BIOLOGY

O PLOS

COMPUTATIONAL

Check for
updates

G OPEN ACCESS

Citation: Schmidt H, Kndsche TR (2019) Action
potential propagation and synchronisation in
myelinated axons. PLoS Comput Biol 15(10):
€1007004. https://doi.org/10.1371/journal.
pchi. 1007004

Editor: Boris S. Gutkin, Ecole Normale Supérieure,
College de France, CNRS, FRANCE

Received: April 1, 2019
Accepted: September 27, 2019
Published: October 17,2019

Copyright: © 2019 Schmidt, Kndsche. This is an
open access article distributed under the terms of
the Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: This is a purely
computational study, and all relevant data are
within the paper.

Funding: HS and TRK were supported by the
German Research Foundation (DFG [KN 588/7-1]
within priority programme “Computational
Connectomics” [SPP 2041]). The funders had no
role in study design, data collection and analysis,
decision to publish, or preparation of the
manuscript.

Competing interests: The authors have declared
that no competing interests exist.

RESEARCH ARTICLE

Action potential propagation and
synchronisation in myelinated axons

Helmut Schmidt®'*, Thomas R. Knésche 2

1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany, 2 Institute of Biomedical
Engineering and Informatics, llmenau University of Technology, limenau, Germany

* hschmidt@cbs.mpg.de

Abstract

With the advent of advanced MRI techniques it has become possible to study axonal white
matter non-invasively and in great detail. Measuring the various parameters of the long-
range connections of the brain opens up the possibility to build and refine detailed models of
large-scale neuronal activity. One particular challenge is to find a mathematical description
of action potential propagation that is sufficiently simple, yet still biologically plausible to
model signal transmission across entire axonal fibre bundles. We develop a mathematical
framework in which we replace the Hodgkin-Huxley dynamics by a spike-diffuse-spike
model with passive sub-threshold dynamics and explicit, threshold-activated ion channel
currents. This allows us to study in detail the influence of the various model parameters on
the action potential velocity and on the entrainment of action potentials between ephaptically
coupled fibres without having to recur to numerical simulations. Specifically, we recover
known results regarding the influence of axon diameter, node of Ranvier length and inter-
node length on the velocity of action potentials. Additionally, we find that the velocity
depends more strongly on the thickness of the myelin sheath than was suggested by previ-
ous theoretical studies. We further explain the slowing down and synchronisation of action
potentials in ephaptically coupled fibres by their dynamic interaction. In summary, this study
presents a solution to incorporate detailed axonal parameters into a whole-brain modelling
framework.

Author summary

With more and more data becoming available on white-matter tracts, the need arises to
develop modelling frameworks that incorporate these data at the whole-brain level. This
requires the development of efficient mathematical schemes to study parameter depen-
dencies that can then be matched with data, in particular the speed of action potentials
that cause delays between brain regions. Here, we develop a method that describes the for-
mation of action potentials by threshold activated currents, often referred to as spike-dif-
fuse-spike modelling. A particular focus of our study is the dependence of the speed of
action potentials on structural parameters. We find that the diameter of axons and the
thickness of the myelin sheath have a strong influence on the speed, whereas the length of
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myelinated segments and node of Ranvier length have a lesser effect. In addition to exam-
ining single axons, we demonstrate that action potentials between nearby axons can syn-
chronise and slow down their propagation speed.

Introduction

Neurons communicate via chemical and electrical signals, and an integral part of this commu-
nication is the transmission of action potentials along their axons. The velocity of action
potentials is crucial for the right timing in information processing and depends on the dynam-
ics of ion channels studding the axon, but also on its geometrical properties. For instance, the
velocity increases approximately linearly with the diameter of myelinated axons [1]. Myelin
sheaths around axons are an evolutionary trait in most vertebrates and some invertebrates,
which developed independently in several taxa [2]. The presence of a myelin sheath increases
the velocity of action potentials by enabling saltatory conduction [3]. Long-term, activity-
dependent changes in the myelination status of axons are related to learning [4]. The func-
tional role of differentiated myelination is to regulate and synchronise signal transmission
across different axonal fibres to enable cognitive function, sensory integration and motor skills
[5]. White-matter architecture has also been found to affect the peak frequency of the alpha
rhythm [6]. Axons and their supporting cells make up the white matter, which has, for a long
time, only been accessible to histological studies [7, 8]. With the advent of advanced MRI tech-
niques, some of the geometric parameters of axonal fibre bundles have become accessible to
non-invasive methods. Techniques have been proposed to determine the orientation of fibre
bundles in the white matter [9] as well as to estimate the distribution of axonal diameters [10],
the packing density of axons in a fibre bundle [11, 12], and the ratio of the diameters of the
axon and the myelin sheath (g-ratio) [13].

