in the gp63 family is evident in

HART1 with over 20 members, while EM1 has only two. Both

expansions are lineage-specific. GP-63 has been implicated in

interactions with both vertebrate and insect hosts of Leishmania,

and there is preliminary evidence for it playing a role in insect

interactions in P. serpens and other lower trypanosomatids [46,47].

In P. serpens gp63 is present in many endomembrane compart-

ments; significantly expression levels can be reduced by exposure

to fetal calf serum, suggesting an ability to respond to alterations in

the environment, and/or potential for degradation of specific

proteins or peptides [48].

Unlike the majority of eukaryotes, mRNA transcription in

trypanosomatids is polycistronic. These genomes are organized

into large polycistronic transcription units (PTUs), with tens –

to -hundreds of protein-coding genes arranged head-to-tail on the

same DNA strand and apparently transcribed from a single

upstream RNA pol II entry site, or promoter [28–30,49]. This

unusual gene organization was observed in both Phytomonas isolates

as well, where genes are organized into 298 (EM1) and 334

(HART1) putative PTUs with an average of 21 (EM1) and 19

(HART1) genes per cistron (Figure S6).

Protein-coding genes in Phytomonas appear to lack conventional

introns, similar to the structure of genes in other trypanosomatids

[1,50]. Classical cis-splicing introns are documented only in the

poly(A) polymerase and an ATP-dependent DEAD/H RNA

helicase genes from T. brucei, T. cruzi [51], and Leishmania spp. This

striking feature is not conserved in the Phytomonas EM1 and

HART1 isolates.

Contraction in both plant parasite genomes is also reflected

by the short length of the intergenic regions (on average 1,140 bp

for EM1; 1,280 for HART1) and a relatively low frequency of

repeated sequences (0.9% and 1.2% for EM1 and HART1,

respectively) (Figure 1A). No significant difference in overall gene

sizes was observed between these isolates (1,614 bp and 1,507 bp

on average for EM1 and HART1, respectively). These data

suggest that the EM1 and HART1 genomes are compact and

might lack many of the expansions of both coding and non-coding

sequences that have been described for other trypanosomes

[30,43].

Members of the order Kinetoplastida display an impressive

number of structural and biochemical peculiarities. The acquisi-

tion of foreign genes through lateral gene transfer is a possible

explanation of the trypanosome-specific evolution of novel pro-

cesses and organization [52]. A systematical search for candidate

bacterial horizontal gene transfer (HGT) events (Material and

Methods) allowed us to identify 87 HGT candidates in these

Phytomonas isolates, all shared between the two isolates, with eight

of them specific to Phytomonas (i.e. absent from Leishmania and

Trypanosoma) (Table S4). Several genes of bacterial HGT origin

already identified in Leishmania were also found in Phytomonas,

specifically sugar kinases and other genes involved in carbohydrate

metabolism, which probably reflects their life cycle in plants and

phytophagous insects [52,53]. All HGT events were common to

EM1 and HART1, but a metallocarboxypeptidase of potential

bacterial origin was found in only one copy in EM1 and 11 copies

in HART1.

In other trypanosomatids, the tRNA genes tend to occur in

clusters with a synteny often conserved among different genera

(Figure S7; details in Text S1). Most of the tRNA genes predicted

for EM1 and HART1 corresponded to those identified previously

in T. brucei, L. major and T. cruzi (Table S5). Interestingly,

Phytomonas isolates possess two tRNAs not found among the animal

pathogens, and present in the plant trypanosome branch: they are

Asn (ATT)-tRNA (in HART1) and Ser (GGA)-tRNA (in EM1)

(Table S5, highlighted in green).

Kinetoplast DNA genome and transcriptome in
Phytomonas EM1 and HART1

In all Trypanosomatidae the mitochondrial genome consists of

a single network of kinetoplast (k) DNA, one of the most com-

plex organellar genomes known. It is composed of dozens of

maxicircles that carry protein-coding and mitoribosomal genes,

and thousands of minicircles that encode guide (g) RNAs. The

EM1 maxicircle could not be assembled, but a single maxicircle

contig of 12,099 bp was recovered for HART1. A homologous

The Genomes of Phytomonas EM1 and HART1
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10,478-bp region was sequenced previously for Phytomonas serpens

[54], and the identity over the matching region of 9,816 bp

between the two Phytomonas isolates is 76.8%.

Similar to the P. serpens maxicircle, the maxicircle of HART1

is characterized by a complete absence of cytochrome c oxidase

subunits I–III (COI, COII, COIII), and cytochrome b (Cyb) of

the bc1 complex. Other maxicircle-encoded genes typical for

trypanosomatids, 12S and 9S rRNAs, ND1 to ND5, ND7 to ND9,

subunit 6 of ATP synthase (A6), ribosomal protein subunit 12

(RPS12), maxicircle unknown reading frames (MURF) 2 and 5,

and unidentified cryptogenes G3 and G4, are present (Figure S8).

Since PCR and limited sequencing data indicated that the same

deletions are present in EM1 and in three P. serpens strains [54],

these deletions likely became established at the base of the

Phytomonas clade.

Some maxicircle-encoded transcripts are known to undergo

extensive RNA editing via the insertion and/or deletion of four to

hundreds of uridylate residues [55]. Information for the editing

process is provided by hundreds of heterogeneous minicircle-

encoded gRNAs. The extent of editing is reflected by the sequence

identities of individual maxicircle-encoded genes. Although we

lack RNA sequence data for HART1, DNA sequence alignments

with other kinetoplastids allow determination of the extent of

editing for a given gene (Table S6). Genes that are pan-edited in

almost all trypanosomatids studied [56] (ND3, ND8, ND9,

RPS12, G3, and G4) show no reduction of the edited region in

HART1 as compared to P. serpens (Figure S8).

When all maxicircle-encoded genes are considered, HART1

and P. serpens are more divergent from each other than L. donovani

is from. L. tarentolae, but less so than T. cruzi is from T. brucei.

Furthermore, the HART1 maxicircle genes have slightly lower

identity to L. tarentolae, T. brucei and T. cruzi genes, than the genes

from these species have among themselves (Table S6). These facts

reflect the relatively long branch of the Phytomonas clade observed

in the SSU rRNA- and glycosomal GAPDH-based phylogenies

and deep separation between individual branches of this clade

[57,58].

Recovered full-length kDNA minicircles differ between both

Phytomonas EM1 and HART1. In HART1 the minicircles range in

length from 1,626 to 1,652 bp and contain one conserved region,

as does P. serpens [59]. The EM1 minicircles are longer (2,791 to

2,819 bp), and carry two conserved sequences opposite each other.

These variations are not unprecedented, as the size of minicircles

as well as the number of conserved regions are typically uniform

within a species, but variable among species [60,61].

Transposable elements in the Phytomonas EM1 and
HART1 genomes

Extensive bioinformatics analyses have been performed for all

known transposable elements (TEs) present in the trypanosomatid

genomes. While both LTR-retrotransposons (also called retro-

transposons) and non-LTR retrotransposons (also called retro-

posons) were described in the genome of T. brucei, T. congolense,

T. vivax, T. cruzi, and Leishmania spp. (,3% of nuclear genome), no

transposons have been identified to date [31,32,62–67].

Significantly, there is evidence for involvement of non-

autonomous TEs in the regulation of gene expression [65].

Leishmania spp. (,2,000 copies per haploid genome), but not

trypanosomes, have domesticated and expanded these small TEs,

named SIDER (Short Interspersed DEgenerated Retroposon) and

co-opted them as part of the gene expression machinery. All

trypanosome species analysed so far contain at least one putative

functional TE family of the ingi clade (Tbingi, Tvingi, Tcoingi,

L1Tco, L1Tc) that may have the capability to be mobilized, but all

members of the ingi clade are degenerate and non-functional in

the Leishmania species sequenced to date. Two questions were

considered important to address in the analysis of TEs in these

Phytomonas isolates due to their relatively close phylogenetic

position to Leishmania spp.: when, in the course of trypanosomatid

evolution, did domestication and expansion of SIDER occur? and

when was the loss of TE functionality from the ingi clade?

As observed for Leishmania spp., both Phytomonas genomes are

missing potentially active ingi-like TEs, but contain a few non-

functional TEs of the retroposon ingi clade. Two types of TEs

belonging to the retroposon ingi clade (PhDIRE, for Phytomonas

Degenerated Ingi-Related Element, and PhSIDER, Table S7)

were identified, with no evidence of functional elements, since

all are likely to be inactivated by the accumulation of deletions,

point mutations and/or frame shifts. PhDIRE belongs to the ingi1

subclade, considered as an early diverging ingi subfamily also

present in Leishmania spp., T. cruzi and T. congolense [66], as shown

by phylogenetic reconstruction (Figure 2) and analysis of the

conserved motif upstream of the retroposons. PhSIDERs are short

elements that were probably derived from PhDIRE by deletion, as

previously proposed for other potentially active ingi-like TEs

[62,65,66,68] (see Text S1 for details). No sequences related

to other trypanosomatid TEs were detected in the Phytomonas

genomes (details in Text S1).

The EM1 genome was found to contain 41 DIREs, similar to

all other trypanosomes and Leishmania spp. (L. major: 52 and

L. braziliensis: 65) (Table S7), however the seven SIDER copies was

low in comparison to Leishmania spp. that carry around 2000

copies. Thus, the enormous expansion and domestication of

SIDER in Leishmania spp. [65] is not observed in these Phytomonas

isolates, and exaptation of SIDER was likely a Leishmania-specific

event in the trypanosomatid lineage.

The HART1 genome is depleted of TEs. Forty-eight retro-

posons were identified in the EM1 genome, while two PhDIREs

were found in the HART1 genome, a 24-fold difference (Table

S7). Indeed, both the un-annotated contigs and the non-assembled

reads showed very low coverage of PhDIRE/PhSIDER in

HART1, confirming the low number of retroposons in this

Phytomonas isolate.

High gene content and synteny conservation between
EM1 and HART1

The majority of Phytomonas genes are shared between both

isolates, as shown by independent approaches used for ortholog

detection (see Materials and Methods). The combination of both

Best Reciprocal Hits (BRH) and orthoMCL strategies identified

5,210 (82%) genes from EM1 with orthologs in HART1, and

5,108 (79%) genes from HART1 with counterparts in EM1,

similar in gene size (Figure S9 A). The Phytomonas EM1 and

HART1 orthologs were more closely related to each other than

to their trypanosome orthologs with an average percentage of

identity of 70.5% (Figure 3). The small nucleolar RNA (snoRNA)

repertoires of HART1 and EM1 also showed higher similarity to

each other than to T. brucei or L. major (Table S8).