First quantitative studies were done by Hursh [14] who established the (approximately) lin-
ear relationship between action potential velocity and axonal radius in myelinated axons, and
Tasaki [3] who first described saltatory conduction in myelinated axons. Seminal work on ion
channel dynamics was later done by Hodgkin and Huxley, establishing the voltage-depen-
dence of ion channel currents [15]. The general result of voltage-dependent gating has been
confirmed in vertebrates [16], yet a recent result for mammals suggests that the gating dynam-
ics of sodium channels is faster than described by the original Hodgkin-Huxley model, thereby
enabling faster generation and transmission of action potentials [17]. In general, parameters
determining channel dynamics differ widely across neuron types [18].

Seminal studies into signal propagation in myelinated axons using computational tech-
niques were done by FitzHugh [19] and Goldman and Albus [20]. Goldman and Albus gave
the first computational evidence for the linear increase of the conduction velocity with the
radius of the axon, provided that the length of myelinated segments also increases linearly with
the axonal radius. The linear relationship is supported by experimental evidence [21], although
other studies suggest a slightly nonlinear relationship [22]. More recently, computational stud-
ies have investigated the role of the myelin sheath and the relationship between models of dif-
ferent complexity with experimental results [23]. One of the key findings here was that only a
myelin sheath with finite capacitance and resistance reproduced experimental results for axo-
nal conduction velocity. Other studies investigated the role of the width of the nodes of Ran-
vier on signal propagation [24, 25], or the effect of ephaptic coupling on signal propagation
[26-33].
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Most computational studies employ numerical schemes, i.e. they discretise the mathemati-
cal problem in space and time and use numerical integration methods to investigate the propa-
gation of action potentials. One problem that arises here is that the spatial discretisation must
be relatively coarse to ensure numerical stability, which can be remedied to some extent by
advanced numerical methods and computational effort [34]. The other problem, however,
cannot be remedied that easily: it is the lack of insight into how the model parameters influ-
ence the results, since there is a large number of parameters involved. A way to illustrate
parameter dependencies in an efficient manner is to use analytical techniques all the while sim-
plifying the model equations and extracting essential features. Studies that use analytical meth-
ods are few and far between [35-38]; yet it is also worth noting that from a mathematical
perspective, myelinated axons are similar to spine-studded dendrites, in the sense that active
units are coupled by passive leaky cables. An idea that we pick up from the latter is to simplify
the ionic currents crossing the membrane [39, 40], there at dendritic spines mediated by neu-
rotransmitters, here at nodes of Ranvier mediated by voltage-gated dynamics.

The goal of this article is to use analytical methods to study the influence of parameters con-
trolling action potential generation, and geometric and electrophysiological parameters of the
myelinated axon, on the speed of action potentials. The main focus here is on parameters
determining the axonal structure. This will be achieved by replacing the Hodgkin-Huxley
dynamics with a spike-diffuse-spike model for action potential generation, i.e. ion currents are
released at nodes of Ranvier when the membrane potential reaches a certain threshold. These
ion channel currents are considered voltage-independent, but we investigate different forms of
currents, ranging from instantaneous currents to currents that incorporate time delays. We
also investigate ion currents that closely resemble sodium currents measured experimentally.
Our aim is to derive closed-form solutions for the membrane potential along an axon, which
yields the relationship of action potential velocity with model parameters.

The specific questions we seek to answer here are the following. First, we query how physio-
logical parameters can be incorporated into our mathematical framework, especially parame-
ters that control the dynamics of the ionic currents. We test if parameters from the literature
yield physiologically plausible results for the shape and amplitude of action potentials, and test
how the ionic currents from multiple nearby nodes of Ranvier contribute to the formation of
action potentials. Secondly, we ask how geometric parameters of an axon affect the transmis-
sion speed in a single axon, and how sensitive the transmission speed is to changes in these
parameters. We seek to reproduce known results from the literature, such as the dependence
of the velocity on axon diameter. We also explore other dependencies, such as on the g-ratio,
and other microscopic structural parameters resulting from myelination. We compare the
results of our spike-diffuse-spike model with the results from a detailed biophysical model
recently used to study the effect of node and internode length on action potential velocity [24].
Thirdly, we investigate how ephaptic coupling affects the transmission speed of action poten-
tials, and what the conditions are for action potentials to synchronise. In particular, we exam-
ine how restricted extra-axonal space leads to coupling between two identical axons, and how
action potentials travelling through the coupled axons interact.

Results

For the mathematical treatment of action potential propagation along myelinated axons, we
consider active elements periodically placed on an infinitely long cable. The latter represents
the myelinated axon and is appropriately described as leaky cable, whereas the active elements
represent the nodes of Ranvier. In mathematical terms, the governing equation is an inhomo-
geneous cable equation, which describes the membrane potential V{(x, t) of a leaky cable in
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space x (scalar, longitudinal to the cable) and time ¢ in response to input currents:

ov. 19V VvV
—=————+1, (V1) 1
m at Rc axg Rm+ chan( ’ ) ( )
Here, C,, and R,, are the (radial) capacitance and resistance of a myelinated fibre, and R, is
its axial resistance. The term I, represents the ion channel currents triggered at nodes of
Ranvier. The cable equation (Eq (1)) can be reformulated into
ov %

— =N —V+RIL,.(t 2
T 6t 8x2 + m chun( )3 ( )

by multiplying both sides of (1) with R,,,. The time constant 7 and the cable constant A are
parameters determined by the electrophysiological properties of myelin. We choose these
parameters in accordance with experimental results and keep them fixed throughout our anal-
ysis, see the Methods section for details.

The input currents generated by the ion channel dynamics at the nodes of Ranvier is com-
monly described by a Hodgkin-Huxley framework. However, the Hodgkin-Huxley equations
are a challenge to solve analytically, and in order to proceed with our mathematical treatment
we opt for a simplified description using threshold-activated currents with standardised cur-
rent profiles. We analyse different current profiles, ranging from delta-spikes to combinations
of exponentials which give a good approximation of the ion currents observed experimentally.
We solve the cable equation for these currents analytically which yields the dynamics of the
membrane potential describing the resulting depolarisation / hyperpolarisation along the
axon. The linearity of the cable equation in V allows us to describe the response to multiple
input currents by the superposition of solutions for single currents. A sketch of the framework
is shown in Fig 1.

Ion channel dynamics

The classical Hodgkin-Huxley model is described by a set of nonlinear equations which need
to be solved numerically. Over the years, it has seen several modifications and improvements
such as the one by Frankenhaeuser and Huxley [16], or the incorporation of additional ion
currents [41] given the multitude of ion channel types [42, 43]. Also, attempts were made to
provide better fits by modifying the exponents of the gating variables [44]. In essence, it is diffi-
cult to determine what is the ‘right’ Hodgkin-Huxley model for specific neuron types. For this
reason, it seems prudent to go into the opposite direction and to try to simplify the description
of the ion channel dynamics.

Two important contributions into this direction are the one by Fitzhugh [45, 46] and
Nagumo [47], and the one by Morris and Lecar [48]. They provide a framework in which the
slow and the fast variables are lumped and thus yield a two-dimensional reduction of the
Hodgkin-Huxley model. The ion currents here are still voltage-dependent.

A crucial simplification towards analytically treatable models is the separation of sub-
threshold dynamics and spike generation in integrate-and-fire models [49, 50]. For instance,
in the leaky integrate-and-fire model and the quadratic integrate-and-fire model, the time-to-
spike can be computed analytically, given initial conditions and a threshold value for the mem-
brane potential. The ion currents are then often modelled as delta-spikes since the ion dynam-
ics is fast in comparison to the (dendritic and somatic) membrane dynamics. The spatial
extension of the leaky integrate-and-fire model is the spike-diffuse-spike model, in which
activity spreads via passive cables.
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Fig 1. Action potential propagation in a myelinated axon. A: The axon is made of myelinated segments
(internodes), with the nodes of Ranvier forming periodic gaps in the myelin sheath. B: The nodes of Ranvier constitute
active sites at which threshold-triggered ion channel currents are released. C: The currents entering nearby nodes of
Ranvier determine the membrane potential at each node, thus forming an action potential. D: The velocity of an action
potential is determined by the distance L between two consecutive nodes, and the time difference t,, it takes to reach a
given threshold value.

https://doi.org/10.1371/journal.pcbi.1007004.g001

Here, we consider four forms of channel current models. All of these have in common that
the ion current is initiated after the membrane potential has crossed a threshold V;,,, and has a
predetermined profile. We denote the four scenarios by the letters A, B, C, and D. In scenario
A, the ion channel current is released immediately and instantaneously, i.e.