The genes for which no orthologs could be detected by this

preliminary approach are excellent candidates for understanding

Phytomonas spp. behaviors. After eliminating genes for which

orthologs were not detected because of annotation or assembly

issues, as well as suspected annotation artifacts, 13 genes remained

in EM1 and 4 in HART1 that could be confidently considered as

lacking an ortholog in the other isolate (Figure S10 and Table S9,

see Materials and Methods for details). The vast majority of

Phytomonas genes are shared between both isolates, highlighting the

The Genomes of Phytomonas EM1 and HART1
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Figure 2. Phylogenetic tree of the reverse transcriptase domain of retroposons belonging to the ingi (from the Kiswahili root
adjective meaning ‘many’) clade. The potentially active transposable element (TE) are indicated by an arrowhead. The other elements are DIRE
from T. brucei (Tb), T. congolense (Tco), T. vivax (Tv), T. cruzi (Tc), L. major (Lm), L. braziliensis (Lbr) or Phytomonas (Ph). This consensus tree was
generated with the neighbor-joining method and rooted with the RT domain of retroposons belonging to other clades. All numbers next to each
node indicate bootstrap values as percentage out of 100 replicates corresponding to the tree generated with the neighbor-joining method. The ingi
subfamilies nomenclature was defined before in [62].
doi:10.1371/journal.pgen.1004007.g002
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high level of conservation of the gene repertoire between these two

trypanosomatids.

We analyzed synteny between EM1 and HART1 using dot-

plots (Figure 4). Synteny was conserved between EM1 and

HART1, with most of the synteny breaks corresponding to scaffold

boundaries in one of the two isolates. Only five bona fide synteny

breaks with HART1 were found in the EM1 assembly, and 10 in

the HART1 assembly. The syntenic blocks are large (average of 60

genes, median of 35 genes) and usually include several hypothet-

ical PTUs (average 20 ORFs, median of 10) (Figure S11). There is

good conservation between PTUs in EM1 and HART1, with at

least one boundary in common between EM1 and HART1 for all

PTUs (Figure S12A and Figure S13). Significantly, synteny breaks

tend to correspond to the boundaries between putative PTUs

(Figure S12B), and intergenic distances are well conserved (Figure

S9B). To identify putative insertions in one isolate compared to the

other, we searched for gene number differences between successive

pairs of BRH in syntenic PTUs (Materials and Methods). After

filtering possible annotation artifacts (genes missed, splits/fusions,

etc) and genes with strong sequence similarity elsewhere in the

genome (Table S10), we retained ten genes in EM1 absent at the

syntenic position in HART1, including three already identified as

lacking a HART1 ortholog. Furthermore, three genes in HART1

lack a syntenic equivalent in EM1, with two already identified as

having no ortholog in EM1 (Table S9). The two strategies did not

identify the same sets of genes because of slight differences in the

very conservative quality controls applied (see Material and

Methods). Significantly, ten and three genes in EM1 and HART1

respectively, displayed weak hits in the syntenic region, suggesting

that they have diverged in the other isolate; ten and two genes had

no evidence for sequence homology, and could thus correspond to

insertions or complete deletions. Combining the two approaches,

20 genes from EM1 were confidently determined to be absent

from HART1 and 5 genes from HART1 were found to be absent

from EM1 (Table S9). Since we could only compare assembled

and annotated genes with confidence, these numbers may be

underestimates of the true number of non-conserved genes

between both isolates, but they are representative of the overall

level of synteny and gene repertoire conservation between these

two phylogenetically remotely related Phytomonas isolates (Table

S9).

Comparison of Phytomonas with other trypanosomatids
OrthoMCL comparisons [69] were performed between Phytom-

onas EM1 and HART1, and four other trypanosomatids: L. major

[29], T. brucei [28], T. cruzi [30] and Trypanosoma vivax [70]

(Materials and Methods). This predicted 22,706 clusters of

orthologous genes. Their conservation profiles (i.e. the list

of species in which they are found) are shown in Table 1. A

core of 2,869 genes was conserved between all six species (Table 1).

Figure 3. Distribution of the percentage of identity between orthologous proteins for different pairs of organisms. Phytomonas EM1
(EM1), Phytomonas HART1 (HART1), L. major (Lm), T. brucei (Tb), T. cruzi (Tc) and T. vivax (Tv). For each pair of species, the number of Best Reciprocal
Hits (BRH) and their average % identity (comparison done at amino acid level) are displayed between parentheses.
doi:10.1371/journal.pgen.1004007.g003
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Indeed, expert examination of this group of genes showed that

80.6% of the identified protein kinases shared by both Phytomonas

isolates are also present in T. brucei and L. major. This subgroup

contained major regulators, including up to 11 cdc2-related

kinases (CRKs), WEE1, aurora kinase AUK1, glycogen synthase

kinase 3 (GSK3) and casein kinases CK1 and CK2, expected to

be present in all eukaryotes (Table S3C). Putative amino acid

transporters conserved in all four mammalian parasites were also

identified in these Phytomonas isolates. Interestingly, both isolates

contained the same repertoire of amino acid transporters (AAPs),

but with differing copy numbers (Table S3E; details in Text S1).

Several genes with similarity to calmodulin and genes annotated

as calmodulin-like in T. cruzi [71] were also present in both

Phytomonas genomes.

Manual inspection of Phytomonas gene families highlighted many

examples of gene conservation within these plant parasites. Four

conserved Phytomonas EM1 and HART1 kinases were absent in

both T. brucei and L. major: These Phytomonas-specific kinases were

one calcium/calmodulin regulated kinase-like, one UNC-51-like

kinase, and two unique kinases that do not fall into any defined

kinase group (Table S3C; details in Text S1), suggesting that these

enzymes could be important for infection of, or survival in, plants.

Figure 4. Synteny between Phytomonas EM1 and HART1 genomes. Dot plot representation of the 5,006 BRH between EM1 and HART1. Each
dot represents a pair of genes (BRH), with on the x axis the position of the EM1 gene on the EM1 assembly (from left to right: scaffold 1–36, 38, 39,
42–46, 49, 52, 54, 55 and 57), and on the y axis the position of the HART1 gene on the HART1 assembly (from bottom to top: scaffold 1–13,15–19, 22–
24 and 26).
doi:10.1371/journal.pgen.1004007.g004
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Conservation of the phosphatase complements was also observed

in these two isolates; only slight differences were detected between

both tyrosine and serine/threonine-specific complements (Table

S11; details in Text S1).

The Phytomonas isolates have more genes in common with

Leishmania than with the three Trypanosoma spp.: 317 orthoMCL

clusters are shared between at least one Phytomonas isolate and L.

major but none of the Trypanosoma spp., and only 111 clusters are

common to at least one Phytomonas isolate and one Trypanosoma spp.

but not L. major. The number of BRH, as well as their percentage

of identity, was also significantly higher between Phytomonas and

Leishmania than between Phytomonas and trypanosomes (Figure 3).

However, the presence of two types of clusters conserved only in

Trypanosoma or Leishmania suggests independent secondary losses

from an ancestral organism with a substantially larger gene

complement.

Significant synteny was observed between Phytomonas and

Leishmania (Figure S14), as well as between Phytomonas and

trypanosomes (Figure S15, Figure S16 and Figure S17). As

expected from the closer phylogenetic relationship of Phytomonas

with Leishmania (Figure 1B) [37,38,42], more syntenic breaks were

observed between the Phytomonas isolates and trypanosomes than

Leishmania (Figure S12B). Syntenic blocks usually include several

PTUs (Figure S13). We compared the number of synteny breaks

that occur at PTU boundaries with what would be expected by

chance (Materials and Methods): for all pairs of species, the

synteny breaks tended to coincide with PTU boundaries (Figure

S12B). The high synteny conservation between trypanosomatids

might thus be the result of a selective pressure against intra-PTU

rearrangements.

Proteins involved in kDNA replication, kRNA editing,
modification and translation

The topological complexity of the kDNA network has fascinated

replication specialists for decades. The process is not fully

understood, but many of the players have been identified. In the

model flagellate T. brucei, the machinery is extremely complex,

requiring the combined activity of several mitochondrial DNA

polymerases, ligases, endonucleases, helicases and topoisomerases

[72]. Using a database of 26 genes encoding the kDNA replication

machinery of T. brucei, all orthologs have been identified in the

Phytomonas EM1 and HART1 isolates.

The transcripts of many maxicircle genes undergo RNA editing in

order to be translatable on mitochondrial ribosomes. Editing and

processing of these mRNAs require the participation of several dozen

proteins. A list of 28 T. brucei orthologs that are confirmed

components of the RNA editing core complex or predicted to

interact transiently with the complex [73] revealed that both EM1

and HART1 have the same composition, with substantial similarity

to T. brucei. With the exception of KREP4, KREP5 and the oligoU-

binding protein that have likely been lost or divergent as in L. major, all

of the remaining orthologs are present. In both Phytomonas isolates,

KREPB7 is duplicated. The available data is compatible with the

existence of another complex involved in RNA editing, mitochondrial

RNA binding complex 1 (MRB1) being composed of transiently

interacting sub-complexes, with up to 32 components [74]. While

Table 1. Gene conservation among Kinetoplastidae.

Conservation profile
Number
of genes Conservation profile

Number
of genes Conservation profile

Number
of genes

Tv 4039 (4042*) Lm,Tb,Tc 57 EM1,HART1,Tb,Tc 7

Tb 3610 (3612*) Tc,Tv 48 HART1,Lm,Tc 6

Tc 3084 (3093*) EM1,HART1,Tb,Tc,Tv 47 EM1,Tc 5

EM1,HART1,Lm,Tb,Tc,Tv 2869 EM1,Lm 46 HART1,Tc 4

Lm 2628 (2705*) EM1,Lm,Tb,Tv 41 EM1,Lm,Tb 4

HART1 1459 (715*) HART1,Lm,Tb,Tv 35 HART1,Tb,Tv 3

EM1 794 (226*) EM1,HART1,Lm,Tc,Tv 31 HART1,Tb,Tc,Tv 3

Tb,Tc,Tv 738 HART1,Lm 25 HART1,Tb 3

EM1,HART1 671 EM1,HART1,Lm,Tb 24 HART1,Lm,Tv 3

Lm,Tb,Tc,Tv 479 EM1,Lm,Tb,Tc 23 EM1,Tb,Tv 3

EM1,HART1,Lm,Tb,Tv 437 EM1,Lm,Tc 18 HART1,Tv 2

EM1,HART1,Lm 246 Lm,Tc,Tv 16 HART1,Lm,Tb 2

EM1,Lm,Tb,Tc,Tv 235 Lm,Tv 13 EM1,Lm,Tc,Tv 2

HART1,Lm,Tb,Tc,Tv 205 EM1,HART1,Tc 12 EM1,HART1,Tb 2

Tb,Tv 178 EM1,HART1,Lm,Tv 12 EM1,Tv 1

Lm,Tc 122 Lm,Tb 11 EM1,Tc,Tv 1

Tb,Tc 117 HART1,Lm,Tc,Tv 10 EM1,Tb,Tc 1

EM1,HART1,Lm,Tb,Tc 101 EM1,HART1,Tb,Tv 9 EM1,Lm,Tv 1

Lm,Tb,Tv 77 HART1,Lm,Tb,Tc 7 EM1,HART1,Tv 1

EM1,HART1,Lm,Tc 71 EM1,Tb,Tc,Tv 7

Orthologs genes were identified between Phytomonas EM1 and HART1 and 4 other trypanosomes: T. brucei (Tb), T. vivax (Tv), T. cruzi (Tc) and L. major (Lm). The results
of the pairwise alignments between all protein sequences of the 6 genomes were analysed using orthoMCL, as described in Materials and Methods. The same analysis
was performed keeping only EM1 and HART1 genes with strong support (*).
doi:10.1371/journal.pgen.1004007.t001
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only recently identified, MRB1 and associated proteins are

conserved, as EM1 and HART1 contain all of its known orthologs.