Ly (£) = 10 (2 = 1) (3)

Here, I, denotes the overall ion current, ¢, denotes the time when the membrane potential
crosses the threshold, and 6(-) is the delta-distribution, or Dirac’s delta. In scenario B, the ion
current is also released instantaneously, but with a delay A:

L..(t) =1,0(t —t, — A). (4)

chan
In scenario C, the ionic current is exponential:
Ly, (£) = Lye 00 O(t — 1y). (5)

Here, 7, is the decay time, and ©(-) is the Heaviside step function. With scenario D we aim
to approximate the ion currents as measured in mammals such as the rabbit [51] and in the rat
[52], which can be described by a superposition of exponential currents:

Ly (1) = IOZAH exp (—(t = £,)/7,)O(t — 1). (6)
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Fig 2. Sketch of ion channel currents considered here, with representative profiles of membrane potential in nearby nodes.
After the membrane potential V reaches the threshold value V,,, the current I is released. A: The instantaneous current is described
by a delta-peak at 5, when the threshold value is reached. B: The simplest way to accommodate delays or refractoriness is to
introduce a refractory period A, after which the instantaneous current is released. C: Exponential current with characteristic time
scale 7. D: A combination of exponential currents describes a realistic current profile.

https://doi.org/10.1371/journal.pcbi.1007004.9002

A sketch of all these scenarios is shown in Fig 2, alongside typical depolarisation curves of
the membrane potential.

Current influx and separation

According to Kirchhoff’s first law, the channel current that flows into the axon, I;,,,,(f) is
counter-balanced by currents flowing axially both ways along the axon, I,.,(t), and a radial
current that flows back out across the membrane of the node, I,,,4., see Fig 3A for a graphical
representation. The ratio of currents that pass along the cable and back across the nodal mem-
brane is determined by the respective resistances:

I

_ chan
Lwe = T (7)

2Ry0de

with R, = R,,,/A. Throughout the manuscript, the ratio between I, and I ., is expressed by

B

SR ©

node

Based on experimental findings, we assume that the channel density is constant [52], which
implies that the total channel current increases linearly with the node length. This is counter-
balanced by the fact that the inverse of the resistance of a node, R}

node

, also increases linearly
with its length. At large node lengths, the current that enters the axon saturates, see Fig 3B. We
will examine further below how the node length influences the propagation speed.
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Fig 3. Channel currents divide into a current entering the axon and a current flowing back across the node of Ranvier. A:
Sketch of currents entering and leaving a node of Ranvier. B: Plot of currents as function of node length. Since we assume constant
channel density, the channel current increases linearly with the node length.

https://doi.org/10.1371/journal.pcbi.1007004.9003

Influence of nearby nodes

During the propagation of an action potential, ion channel currents are released at multiple
nearby nodes that affect the shape and amplitude of the action potential. Because of the linear
nature of the cable equation, the effect of multiple input currents can be described by linear
superposition:

V(x, t) = XN:U(|x—n(L+an/k)|,t—ntsp), 9)

n=—N

where U describes the depolarisation due to the current at a single node with index ». The
internode length L, node length , cable constant A and cable constant at a node %, determine
the electrotonic distance between nodes. Node indices # are chosen such that the node with

n =0 is centred at x = 0. Nodes with negative n are the ones the action potential has travelled
past, and nodes with positive # are the ones the action potential will travel into. Although we
consider infinitely long axons, we cut off the sum at n = —N and n = N for computational feasi-
bility, with N = 10°. The action potential is not only shaped by the currents from preceding
nodes, but also by currents from subsequent nodes that travel back along the axon. Due to the
periodic nature of saltatory conduction, the time difference between any two consecutive
nodes is assumed to be the same unknown parameter .

The effect of distant nodes is dampened by the fact that in addition to passing along myelin-
ated segments, currents from distant sources also pass by unmyelinated nodes, and therefore
further lose amplitude. If nodes are relatively short, the current outflux can be regarded as
instantaneous across the node as compared to changes in the current, and the total electrotonic
distance between two consecutive nodes (measured in units of 1) is then given by L + IA/A,,,
which is already included in Eq (9). Here, A,, denotes the cable constant at a node. Eq (9)
describes the temporal evolution of an action potential in a specific location x. In Fig 4 we dis-
sect an action potential using scenario D for the ion channel model, by colour-coding the
depolarisation due to individual nodes. It is apparent that the action potential propagation is a
collective process with each node regenerating the action potential by a small fraction.

Velocity of action potentials
We now consider the node at x = 0 (n = 0) to reach the firing threshold V,, at t = 0. The rela-
tionship between the firing threshold V. and the time-to-spike ¢, is then given by

N

Vi = > _U(n(L+Ik,/%),nt,,), (10)

n=1
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Fig 4. Contribution of ion currents from nearby nodes to action potential profile. A: Sodium currents contributing
to action potential, and B: same for potassium. Depolarising effect is color-coded by node index, larger indices are
lumped. Total effect is indicated by black line. C: Action potential composed of both currents. D: Contribution of
sodium currents to reaching threshold value. Standard parameters are used here (Table 1 in Methods).

https://doi.org/10.1371/journal.pcbi.1007004.9004

where we have changed the sign of the summation index, i.e. —n — 1. The choice of x = 0 and
t = 0 is without loss of generality. Eq (10) is an implicit equation for t,,, which we solve here
numerically using Newton’s method. The velocity of an action potential is then given by the
physical distance between two consecutive nodes, L + [, and t,:
V= Lt——H . (11)
b

Here we still assume that the activation process at a node is uniform across its entire length.
Since a node represents a short section of unmyelinated axon, we estimate the action potential
velocity within a node by the action potential velocity in an unmyelinated axon, v,, (see Meth-
ods section). The resulting velocity then reads

L+1

v:m. (12)

We use Eq (12) throughout the manuscript.

Analytical solutions

In mathematical terms, the depolarisation U resulting from the ion channel current at a single
site, is a convolution of the current entering the cable with the Green’s function of the homo-
geneous cable equation G(x, t), which describes the propagation of depolarisation along the
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myelinated segment:
t
U(x,t) = Rm/ I .t —5$)G(x, s)ds. (13)
0

Here, x denotes the distance between the site where the current is injected and the site
where the membrane potential is recorded. In the following we present the analytical solutions
for all the current types.

Scenario A—Fast current. Since the fast current is described by a delta function, the con-
volution integral turns into the Green’s function up to a prefactor:

_ VIR, ¥toot
U(x,t) = ay/~a exp <— 0 ;) . (14)

Here, Iy = 6.6pA/um’ is the amplitude of the input current, R, = R,,/A, and 3 is the ratio
between the current entering the cable and the channel current, as given by Eq (8). I, is chosen
such that the amplitude of an action potential is approximately 100mV, with all the other

parameters chosen as for scenario D with standard parameters, see Methods section.
Inserting Eq (14) into Eq (9), we obtain the spatio-temporal evolution of an action potential
for this scenario:

"~ VIR, (x—n(L+ I, /2) T t—nt,
meXp <_ W—nt,) 1 P>®(f_”tsp)7 (15)

Vix,t) =

with © being the Heaviside step function to ensure causality. The threshold condition (Eq 10)
then reads

Vi = Z ViR, <— ML+ D2 n—t1’> . (16)

47mt ) t, T

Although this is the simplest scenario, it is not obvious how to invert the r.h.s. of Eq (16) to
obtain an explicit expression for t,. In the Methods section we present a linearisation
approach, but it is convenient to solve Eq (16) numerically using Newton’s method.

Scenario B—Delayed fast current. The membrane dynamics in scenario B is exactly the
same as in scenario A, except for an additional offset A:

VIR PI, exo [ — x*t _t—A 3
U(x’t)_iéln(t—A) p( TR . )@(t A). (17)

The spatio-temporal evolution of an action potential is now given by

Vix, 1) =
- VIR Bl (x—n(L+D,/M)'T = nt, — A (18)
_ — O(t —nt, — A),
n;] dn(t — nt, — A) o ( A0°(t — nt, — A) t ) =)

and the threshold condition reads

S VIR I, exp w(L+ D, /2)’t nt, — A
VP ey [ — —
4n(nt, — A) 4% (nt, — A) T

)@(ntsp —A). (19)