Trypanosomatid flagellates are well known for their uniquely

complex kDNA and kRNA. All in all, the gene order, editing

patterns, as well as proteins that participate in the metabolism

of these organellar nucleic acids, mostly identified in model species

T. brucei, L. tarentolae and/or C. fasciculata, are conserved in these

Phytomonas isolates.

Phosphorylation, calcium uptake and transporters in
Phytomonas spp.: Examples of genome contraction in
both EM1 and HART1 isolates

Analysis of the Phytomonas genome sequences provided a global

view of the metabolic potential of plant trypanosomatids.

Comparison of the gene repertoires from both isolates to other

sequenced trypanosomatids revealed a simplified genome, coding

for a minimal system with a clear lack of complexity for each

isolate. Indeed, both EM1 and HART1 genomes presented

diminutive gene sets when compared to T. cruzi, T. brucei and

L. major (Table 2, for more details see Table S3), retaining only

the most essential functions for the parasite, and often including

a considerable fraction of genes that could serve the hosts.

Furthermore, both gene repertoires are reduced as a result of both

the loss of entire gene families and the reduction of the numbers of

paralogs within gene families.

The protein kinase contents of the Phytomonas isolates provide

a good example of genome contraction in these plant parasites:

eukaryotic protein kinase (ePKs) genes were identified in both

isolates (160 and 161 in EM1 and HART1, respectively), but in

smaller numbers than in the TriTryp kinomes (Table 2) [31,75].

Twenty four protein kinases, conserved in T. brucei and L. major,

were not present in either of the Phytomonas draft kinomes. (Table

S3C). Furthermore, nine T. brucei-only kinases and 24 L. major-only

kinases were also absent from both Phytomonas draft kinomes. Even

Table 2. Gene repertoires in Phytomonas EM1and HART1
isolates.

Phytomonas

Expert annotation Tb Tc Lm EM1 HART1

Calcium transporters

Calcium Pumps and Channels 10 19 8 10 10

Calcium Binding Proteins 16 24 12 8 8

V-ATPase subunits 15 27 17 14 14

Ca signaling 13 27 14 14 14

Phosphate 6 8 4 3 3

Metabolism

amino acid metabolism 50 120 72 39 36

carbohydrate metabolism 54 84 58 44 53

glycolysis 18 12 11 7 7

glycosilation 10 26 14 10 10

phospholipids metabolism 18 26 20 14 14

lipid metabolism 33 62 44 36 28

ascorbate biosynthesis 11 21 15 10 10

folate metabolism 2 8 6 4 4

isoprenoid metabolisme 10 19 9 12 11

oxidant stress 19 25 23 14 13

PEX 11 16 11 10 10

Polyamine 3 6 4 3 3

PPP 8 16 8 7 7

purine and pyrimidine
metabolisme

21 44 22 20 20

energetic metabolisme 114 127 100 57 56

RNAi 3 0 1 0 0

fatty acid metabolism 38 63 50 27 21

Phosphatome

PTP family 24* 30* 30* 22 23

STP family 54* 56* 58* 45 45

Trafficking proteins

epsin-like and dynamins 5* 4* 2* 2 2

Clathrins 2* 5* 2* 2* 2

Adaptins 12* 29* 13 12 12

COPs 17* 28* 17* 17 16

Retromers 5* 8 5* 5 5

Tethers 30* 55* 29* 30 29

ESCRTs 16* 29* 16* 16 16

SNAREs 26* 48* 26* 25 23

LPG+GPI biosynthesis 13* 96* 29* 15 17

Kinases

AGC 10 11 15 11 11

CAMK 15* 23 15* 13 13

CK1 8 11 7 7 6

CMGC 40 76 44 37 36

Other/AUR 3 3 3 3 3

Other/CAMKK 4* 8 4* 3 3

Other/CK2 2 3 2 2 2

Other (NEK) 20* 27 23* 17 17

Other (PEK) 2 5 3 3 3

Table 2. Cont.

Phytomonas

Expert annotation Tb Tc Lm EM1 HART1

Other (PLK) 2 5 2 3 3

Other (TLK) 2 2 1 1 1

Other/ULK 2 3 2 2 2

Other (VPS15) 1 1 1 1 1

Other (WEE) 1 2 2 1 1

Other/kinase accessory proteins 6 2 3 3 3

STE 25 41 33 24 25

Cyclins 10 13 11 7 9

Unique 24* 39 42* 22 22

Transporters

amino acid transportes 78 26 24 15 16

sugar transporters 22 4 4 1 1

ABC transporter families 22* 28* ND (42*) 24 23

The members of selected Phytomonas EM1 and HART1 gene families were
identified using specific gene sequence as probes, as described in Materials and
Methods. T. brucei (Tb), T. cruzi (Tc) and/or L. major (Lm) gene copy number was
obtained, when possible, from literature and/or human curation (*). Otherwise,
gene copy number was computed based on OrthoMCL v5 (details in Materials
and Methods). ND, not determined.
doi:10.1371/journal.pgen.1004007.t002
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though it is possible that fewer ePKs are required for infection of

plants compared to mammals, the similar number of ePKs in the

pathogenic isolate HART1 was somewhat unexpected, as it could

be considered that additional protein kinases might be required to

coordinate virulence factor expression.

The less investigated partners of the phosphorylation-dephos-

phorylation regulatory cascades are the protein phosphatases,

organized into four major groups, depending on substrate

preferences and catalytic signature motifs. Three of these groups

corresponds to Ser/Thr specific phosphatases (STP): metallo-

dependent protein phosphatases (PPM), phosphoprotein phospha-

tases (PPP) and aspartate based phosphatases with a DxDxT/V

motif. The fourth group corresponds to the protein tyrosine

phosphatases (PTP) [76]. The completion of the genome

sequences of L. major, T. brucei and T. cruzi [31] has permitted a

deeper analysis of the protein phosphatases, showing that the main

protein phosphatase groups (Tyr, Ser/Thr and dual specific

protein phosphatases) are present in these parasite genomes, as in

higher eukaryotes [77].

The Phytomonas phosphatome provides another illustration of the

genome reduction observed in these parasites. Comparing the two

plant trypanosomes’ phosphatomes to the TriTryp phosphatome

[78], the main differences were found in the PTP complements:

the eukaryotic-like PTPs were absent from both EM1 and HART1

phosphatomes, and no orthologs of PTENs and CDC14s [76]

have been identified (Table S11A). PTENs and CDC14s (dual

specific phosphatase group) are present in the phosphatomes of

all three other kinetoplastids, where they can be grouped into

two distinct families, the eukaryotic-like and kinetoplastid-like

PTENs, depending on their sequence homology to other

eukaryotic PTENs. One kinetoplastid-like PTEN enzyme has

been found in the three kinetoplastids T. cruzi, T. brucei and

Leishmania [79]. While four eukaryotic-like PTENs have been

identified in T. cruzi, only one enzyme was found in L. major.

Interestingly, no T. brucei ortholog was identified, thus suggesting a

possible role of these enzymes in intracellular parasitism.

When we compared the STP complements of the Phytomonas

isolates, we detected a 20% decrease in the total number of

phosphatases as compared to the TriTryps, mainly due to the

reduced number of type 1 protein phosphatases. The number of

PP1s has been augmented in the genomes of T. brucei, T. cruzi

and L. major by a gene duplication process (8/7/8) [78]. Still, the

Figure 5. Comparison of the plant trypanosomes’ and the TriTryp Serine/Threonine protein phosphatase (STP) complements. The
bar graphs show the different STP genes distribution (%) in the Serine/Threonine protein phosphatomes of Phytomonas EM1 (EM1, 45 genes);
Phytomonas HART1 (HART1, 45 genes); Trypanosoma brucei (T. brucei, 54 genes), Trypanosoma cruzi (T. cruzi, 56 genes); Leishmania major (L. major, 58
genes). The abbreviations for the STP families: Protein Phosphatase type 1 (PP1), Protein Phosphatase type 2B/calcineurin (PP2B), members of Protein
Phosphatase type 2 group (PP2A, PP4, PP6), Protein Phosphatase type 5 (PP5), Protein phosphatase type 7/PPEF (protein phosphatases with EF-hand/
PP7), kinetoplastid specific STPs (kSTPs), ApaH-like phosphatases (Alphs), Shewanella-like phosphatases (Shelps), Protein Phosphatase Mg2+- or Mn2+-
dependent family members (PP2C) and TFIIF (transcription initiation factor IIF)-associating component of CTD phosphatase/small CTD phosphatase
(FCP/SCP). The numbers of STPs are shown in Table S13B. The data of TriTryp phosphatomes was used from [78] to construct the bar graphs.
doi:10.1371/journal.pgen.1004007.g005

The Genomes of Phytomonas EM1 and HART1

PLOS Genetics | www.plosgenetics.org 11 February 2014 | Volume 10 | Issue 2 | e1004007



functions associated to these apparently higher number of

resembling genes have not been characterized. Both in EM1

and HART1, four genes encoding PP1 catalytic subunits were

identified, a similar number to those described in other eukaryote

PP1 complements. We have also found a two-fold reduction in the

number of the bacterial-like phosphatases, Alphs and Shelps [80]

in the plant trypanosomatids compared to the TriTryp phospha-

tomes (Figure 5, Table S11B).

The reduction in the number of members of ABC transporters

(Table S12) and amino acid transporter families in these Phytomonas

isolates represents another relevant example of genome retrench-

ment. A unique family of amino acid transporter (AAP) genes from

members of the trypanosomatid family (25 in Leishmania, 17 in T.

brucei and 19 in T. cruzi) has been identified, based on the existence

of amino acid permease pfam domains [81,82]. This trypanoso-

matid-specific group of amino acid transporters corresponds to

a distinct clade within the amino acid/auxin permease (AAAP)

super family [83,84]. The analysis of these gene families revealed

15 and 16 AAP genes in EM1 and HART1 respectively, fewer

than in the mammalian trypanosomatid genomes (Table 2 and

Figure S18, details in Table S3E and Text S1).

Eukaryotic cells regulate their cytosolic calcium concentration

using numerous channels and transporters located in the

mitochondria, the plasma membrane and the endoplasmic

reticulum. Additionally, calcium binds to an extensive collection

of signaling and regulatory proteins in these eukaryotic cells. In

trypanosomatids, acidic organelles known as acidocalcisomes,

which have been identified in Phytomonas françai [85], act as the

major stock of the intracellular calcium, and are implicated

in processes such as calcium homeostasis, osmoregulation and

polyphosphate metabolism [71]. Hence, both Phytomonas EM1/

HART1 genomes were investigated for the presence of orthologs

to trypanosomatid genes known to be involved in calcium and

polyphosphate metabolism.

The trypanosomatid genome projects revealed a vast diversity

of Ca2+-binding proteins (as an example for T. cruzi see Table

S3A), many of which are not characterized and have little or no

homology with non-kinetoplastid proteins. Regulation of cytosolic

Ca2+ concentration in Phytomonas isolates EM1 and HART1

appears similar to that of other trypanosomatids. Yet, several

differences allow to clearly distinguish these organisms (Table

S3A). Though the inositol phosphate/diacylglycerol pathway is

present in pathogenic trypanosomatids, no evidence of either

a phospholipase C, or a protein kinase C was found in these

Phytomonas isolates. However, there are orthologs to the putative

InsP3 receptor in both Phytomonas EM1 and HART1 isolates.

Another interesting difference is the lack of Phytomonas counter-

parts to calreticulin, a Ca2+ storage protein located in the endo-

plasmic reticulum of T. cruzi [86], and the recently characterized

polyphosphate kinase (vacuolar transporter chaperone 4) of yeast,

pathogenic trypanosomatids, and Apicomplexan.

The membrane trafficking system and the predicted cell
surface proteome

To predict both the level of intracellular organellar complexity

and the surface composition of Phytomonas, the open reading frame

complement of HART1 and EM1 were scanned for around 300

genes involved in membrane trafficking. Both isolates of Phytomonas

share essentially identical membrane transport systems, with only

one clear example of specialization (Table S3D and Figure S19).

Overall, the endomembrane systems are the simplest yet described

amongst trypanosomatids; for example the Rab GTPase reper-

toire, a primary determinant of specificity and organelle identity

[87], retains the basic core exocytic and endocytic functions

and the trypanosome-specific Rab-like X1 and X2 [88] (Figure 6).

However, the system is substantially simpler, with only 12 Rab/

Rab-like proteins compared to 16 in T. brucei or 17 in L. major

Figure 6. ARF, Rab NUP and GPI pathways in Phytomonas EM1
and HART1. Schematic summaries indicating the presence or absence
of components of the ARF, Rab NUP and GPI Pathways in Phytomonas,
the TriTryps and selected comparitor taxa. The overlapping dots
correspond to paralogs: T. cruzi ARF 1ABCD, 4; T. brucei ARF 1ABCD, 4; T.
cruzi ARF 1E, 3; T. cruzi SAR X1, 2; Phytomonas EM1 ARL X, 2.
doi:10.1371/journal.pgen.1004007.g006
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[28,89]. Given that the losses here are Rab21, 28 and 32, this

reduction represents sculpting of the system by secondary loss from

the common ancestor and hence is an adaptive streamlining [90].

This simplification is also seen in the secondary loss of the AP4

adaptin sorting complex from both Phytomonas genomes (Table

S3D), and in a rather simpler ARF GTPase family compared

with other trypanosomatids. Further, these data likely suggest a

simplified late endocytic system, to which Rab21, Rab28 and AP4

are all assigned. Overall the view is of a minimal endomembrane

system, which conserves the major complexes and pathways,

indicating retention of all major organelles, but with an apparent

lack of complexity or innovation; adaptation has been via

minimization rather than invention.

As befits the position of Phytomonas as basal within the

trypanosomatid lineage, the surface appears to be rather similar

to Leishmania spp., and there is no evidence for mucin-like or

variant surface glycoprotein-related protein coding genes, or a

dominant, highly expressed, surface antigen as no predicted GPI-

anchored protein was encoded by transcripts in the most abundant

RNAseq percentiles. The surface system includes full glycosylpho-

sphatidylinositol (GPI) anchor and glycolipid biosynthetic path-

ways, the enzymatic apparatus for synthesis of a lipophosphogly-

can (LPG)-like molecule and evidence for the GPI-anchored gp63

protein (Table S3D, Figure S19).

Metabolism in Phytomonas EM1 and HART1
Analysis of the genomes of these two plant trypanosomes

provided a global view of the metabolic capacity of Phytomonas. As

a consequence of an almost complete absence of tandemly-linked

duplicated genes, most of the metabolic genes in Phytomonas were

identified as one haploid copy (Figure 7, Figure 8, Figure S20 and

Figure S21; for details see Table S3B).

As part of its carbohydrate metabolism (Figure 7; details in

Table S3B), Phytomonas not only utilize the plant’s sucrose but

also its polysaccharide stores as major energy substrates, as

confirmed by the identification of genes coding for glucoamy-

lase, alpha-glucosidase and, only in the HART1 isolate, many

copies of invertase (beta-fructofuranosidase) homologs (Table

S3B).

The presence of an alpha, alpha-trehalose phosphorylase in

both isolates suggested that Phytomonas is also capable of using the

abundant plant disaccharide trehalose for its carbohydrate needs.

The presence of this bacterial-type enzyme illustrates that the

adaptation of the plant parasite to their sojourn in their specific

hosts may have been facilitated by HGT events. In agreement with

previous studies on the carbohydrate metabolism of Phytomonas

[91,92], genome analysis revealed the presence of a complete set of

glycolytic enzymes, the majority of which seem to be sequestered

inside glycosomes, similar to other trypanosomatids. The existence

of glycosomes in Phytomonas, previously demonstrated, was now

confirmed by the presence of peroxisomal targeting signals at

either the C- or N-termini of the encoded glycolytic enzymes as

well as by the identification of a number of genes for peroxisome

biogenesis proteins or so-called peroxins.

Besides the horizontal alpha,alpha-trehalose phosphorylase

transfer event described here, other HGT events were previously

described for other Phytomonas isolates. A zinc-containing alcohol

dehydrogenase from a trypanosomatid isolated from the lactifer-

ous plant Euphorbia characias, previously identified as an isopropanol

dehydrogenase of bacterial origin, was also acquired by an event

of lateral gene transfer from a strictly aerobic bacterium to an

ancestral trypanosomatid [93]. The addition of this gene could

explain a selective advantage for a plant colonizing-flagellate living

in the phloemic or lactiferous tubes of infected plants, supported

by the fact that this enzyme was only identified in all plant

trypanosomes analyzed thus far, while absent from the rest of the

trypanosomatid family. This zinc-containing alcohol dehydroge-

nase, together with a glycosomal malate dehydrogenase (Table

S3), allowed us to assume that EM1 and HART1 would be able to

produce small amounts of lactate, as observed for other Phytomonas

isolates [94].

Almost nothing is known about the amino acid metabolism in

Phytomonas. Amino acid metabolism of Phytomonas resembles that

of the other trypanosomatids. The so-called non-essential amino

acids can either be degraded and utilized as energy sources, or

be formed from other metabolites. However, Phytomonas lacks

the capacity to oxidize aromatic amino acids and is predicted to

require an external supply of most of the essential amino acids.

The absence of a fatty acid beta-oxidation pathway and of ETF

predicts that Phytomonas is unable to oxidize both long chain and

side chain amino acids (Results in Figure S21, for details see Table

S3).

An arginine kinase was detected as a single copy gene in both

isolates. This enzyme may have been acquired by horizontal gene

transfer from the arthropod vector during evolution, as previously

shown for Phytomonas Jma [95]. The genomes revealed that overall

the interconversion and breakdown of amino acids is very similar

to what has been described for the other trypanosomatids.

However, while amino acids serve as the most important source

of energy for the other trypanosomatids inside their insect vector,

this cannot be the case in Phytomonas because of its limited

mitochondrial capabilities [91]. Owing to the fact that their

insect vector(s) feed exclusively on plant juices that are rich in

carbohydrates, the switch from plant to insect host would probably

not require a metabolic switch from carbohydrate to amino acid

metabolism as occurs in the mammalian trypanosomes. The

absence of such a switch may have allowed the irreversible loss of

a number of mitochondrial functions such as a respiratory chain

required for beta oxidation of fatty acids and the complete

oxidation of amino acids. Indeed, no genes coding for any of the

mitochondrial cytochromes could be found.

The enzymes of the hexose monophosphate pathway, as well as

the ones involved in gluconeogenesis are present in Phytomonas,

even though no evidence for the synthesis of glycogen has been

detected. Few genes were found for the formation of storage

polysaccharides. However, several mannosyl transferases, possibly

involved in the synthesis of mannan polysaccharides, were

detected, suggesting that mannans rather than glycogen may

serve as a polysaccharide store.

Protein glycosylation differs in the two Phytomonas isolates

(Figure S20, Table S3B). The genes required for the incorporation

of glucose, mannose, galactose, N-acetylglucosamine, glucuronic

acid, xylose and fucose into glycoproteins, but not for sialic acid,

were identified in the genome of the EM1 isolate. The HART1

isolate seems to lack the genes necessary for the incorporation of

N-acetylglucosamine and fucose.

With respect to lipid metabolism, fatty acyl dehydrogenase or,

oxidase, multifunctional enzyme and thiolase were absent in both

parasite isolates, indicating that Phytomonas is not capable of

oxidizing any fatty acids via the beta oxidation pathway. On the

other hand, Phytomonas should be capable of fatty acid biosynthesis,

since the genes coding for the responsible enzymes have been

identified in both parasite genomes (Type II fatty acid synthesis in

mitochondrion, and Type I fatty acid synthesis absent but

synthesis taking place by a set of elongases) (Figure 8).

Oxidant stress protection in trypanosomatids is based on

trypanothione, an adduct of one spermidine and two molecules

of glutathione [96]. Thus the Phytomonas proteome was searched
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for the presence of enzymes involved in this metabolism.

Phytomonas has a trypanothione reductase as well as a homolog

of glutathionylspermidine synthase, or trypanothione synthase,

as well as the enzymes thioredoxin (tryparedoxin), several

thioredoxin (tryparedoxin) peroxidases, peroxiredoxin, and trypa-

nothione peroxidase. Several mitochondrial and cytosolic super-

oxide dismutases and an iron/ascorbate oxidoreductase, but

no catalase, were identified. The reducing equivalents in the

form of NADPH are provided by the enzymes NADP-dependent

isocitrate dehydrogenase in the mitochondrion and by the hexose-

monophosphate pathway enzymes glucose-6-phosphate dehydro-

genase and 6-phosphogluconate dehydrogenase. A plant-like

ascorbate peroxidase, as described for T. cruzi and Leishmania,

was not detected (Table S3B).

Phytomonas lacks the capacity for RNAi, since the argonaut

AGO1 (Tb10.406.0020) and the two dicer proteins DCL1

Figure 7. Core metabolism pathways in Phytomonas EM1 and HART1, as compared to that of Leishmania major. Boxed metabolites are
nutrients (in gray) or end-products (in black). PPP, pentose-phosphate pathway. Enzymes: 1, hexokinase; 2, phosphoglucose isomerase; 3,
phosphofructokinase; 4, fructosebisphosphate aldolase; 5, triosephosphate isomerase; 6, glyceraldehyde-3-phosphate dehydrogenase; 7, glycosomal
phosphoglycerate kinase; 8, glycerol-3-phosphate dehydrogenase; 9 glycerol kinase; 10, glycosomal adenylate kinase; 11, glucosamine-6-phosphate
deaminase; 12, mannose-6-phosphate isomerase; 13, phosphomannomutase; 14, GDP-mannose pyrophosphorylase; 15, phosphoglycerate mutase;
16, enolase; 17, pyruvate kinase; 18, phosphoenolpyruvate carboxykinase; 19, malate dehydrogenase; 20, fumarate hydratase; 21, NADH-dependent
fumarate reductase; 22, malic enzyme; 23, alanine aminotransferase; 24, aspartate aminotransferase; 25, pyruvate phosphate dikinase; 26, citrate
synthase; 27, 2-ketoglutarate dehydrogenase; 28, succinyl-CoA ligase; 29, succinate dehydrogenase; 30, acetate: succinate CoA transferase; 31,
pyruvate dehydrogenase; 32, citrate lyase; 33, acetyl-CoA synthetase; 34, proline oxidation pathway; 35, threonine oxidation pathway; 36,
ribulokinase; 37, ribokinase;, 38, xylulokinase; 39, glucoamylase; 40, invertase; 41, glyoxalase I; 42, glyoxalase II; 43, D-lactate dehydrogenase.
doi:10.1371/journal.pgen.1004007.g007
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(Tb927.8.2370) and DCL2 (Tb927.3.1230) present in both T. brucei

and in L. brasiliensis but not in T. cruzi and L. major, two organisms

that lack RNAi, were also absent in both EM1 and HART1

genomes (see Table S3B). In fact, the lack of these gene products

agrees with the presence of a double stranded RNA virus reported

in the phloem-restricted isolates [97] that could serve as an

indication for the absence of defense mechanisms against invasion

by foreign RNA. Similar viruses have been reported for Leishmania

spp. as well [98,99].

Analysis of the Phytomonas HART1 and EM1 secretome
Virtually no information is available about the existence of

effectors of pathogenicity in Phytomonas spp. and their possible role

in the interaction with the host. We investigated the secretome of

Phytomonas EM1 and HART1 isolates for potential virulence

factors, by selecting those sequences having a secretion signal

peptide, no transmembrane domains and no glycophosphotidyli-

nositol (GPI) anchors. We detected 282 putative secreted proteins

in both HART1 and EM1 (Table S13). Among these proteins,

only 43 proteins in HART1 and 44 in EM1 had a PFAM domain

annotation. The secretome was classified into molecular function

and biological process using the Gene Ontology annotation

(Figure S22). However, we noted the presence of numerous false

positives in the set of predicted secreted proteins. This is due to the

high divergence between the trypanosomatid sequences and the

one used by SignalP for learning, mostly from fungi, animals,

plants or bacteria origin.

In the set of putative secreted proteins, we looked for proteins

involved in plant carbohydrate degradation. One protein having a

glycoside hydrolase family 31 domain was present in both HART1

and EM1 isolates, but the EST data did not show any expression

of the two corresponding genes. We also found a secreted protein

in HART1 (GSHART1T00001406001) coding for glycosyl

hydrolase family 32 that corresponded to one of the beta-

fructofuranosidases (see Metabolism of HART1 and EM1 section);

other beta-fructofuranosidases harbored a signal peptide and GPI

anchor. We did not identify any secreted proteins that were

supported by expression data and likely to be involved in plant cell

wall degradation. This finding is consistent with the fact that

Phytomonas is directly injected in the host phloem by an insect

vector, thus it does not need to degrade the plant cell wall to

penetrate into the host and gain access to the phloem sap.

We screened for secreted proteins having a proteolytic activity

that may lead to degradation of host proteins. Three genes were

found in EM1 coding for an S24 serine peptidase, an M3A

metallo-peptidase and an A1 aspartyl protease (AP); one AP

was also found in the secretome of HART1. Cathepsin D-like

A1 family AP genes have not been found in other known

trypanosomatid genomes such as Leishmania and Trypanosoma.

However, APs are known to be secreted and involved in the

virulence of several pathogenic fungi. In the case of the fungal

animal pathogen, Candida albicans, ten APs that contribute to the

dissemination of the pathogen in mice are present [100]. Fourteen

APs are also present in the genome of the ascomycete plant

pathogen Botritys cinerea, including BCap8, which was found to

constitute up to 23% of the total secreted proteins [101].

Since secreted Leishmania proteins with proteolytic activities may

contribute to pathogenesis [102,103], we looked for other AP

coding genes in the HART1 and EM1 genome. EM1 did not have

any extra APs, while HART1 harbors a cluster of five APs located

in scaffold 1 (Table S3). These five tandem genes, absent in

the syntenic region of EM1, were not detected by the ‘‘synteny’’

approach because of the stringency of filtering (see Material

and Methods). The ‘‘true’’ first methionine of each protein of

the cluster was located in intercontig gaps. When extending

the N-terminal region of each of these proteins, a signal pep-

tide could only be detected for the most extended gene

(GSHART1T00000177001). For the four remaining APs, the N-

terminal extension was not long enough to detect a probable signal

peptide, and none of the five APs harbored a GPI anchor.

Figure 8. Phospholipid metabolism in Phytomonas EM1 and HART1. Reactions involved in the interconversion of fatty acids, ether lipids and
phospholipids are shown. CoA, Coenzyme A; DHAP, dihydroxyacetone phosphate; G3P, glycerol 3-phosphate; PA, phosphatidic acid; LPA,
lysophosphatidic acid; PC, phosphatidyl choline; PE, phosphatidyl ethanolamine; PS, phosphatidyl serine; Pi inorganic phosphate.
doi:10.1371/journal.pgen.1004007.g008
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The phylogenetic analysis (Figure 9A) revealed that these

Phytomonas APs evolved from a common gene that branched deeply

in the tree with high aLRT support (aLRT support = 96). This

result suggested the existence of an ancestral AP gene in the

trypanosomatid lineages that may have been lost in Leishmania and

Trypanosoma. The integration of the APs genomic positions on

scaffold 1 and the topology of the HART1 clade allowed the

reconstruction of the events that led to the creation of a

pathogenicity gene cluster in HART1 (Figure 9B). HART1 and

EM1 had initially one copy of the gene coding for a secreted AP.

Then, the HART1 gene duplicated once from scaffold 5 to

scaffold 1. The cluster of five genes was created in the scaffold 1 of

HART1 by four successive tandem duplications. The presence of

a signal peptide in the AP from EM1, the AP in scaffold 5 and one

AP in the cluster of scaffold 1 let us speculate about the presence of

a signal peptide in the other four APs, but their sequences were too

short to detect it. The scaffold gaps between the five AP genes may

correspond to repeated elements that may have mediated the AP

tandem gene duplication. The EST data provided evidence for the

expression of the five AP genes which comprise the AP cluster in

the Phytomonas HART1 isolate (Figure S23), suggesting that,

similarly to the function of the AP family in the fungi Candida and

Bothrytis [101,104], the Phytomonas HART1 AP gene cluster could

be involved in virulence, an example of convergent evolution

between distant organisms.

Pathogen versus non-symptomatic genomes: Examples
and possible biological implications

The genus Phytomonas encompasses flagellates that differ

substantially in their pathogenic potential. Despite most genes

being shared between EM1 and HART1 isolates with respect to

both gene count and content, several differences are still present

(Table S3, Table S9). Among the members of the Phytomonas EM1

and HART1 kinase repertoires, only two specific genes were

identified: a CMGC/DYRK EM1-specific kinase, absent from

the HART1 genome, and an AGC/RSK only present in the

pathogenic HART1 isolate. Both specific kinases have no

orthologs in T. brucei or L. major. Since the function of these

kinases has not been studied in any trypanosomatid, and little is

known about protein kinase signaling pathways in the TriTryps,

the biological implications are not clear at present. While two

CDC25 phosphatases were also identified in EM1, no orthologs

were found in HART1, as in the case of T. brucei. The CDC25/

CDD25-like phosphatases were identified in Leishmania spp. and

T. cruzi, suggesting distinct roles for the protein phosphatases

only present in the two intracellular trypanosomatids.

Figure 9. Duplication of ancestral Phytomonas secreted aspartyl protease sequences and maximum-likelyhood plylogenetic tree of
aspartyl proteases. A. 89 amino acids ML phylogenetic unrooted tree built on the cured alignment of 64 aspartic proteases. The branch supports
are approximate likehood-ratio test (aLRT) results. Clades corresponding to animals, fungi, chromalveolates, amoebas and plants are collapsed. The
leaf labels EM1 3923, HART1 6101, HART1 170, HART1 172, HART1 173, HART1 177, HART1 179 correspond respectively to genes
GSHART1T00006101001, GSHART1T00000170001, GSHART1T00000172001, GSHART1T00000173001, GSHART1T00000177001,
GSHART1T00000179001. B Representation of the duplication and tandem duplications that created the cluster of five APs in the HART1 scaffold 1.
doi:10.1371/journal.pgen.1004007.g009
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Phytomonas is adapted specifically to infect and live in plants,

where an abundant and diverse supply of carbohydrates is

available for the parasite. Surprisingly, genomes of both EM1

and HART1 isolates contained only one sugar transporter, an

ORF encoding a GT2 homolog (Table S3E). The presence of

only a single sugar transporter is intriguing. It would suggest

that both EM1GT2 and HART1GT2 have a broader substrate

specificity than the mammalian trypanosome GT2, and would be

in agreement with a much more simplified metabolic life cycle.

The pathogenic HART1 isolate seems to be specialized in

metabolizing sucrose, as is suggested by the presence of many

copies of an invertase (fructofuranosidase) homolog only detected

in this strain. The main difference between the pathogenic and

asymptomatic Phytomonas isolates resides in their specific location

inside the host: EM1 multiplies in latex tubes, while HART1

colonizes the phloem sap inside the sieve tubes. It is not yet clear

whether this difference in habitat is related to the presence, or not,

of multiple invertase genes. The presence of an alpha, alpha-

trehalose phosphorylase in Phytomonas may be the explanation of

why this plant parasite can survive in the insect hemolymph

by using trehalose, a disaccharide of glucose, as an energy substrate,

rather than amino acids, as is the case in midgut-dwelling tryp-

anosomatids of hematophagous insects. Trehalose, originally

regarded as a sugar characteristic of certain lower plants, is also a

major blood sugar of insects [105]. Since the phosphorylase is

present in all trypanosomatids for which the genome has been

sequenced so far, it is unlikely that the enzyme would be involved in

the parasite’s energy metabolism when dwelling in the plant host. It

is more likely that it fulfills a major role in the passage of

trypanosomatids through their insect vector rather than to their

survival in the widely different types of mammalian and plant hosts,

where only some plants have high concentrations of trehalose.

Both isolates seem to differ in the make-up of their surface

glycoproteins (examples in the Text S1 and Table S3D).

Most significantly, HART1 and EM1 have radically distinct

gp63 repertoires, with only two genes detected in EM1 but over 20

in HART1. These are clearly derived from a single common

precursor, with multiple expansions in HART1, and suggesting a

more complex surface for HART1 than EM1 that potentially

facilitated adaptation to a greater range of conditions, host species

or tissue spaces.

Perhaps the pathogenic effects of HART1 are primarily due to

their location in the sap, containing the products of photosynthesis

and essential for plant growth. The death of palms, coffee trees and

Alpinia may be the result of competition for essential metabolites

that are more efficiently scavenged by Phytomonas. Biological

inoculation experiments using the isolate EM1 in palms would

address this hypothesis. The specific relationships among Phytom-

onas, its vector, and the host make this experiment hard to

endeavour. The intraphloemic trypanosomatids associated with

wilts form a very distinct group, especially for their cultivation

[15]. Parasites could not be isolated without the help of feeder cells

in the cultures, while the cultures of latex isolates like EM1 or fruit

isolates were obtained in an axenic medium. Further comparative

analysis of the two Phytomonas genomes may reveal the source of

these differences.

Phytomonas genome: A minimized gene repertoire as a
hint for survival in the plant host

The Phytomonas genomes consist essentially of single copy genes

for the bulk of their metabolic enzymes, whereas Leishmania and

Trypanosoma possess numerous duplicated genes or large gene

families. While such gene duplications may have helped some

trypanosomatids to adapt to multiple, widely different hosts, i.e.

poikilothermic insects and warm-blooded mammals, their absence

in the two Phytomonas genomes analyzed here suggests that plant

trypanosomatids have been confronted much less with strikingly

different metabolic environments and temperatures, and have

hence lost or never needed these additional paralogs.

The unlimited availability of sugars in both plant and insect

hosts is a situation that normally leads to suppression of

mitochondrial activities, such as cyanide-sensitive respiration

and oxidative phosphorylation. Eventually this may result in an

irreversible loss of the genes coding for all of the above functions.

The irreversible suppression observed in Phytomonas resembles the

adaptation of some African trypanosomes to a permanent stay in

the bloodstream of their mammalian hosts, without the possibility

for cyclic transmission via insects. This also leads to the loss of

mitochondrial genes and results in the appearance of dyskineto-

plastic or akinetoplastic trypanosomes, unable to survive in the

tsetse fly. Interestingly, Phytomonas spp. possess orthologs to the

mitochondrial calcium uniporter recently described [106] suggest-

ing that, as bloodstream forms of T. brucei, they also utilize the

mitochondrial ATPase in reverse to maintain a membrane

potential that drives Ca2+ uptake through the uniporter. Some

Phytomonas genes likely gained via HGT may have permitted

increased flexibility of genome expression, enabling the successful

adaptation of Phytomonas spp.

Significant genome reduction has been identified in microbial

lineages living in selective environments. Selection plays a key role

during the initial phases of such adaptation removing ‘‘accessory’’

genes [107]. High gene density bear witness of genome con-

traction in several obligate intracellular parasites. In the case

of microsporidia, genome-size variation resulted from varying

frequencies of repeat elements without affecting gene density.

Furthermore, Phytomonas shows important host dependency

pictured by considerable gene losses. These adaptations combined

with genome compaction led to gene size reduction and

simplification of certain cellular processes [108].

Also phytoplasmas, specialized bacteria living as obligate

parasites of plant phloem tissue and transmitting insects [109],

have suffered extreme genome shrinkage, which resulted in a gene

repertoire that is specific for survival in plant hosts [110]. In the

case of phytoplasmas, this adaptation was made possible thanks to

the presence of repeated DNAs, which allowed survival in different

environments. Here also adaptation is particularly important, as

their host environments, including phloem tissues of plants, and

guts, salivary glands, and other organs and tissues of the insect

host, are extremely variable [110].

Phytomonas spp. are highly specialized trypanosomes, with

central differences in life history and infection strategy compared

to eukaryotic plant pathogens like fungi and oomycetes. Leaf, fruit

and stem are some of the surfaces colonized by plant pathogens.

Wind-blown rain, fog and any plant visitor are some of the

mechanisms by which phytopathogens like filamentous fungi

and oomycetes are disseminated to the host plants. Still, these

phytopathogens should penetrate by themselves in order to

colonize and circulate inside the host. In this process, several

biological mechanisms are triggered to colonize and propagate

into the host, by the use of enzymes (cutinase, cellulase, pectinase),

hormones, toxins and frequently by the interaction with metab-

olites produced by the plant in response to the invasion [111].

Contrary to these phytopathogens, plant trypanosomatids do

not need to degrade cell walls to settle inside the plant since they

are deposited into very specialized tissues or cells in the host thanks

to insects that acts as their natural carriers. Yet, the discovery of a

Phytomonas HART1 AP gene cluster, known to be secreted and

involved in the virulence of several pathogenic fungi [100,101]
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but missing in animal parasitic trypanosomids and the non

pathogenous EM1 isolate, could be described as a good example of

convergent evolution between these distant phytopathogen

organisms.

The genome completion is the first step towards development

of effective chemical control agents against Phytomonas spp., which

is not only of economic interest, but may have relevance for

other Trypanosomatidae pathogenic to humans and animals, since

they share similar metabolic routes and many other biological

mechanisms [112,113]. Comparative studies between plant,

human and animal pathogenic trypanosomatids as well as free

living species will assist in the identification of gene cohorts

specifically linked to various pathogenesis mechanisms. These

comparisons will also contribute towards better and safer control

methods for trypanosomatid diseases of animals, plants and

humans and provide better insights into the evolution of parasitic

and pathogenic mechanisms.

Materials and Methods

Genome sequencing and assembly
The sequencing strategy used for both Phytomonas genomes

corresponds to a mix of three technologies: 454/Roche for most

coverage; Solexa/Illumina for automatic corrections of low-quality

regions (especially around homopolymers); and classical Sanger

sequencing at low coverage with large-insert clones (10 kb-insert

containing plasmids and fosmids) to organize the contigs into

scaffolds. The assembly method is described in detail in Text S1.

Chromosome read depth analysis
Illumina reads were mapped to the corresponding Phytomonas

genome using SOAP version 1.10 [114], under the guidance of a

custom perl script. The number of bases mapping to each position

in each scaffold was recorded, and used to determine the total

number of read bases mapping to each scaffold and the median

read depth for each scaffold. Observing that a majority of the

scaffolds displayed similar median read depths, and interpreting

this as a nominal ‘ploidy’, a within-genome normalisation was

performed by setting the average of the read depth of the four

longest ‘euploidic’ scaffolds to 2. The read depth for each scaffold

was subsequently normalized to this value. Results of the scaffolds

‘‘somy’’ are shown in Table S1.

Genome annotation
Protein-coding genes are predicted by combining ab initio gene

model predictions (already trained on manually annotated genes)

and homology searches, using collections of expressed sequences -

full length cDNAs, ESTs or massive-scale mRNA sequences from

the same or closely related organisms – proteins or other genomic

sequences. Details on the pipeline are given in the Text S1.

Moreover, tRNA-Scan [115] was used to detect tRNAs in both

Phytomonas assembled sequences.

After a final integration of all gene evidence using GAZE [116],

the final proteome was delivered with computed annotation data,

such as ortholog and paralog associations, functional domains and

ontology relationships.

Identification of candidate horizontal gene transfers
Phytomonas proteins were used against the protein nr database

(blastx, [117]), with the parameters ‘‘-f 100 -X 100 -e 0.00001 -E 2

-W 5’’, and the best hits were retained using the following criteria:

only BLAST scores greater than 90% of the best score outside

kinetoplastids (so that horizontal gene transfers shared between

kinetoplastids could be detected) and above 100 were retained.

Then, the proteins with all their best hits in bacteria or archaea

were retained as candidates to have arisen from bacterial/archeal

horizontal gene transfers. All the candidates were then manually

inspected, which provided 87 final candidate HGT genes, 80 of

which have orthologs in other trypanosomatids, and 8 have no

orthologs in Leishmania spp. nor Trypanosoma spp. and might thus be

specific of Phytomonas (Table S4).

Detection of orthologs between EM1, HART1 and other
trypanosomatids

We identified orthologous genes between Phytomonas EM1 and

HART1, and 4 other trypanosomatids: L. major [29], T. brucei [28],

T. cruzi [30] and T. vivax [70] (Tritryp release 2.1). Each pair of

annotated genes was aligned with the Smith-Waterman algorithm,

and alignments with a score higher than 300 (BLOSUM62,

gapo = 10, gape = 1) were retained. Orthologs were defined as best

reciprocal hits (BRH), i.e. two genes, A from genome GA and B

from genome GB, were considered orthologs if B is the best match

for gene A in GB and A is the best match for B in GA. Indeed,

5006 gene pairs (representing 77.6% for HART1 and 78.4% for

EM1 genes), similar in gene size and intergenic length, were

detected using this approach (Figure S9A and B). The number of

BRH for each comparison and their average and median %id are

displayed in Figure 3; the distribution of %id for these BRH

between different pairs of species designated both Phytomonas

isolates as being much closer to each other than to other

trypanosomes (average %id of 70% for EM1 and HART1; 56 to

57.6% between the different pairs of trypanosomes).

The results of the pairwise alignments between all protein

sequences of the 6 genomes were then inputted to the orthoMCL

software V1.4 [69], in order to assemble clusters of orthologous

genes between both Phytomonas EM1 and HART1, and other

trypanosomatids. This approach was complementary to what was

observed by the BRH strategy, since it permitted us to ascertain

orthologs for multigenic families, not seen by the BRH strategy

alone. This procedure provided 7,694 clusters of orthologs genes,

gathering 5,188 EM1 and 4,643 HART1 genes in clusters

containing genes from both isolates (regardless of the presence

or absence of genes from other trypanosomes) (Table 1).

We also ran orthoMCL on the subset of genes from EM1 and

HART1 that have strong support (i.e that are overlapping uniprot

genewise hits, or cDNA reads as well as ab initio predictions): EM1

contains 5,237 such genes, and HART1 5,247 genes (Table 1).

Identification of genes absent from one isolate compared
to the other

1/‘‘homology’’ approach. After combining BRH and

orthoMCL approaches, 1,171 EM1 genes remained with no

ortholog detected in HART1, and 1,343 HART1 genes remained

with no ortholog detected in EM1. But the fact that no

orthologous gene could be detected was likely due to detection

issues rather than differences between the isolates. In order to filter

out those detection issues, we first aligned the protein sequences

against the genome, with the same pipeline as the one used for

aligning uniprot proteins, i.e. using BLAT [118] followed by

genewise [119]; 504 genes from EM1 and 602 genes from HART1

displayed a genomic match in the other isolate, which correspond

to missed genes or wrong annotations (Figure S10). The genes that

displayed no match on the genome were subsequently aligned

against the reads using tblastn [120] with an e-value cutoff of

10e204. Genes matching on at least 5 reads, and covered on

. = 25% of their length with an average %id . = 35% were

retained: 247 genes from EM1 and 359 genes from HART1 are
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present in the reads but not in the assembly. Among the remaining

genes, a substantial proportion was suspected to correspond to

annotation artefacts. They were filtered out by retaining only

genes overlapping uniprot genewise hits or cDNA reads and ab

initio predictions, or genes sharing homology with other trypano-

somatids (i.e. present in orthoMCL clusters). 82 genes remained in

EM1 and 83 genes in HART1. We then investigated the syntenic

regions of those genes and discarded the genes for which we could

not find a syntenic region (genes upstream and downstream were

not in the same operon), and for which there were intercontig gaps

in the intergenic region; such genes were likely not assembled but

possibly present in the genome (and not detected by the mapping

on the reads because of the stringency of the criteria). Finally,

manual curation of the remaining candidates allowed elimination

of doubtful candidates (with doubtful structures or some homology

with the syntenic region). This procedure provided 13 EM1

genes with no ortholog in HART1 and 4 HART1 genes with no

ortholog in EM1 (Figure S10).

2/‘‘synteny’’ approach. We also investigated genes from

each isolate that had no counterpart in the syntenic region of the

other isolate. We first identified pairs of successive BRH between

EM1 and HART1 that were in the same operon and harbored

different numbers of genes between them. They were filtered

to eliminate structural differences of annotation (splits/fusions)

between the two isolates: if the two orthologous genes of at least

one BRH pair surrounding the region differed in length by more

than 500 bp, the region was discarded. Discrepancies likely due to

missed genes in the annotation were also filtered out: we only

retained syntenic regions with lengths differing by more than

1000 bp between the two Phytomonas isolates. Regions containing

intercontig gaps were also discarded. Finally, all candidates were

inspected manually, and aligned using blastn [121] to the genome

of the other isolate in order to sort out cases where the gene was

absent from the whole genome and cases where the gene was

absent in synteny but present somewhere else in the genome.

The approach was sensitive enough to detect gene order changes

(gene inversions) as well as translocations: the 7 EM1 genes and

5 HART1 genes that were detected in another position on

the genome of the other isolate are described in Table S10. We

detected 10 genes in EM1 that are neither present in the syntenic

position in HART1 nor anywhere else (3 of which were already

identified as having no ortholog), and 3 genes in HART1 that are

not present in the syntenic position in EM1 nor anywhere else (2 of

which were already identified as having no ortholog): Table S9.

The ‘‘synteny’’ approach retained genes with weak homology

with other genes anywhere on the genome (because they share a

common domain for instance) that had been discarded by the

alignment on the genome/reads in the ‘‘orthology’’ approach. On

the other hand, some of the genes detected by the ‘‘orthology’’

approach were not detected by the ‘‘synteny’’ approach because

the very stringent gene structure filter from the ‘‘synteny’’

approach discarded some genes identified by the ‘‘orthology’’

approach.

Combining the two complementary approaches, 20 genes from

EM1 and 13 genes from HART1 are identified. Since the two

approaches are not capturing the same genes, we suspect that

more genes specific of each isolate have been missed in the

automatic detection process, but our aim was to be conservative

and keep only cases with strong support. Refining the selection

would require extensive manual curation.

Coincidence of synteny breaks with operon boundaries
An in-house perl script was used to draw the dot plots and build

syntenic blocks between species. The clustering was performed by

single linkage clustering using the euclidian distance between

genes. Those distances were calculated with the gene index in each

scaffold rather than the genomic position. The minimal distance

between two orthologous genes was set to 10 on both counterparts

and we only retained clusters that were composed of at least 5

pairs of paralogous genes. The boundaries of the syntenic clusters

were then filtered in order to eliminate those occuring at the end

of scaffolds and corresponding to ‘‘assembly breaks’’ rather than

synteny breaks. As a consequence, for genomes with a more

fragmented assembly, the number of synteny breaks detected is

lower because some real syntenic breaks occur at scaffolds

boundaries and are discarded. This is the case for T. cruzi (41

scaffolds) that appears to have less synteny breaks with Phytomonas

compared to T. vivax and T. brucei (11 chromosomes). We

performed a simulation to distribute randomly the same number

of synteny breaks as observed for each scaffold (1000 iterations)

and counted the number of randomly distributed synteny breaks

that coincided with operon boundaries. In all cases, the observed

number of synteny breaks at operon boundaries was significantly

higher than expected randomly (Figure S12B).

Search for specific gene families in Phytomonas
Both genomic EM1 and HART1 assemblies were queried using

sequence probes encompassing selected Interpro domains, by a

series of reciprocal sequence comparisons using the BLAST server,

accessed through the SeqTryplant Genome Browser or directly on

a secure web site. Likewise, the reads not included in the assembly

as well as the contigs smaller than 5 kb and so excluded from the

assembled sequence, were scanned with the same probes. The

results obtained were subsequently examined by the experts of the

Phytomonas consortia in order to validate the gene models. Details

on the probes and procedure used for each gene family can be

found in the Text S1 file.

Comparison of trypanosome gene repertoires
The same gene probes used to search for gene families in both

Phytomonas genomes were later employed to query the TriTrypDB

4.0 Released, in order to obtain the corresponding genes in the T.

brucei, T. cruzi and L. major genome annotations. Later on, these

sequences were applied to query the OrthoMCL DB (version 5),

and copy number, as automatically defined by the OrthoMCL

approach was reported. Moreover, T. brucei, T. cruzi and/or

Leishmania spp. gene copy number for members of certain families

(e.g. kinases and transporters) was obtained from the literature or

human expertise when available (Table 2 and Table S3).

Analysis of the Phytomonas secretome
Proteins with a signal peptide were detected with SignalP

version 3.0 [122], transmembrane domains were detected with

TMHMM 2.0 [123] and GPI anchors with KOHGPI version

1.5 (http://gpi.unibe.ch/). Proteins harboring a signal peptide,

not containing transmembrane domains nor GPI anchors were

considered to be secreted by Phytomonas, and their annotation was

performed using BLASTp against the non-redundant NCBI

database, Interproscan and Gene Ontology. We retrieved aspartic

proteases from others clades (amoebae, plants, chromalveolates,

fungi and animals) using the Phytomonas aspartic proteases amino

acid sequences as queries with BLASTp on the NCBI nr database

[121]. Phylogenetic analysis was executed on the Phylogeny.fr

platform [124] as described in [125], with the parameters

‘‘minimum length of a block after gap cleaning: 5, no gap

positions were allowed in the final alignment, all segments with

contiguous non conserved positions bigger than 8 were rejected,

The Genomes of Phytomonas EM1 and HART1

PLOS Genetics | www.plosgenetics.org 19 February 2014 | Volume 10 | Issue 2 | e1004007



minimum number of sequences for a flank position: 85%’’ for

Gblocks v0.91b [126].

Supporting Information

Figure S1 Chromosome copy number variation in Phytomonas

genomes. Read depth was scaled to give a value of 2 for disomic

scaffolds. Median read depth over all scaffolds in the genome is

indicated in brackets. (A) EM1 (30); (B) HART1 (50).

(TIF)

Figure S2 Distribution of allele frequencies of heterozygous

single nucleotide polymorphisms (SNPs) across Phytomonas EM1

and HART1 genomes. Y-axis corresponds to allele count; X-axis

shows allele frequencies of heterozygous SNPs. A. Phytomonas EM1

whole genome; B. Phytomonas HART1 whole genome.

(TIF)

Figure S3 Distribution of allele frequencies according to inferred

ploidy for Phytomonas EM1 scaffolds. A, EM1 chromosomes with 2

copies (74 scaffolds and 3,608 SNPs); B, EM1 chromosomes with 3

copies (14 scaffolds and 816 SNPs); C, EM1 chromosomes with 4

copies (3 scaffolds and 84 SNPs); D, EM1 chromosomes with 5

copies (1 scaffold and 26 SNPs) and E, EM1 chromosomes with 6

copies (2 scaffolds and 116 SNPs).

(TIF)

Figure S4 Distribution of allele frequencies according to inferred

ploidy for Phytomonas HART1 scaffolds. A, HART1 chromosomes

with 2 copies (56 scaffolds and 8,774 SNPs); B, HART1

chromosomes with 3 copies (15 scaffolds and 828 SNPs) and C,

HART1 chromosomes with 4 copies (2 scaffolds and 264 SNPs).

(TIF)

Figure S5 Distribution of read depth along Phytomonas EM1

disomic and tetrasomic scaffolds. Y-axis corresponds to read

depth; X-axis shows scaffold length plotted on a log scale. A.

Phytomonas EM1 Scaffold_1 (disomic); B. Phytomonas EM1 Scaf-

fold_24 (tetrasomic).

(TIF)

Figure S6 Identification of polycistronic gene clusters (PTUs) in

Phytomonas. A. Strategy used for PTUs detection in Phytomonas EM1

and HART1 genomes (details in Text S1). B. Statistics on

Phytomonas PTUs.

(TIF)

Figure S7 Conservation of tRNA synteny within kinetoplastid

genomes. A. Conserved clusters of tRNAs found in HART1

(scaffold 1) and the corresponding scaffolds from EM1. ‘-’

represents tRNA genes absent from one scaffold. B. Partial

synteny of tRNA genes between HART1 (scaffold 4) and EM1

(scaffold 45). C. Synteny of tRNA genes associated transcription-

ally with other small-RNA genes, U3 and 7SL, in Leishmania

major. ‘?’ represents a hypothetical RNA pol III promoter for

the downstream 7SL RNA gene. The figure is not drawn to

scale.

(TIF)

Figure S8 Phytomonas HART1 maxicircle.

(PDF)

Figure S9 Gene size and intergenic length in Phytomonas EM1

and HART1. Correlation of gene size (A; from 5,006 pairs of

BRH) and intergenic length (B; from 3,504 orthologous intergenic

regions intra operons - pairs of adjacent orthologous genes -

between Phytomonas EM1 and HART1.

(TIF)

Figure S10 Flowchart of the strategy followed to purify the list of

Phytomonas genes with no ortholog in the other isolate. A: EM1

genes with no ortholog in HART1; B: HART1 genes with no

ortholog in EM1.

(TIF)

Figure S11 Synteny between Phytomonas EM1 and HART1. Dot

plot representation, with PTUs colored. A. EM1 PTUs colored, B.

HART1 PTUs colored. Different colors in the diagonal lines mean

that the synteny blocks contain several PTUs.

(TIF)

Figure S12 Relationships between Phytomonas EM1 and HART1

PTU’s genes. A. Orthologous relationships between Phytomonas

EM1 and HART1 genes. PTUs are represented by different

arbitrary colors so that PTU boundaries can be visualized.

Relationships between orthologous genes are painted with the

color of EM1 PTUs in order to facilitate the visualization of operon

boundaries conservation B. Synteny breaks between Phytomonas

EM1 and HART1 and human trypanosomes. Pairwaise compar-

ison between EM1 and HART1 isolates and kinetoplasitds T. brucei

(Tb), T. cruzi (Tc), T. vivax (Tv) and L. major (Lm). P-val: P-value

(probability of an observed result arising by chance).

(TIF)

Figure S13 Comparison of PTUs and synteny blocks: example

of Phytomonas EM1 scaffolds 1 and 2. For each scaffold, the first line

shows the PTUs in different arbitrary colors (changes in colors

correspond to PTU boundaries) and the next 5 lines represent

the syntenic blocks with 5 other species (each syntenic block is

represented by a different arbitrary color: changes in colors

correspond to synteny breaks): Phytomonas HART1 (HART1),

L. major (Lm), T. brucei (Tb), T. cruzi (Tc), T. vivax (Tv).

(TIF)

Figure S14 Synteny between Phytomonas EM1/HART1 and

Leishmania major (Lm). Dot plot representation of BRH between

EM1 and Lm (A; 4,607 genes), and HART1 and Lm (B; 4,322

genes). Each dot represents a pair of genes (BRH), with the

position of the EM1/HART1 gene on the EM1/HART1

assembly on the x axis, and the position of the Lm gene on the

Lm assembly on the y axis. Genes (dots) are colored according to

the EM1/HART1 PTU they belong to.

(TIF)

Figure S15 Synteny between Phytomonas EM1/HART1 and

Trypanosoma brucei (Tb). Dot plot representation of BRH between

EM1 and Tb (A; 4,014 genes) and HART1 and Tb (B; 3,806

genes). Each dot represents a pair of genes (BRH), with on the x

axis the position of the EM1/HART1 gene on the EM1/HART1

assembly, and on the y axis the position of the Tb gene on the Tb

assembly. Genes (dots) are colored according to the EM1/HART1

PTU they belong to.

(TIF)

Figure S16 Synteny between Phytomonas EM1/HART1 and

Trypanosoma cruzi (Tc). Dot plot representation of BRH between

EM1 and Tc (A; 3,646 genes) and HART1 and Tc (B; 3,438 genes).

Each dot represents a pair of genes (BRH), with on the x axis the

position of the EM1/HART1 gene on the EM1/HART1 assembly,

and on the y axis the position of the Tc gene on the Tc assembly. Genes

(dots) are colored according to the EM1/HART1 PTU they belong to.

(TIF)

Figure S17 Synteny between Phytomonas EM1/HART1 and

Trypanosoma vivax (Tv). Dot plot representation of BRH between

EM1 and Tv (A; 3,822 genes) and HART1 and Tv (B; 3,631

genes). Each dot represents a pair of genes (BRH), with on the x
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axis the position of the EM1/HART1 gene on the EM1/HART1

assembly, and on the y axis the position of the Tv gene on the Tv

assembly. Genes (dots) are colored according to the EM1/HART1

PTU they belong to.

(TIF)

Figure S18 Phylogenetic analysis of global lysine transporters.

Radial phylogenetic tree of amino acid transporter proteins,

including AAPs from Phytomonas EM1 and HART1, and mamma-

lian trypanosomatids. Trypanosomatid transporter sequences with

the indicated ID numbers were taken from GeneDB (http://www.

genedb.org). Colors indicate different genera; Leishmania in blue,

Trypanosomes in red and Phytomonas in black.

(TIF)

Figure S19 Phylogenetic reconstruction of gp63 families in

Phytomonas. The predicted protein sequences of gp63 orthologs

were retrieved from the EM1 and HART1 databases using

BLAST, and analysed using MrBayes and PhyML.

(PDF)

Figure S20 Protein glycosylation in Phytomonas. Steps in the

formation of the activated sugar residues for the glycosylation of

proteins. Abbreviations: Glc, glucose; GlcN, glucosamine; GlcNAc,

N-acetyl glucosamine; UDP, uridylyldiphosphate; Gal, galactose;

Fru, fructose; Man, mannose; GDP, guanidyldiphosphate; Glr,

glucuronic acid. Enzymes: 1, Glucokinase/hexokinase; 2,glucos-

amine-6-phosphate deaminase; 3, phosphoglucosamine mutase; 4

and 4a, bifunctional enzyme: glucosamine-1-phosphate acetyltrans-

ferase/UDP-N-acetylglucosamine pyrophosphorylase; 5, phospho-

glucomutase; 6, UDP-galactose/glucose pyrophosphorylase

(2.7.7.64); 7, UDP-glucose 4-epimerase; 8, Mannos-6-phosphate

isomerase; 9, phosphomannomutase; 10, mannose-1-phosphate

guanyltransferase/GDP-D-mannose pyrophosphorylase; 11, GDP-

mannose 4,6-dehydratase; 12, GDP-L-fucose synthase; 13, UDP-

glucose 6-dehydrogenase; 14, UDP-glucuronic acid decarboxylase;

15, galactokinase; 16, fucose kinase; 17, Fucose-1-phosphate

guanylyltransferase.

(TIF)

Figure S21 Amino acid and dithiol metabolism in Phytomonas

EM1 and HART1 isolates.

(TIF)

Figure S22 Gene Ontology (GO) Classification of the putative

secretome of Phytomonas HART1 and EM1. The y-axis indicates

the number of putative secreted protein sequences found under

each GO term; x-axis corresponds to the GO classification of the

molecular function (panel A) and GO classification of the

biological process (panel B). AKI corresponds to Phytomonas

HART1, AKH corresponds to Phytomonas EM1.

(TIF)

Figure S23 Genome browser view of the aspartic protease

cluster. The upper part of the figure is a view of the EM1 genomic

region lacking the cluster. The lower part represents the HART1

genomic region of the aspartyl protease cluster. Dotted lines

indicate the synteny of the two regions.

(TIF)

Table S1 Scaffold somy calls in Phytomonas EM1 and Hart1

isolates. Median read depth coverage was computed for each

scaffold across the whole EM1 and HART1 assemblies, and

normalized by setting the average of the read depth to 2 (details of

the procedure used can be found in Materials and Methods).

Scaffolds bigger than 100 kb (scaffolds above the red line)

highlighted in yellow are supernumerary.

(DOC)

Table S2 Resources used for Phytomonas EM1 and HART1

genome annotation.

(DOC)

Table S3 Expert curation of Phytomonas EM1 and HART1

gene families. Phytomonas EM1 and HART1 assemblies were

queried using sequence probes encompasing selected Interpro

domains, either a kinetoplastida counterpart (in bold), or an

ortholog from other species (*). Afterwards, the results obtained

were inspected by the Phytomonas consortia experts for confirma-

tion. Details on the probes and procedure used for each gene

family can be found in the Text S1 file. A, Ca2+ exchange; B,

Metabolism; C, Protein kinases; D Intracellular trafficking factors;

E, Transporters. Both yellow cells (corresponding to non-

annotated regions with a match to the gene probe) and pink cells

(unassembled regions - reads or contigs smaller than 500 bp -

matching a gene probe) are highlighted. Notes: no orthoMCL, no

orthoMCL cluster found; not identified, genes not found in

Phytomonas EM1 and/or HART1 isolate. #, absent or existing but

not used. a one single gene (split in the annotation). ## rBLASTs

to Tritryps DB only.

(XLS)

Table S4 Horizontal gene transfer candidates specific of

Phytomonas EM1 and HART1. T. brucei (Tb); T. cruzi (Tc), L. major

(Lm). *, described in [52].

(XLS)

Table S5 Phytomonas EM1 and HART1 tRNA genes. tRNA

genes were predicted in both Phytomonas isolates using tRNA-Scan.

Green highlight indicates tRNA genes unique to Phytomonas.

Yellow highlight indicates tRNA genes absent from all kinetoplas-

tids. Orange highlight indicates tRNA genes found in other

kinetoplastids but absent from Phytomonas.

(XLS)

Table S6 Percent identity at the nucleotide or protein level

between maxicircle genes, calculated for alignments with gaps

removed. vs. = versus; F = forward; R = reverse. *, percent identity

for the gene calculated at the protein level; **, 60.8% at the

nucleotide level, MURF5 gene was not included in the average

percent calculation; ***, vs. Leishmania amazonensis.

(XLS)

Table S7 Transposable elements in EM1 and HART1 Phytom-

onas genomes. a, number of amino acids contained in the

multifunctional protein encoded by the consensus sequence of

autonomous and active retroposons; b, autonomous retroposons

(‘‘Auto’’) potentially code for a protein responsible for their

retrotransposition. Retroposons are considered active when

bioinformatics analyses suggest recent retrotransposition events

for most of the elements in the family; c, copy number per haploid

genome.; d, not determined due to the high sequence heteroge-

neity; e, non-coding retroposons; f, the copy number of each

retroposon in the 41.8 Mb dataset (the size of the haploid genome

is not known); g, the copy number of each retroposon in the

47.7 Mb dataset (the size of the haploid genome is not known); h,

number of copies in the assembled sequences.

(DOC)

Table S8 Conservation and taxonomic distribution of Phytomonas

isolate snoRNAs.

(DOC)

Table S9 Genes absent from Phytomonas EM1 or HART1

genomes. Trypanosoma brucei (Tb), Trypanosoma cruzi (Tc), Trypano-

soma vivax (Tv), Leishmania major (Lm).

(XLS)
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Table S10 Genes from EM1/Hart1 absent in the syntenic

region of Phytomonas HART1/EM1, but present elsewhere on the

other isolate’s genome.

(XLS)

Table S11 Protein Tyrosine Phosphatase (PTP) and Serine/

Threonine specific protein phosphatase (STP) families in Phytom-

onas EM1 and HART1, compared to the TriTryp phosphatomes.

A, Protein Tyrosine Phosphatase (PTP) families in Phytomonas EM1

and HART1; B, Serine/Threonine specific protein phosphatases

(STP) in Phytomonas EM1 and HART1. Trypanosoma brucei (T.

brucei), Trypanosoma cruzi (T. cruzi), Leishmania major (L. major),

Phytomonas HART1 (HART1) and Phytomonas EM1 (EM1).

(XLS)

Table S12 ABC transporters in Phytomonas EM1 and HART1.

(XLS)

Table S13 Phytomonas EM1 and HART1 secretome.

(XLS)

Text S1 Supplementary information. A detailed description of

methods used for the sequencing and annotation of Phytomonas

EM1 and HART1 genomes and the manual inspection of selected

Phytomonas gene families.

(DOC)
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