Because multiple nodes contribute to the depolarisation, it is possible to find #,, < A.
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Scenario C—Exponential current. Here we have to solve the convolution integral of the
cable equation with an exponential function, which yields

U(x,t):e‘f/ff%gﬁlexp ({ﬁ) <e f(Q’;\f[ \/> —1>], (20)

with # = (¢7! — 1) "', 3 representing the imaginary part of the argument, and erfbeing the

error function. In the Methods section we show how to obtain this solution. Eq (20) thus rep-
resents solutions for ion currents with instantaneous onset and exponential decay. Hence, the
spatio-temporal evolution of an action potential is expressed by

- G - . /i
Vix,t) = n;]e*“’”‘w)/fc WS {exp (i (x ”(L;/%n/ ))ﬁ)

(erf<(x —n(L4 D A)yE ) - 1)
o/ ni, 7

and the threshold condition to determine ¢, is

ot — ntsp),

= S R p(wf/W)
(L 0)VE
€r 2%\/? f—

Scenario D—Combination of exponentials. The linearity of the cable equation allows us
to recur to the solution for scenario C to describe the response to currents described by multi-
ple exponentials. Denoting the solution for one exponential input current with time constant

7, by
o(x, t51) = e"/‘SR;—[THO\/EJ [GXP <z;—£) (e f<27:/\} \/>> a 1)]’ (23)

we express the solution to M superimposed exponential currents by

(22)

ZAqu t57,) (24)

We use this formulation to describe both sodium currents and potassium currents with ris-
ing and falling phase. The sodium current is expressed as follows:

Ichan,Na = IO NaC (1 - eXp ( t/rm))y eXp (_t/rh) (25)
For simplicity, we focus on the case y = 1, i.e. the biexponential case. Increasing y would

result in increased initial delays, and therefore lower propagation velocities. The parameter

y also affects the normalisation constant Cyy,,, which ensures that the maximum of 1,4, n, 18
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Iy na- The potassium current is modelled as
Ichun.K = IU.I(C"I;1 (]‘ - exp (_t/rn))4 exp (_t/rk)7 (26)

throughout the manuscript. In the Methods section we describe how to compute the normali-
sation constants Cy,, and C, and how to convert Eqs (25) and (26) into a sum of exponen-
tials. Hence, the spatio-temporal evolution of an action potential is expressed by

M I R IVt (x —n(L+1\,/0)VT
Vix,t) =CY A e/t 3{ < g )
(x, 1) 3 SncNe o exp | i Wi

(x—n(L+Ir,/N)yT . [t—nt,
(erf( 20 Jr—ni, +i P )—1)

with # = (¢! — ¢;!) "', and Cis the problem-specific normalisation constant. The threshold

(27)

O(t —nt,),

condition to determine f, is

M & R, IVt n(L+ I\, /M)/7
— —ntg,/tg AP0 ~ . n
Vi Cél A, E e M v 3 {exp (I—Kﬂ >

n(L+ /MG [nt,
({2 )

Anticipating results from the next subsection, we found that scenarios A and C yield
velocities that are too fast compared with experimental results. Scenario B allows to adjust the
propagation speed by tuning the parameter A, yet the shape of the action potential is only
determined by the parameters from the cable equation, and thus cannot be adjusted to match
experimental results. As it is the most realistic and most flexible model for ion channel cur-
rents, we decided to select scenario D to study the sensitivity of the propagation speed to struc-
tural parameters.

n=1

Sensitivity to parameters

Axon diameter. There is a wide consensus that the propagation velocity in myelinated
axons is proportional to the axon diameter. This is mostly due to the fact that both the inter-
node length as well as the electrotonic length constant increase with the diameter. One quan-
tity that does not scale linearly with the axonal diameter is the node length, which determines
the amount of current that flows into the axon, as well as setting a correction term for the phys-
ical and electrotonic distance between two nodes. We find that the latter introduces a slight
nonlinearity at small diameters, although at larger diameters the linear relationship is well pre-
served, see Fig 5A.

In Fig 5A we compare the four ion channel scenarios with experimental results obtained by
Boyd and Kalu [53]. Scenario A (instantaneous ion channel current) yields velocities that are
about one order of magnitude larger than the experimental results. This suggests that the main
bottleneck for faster action potential propagation is indeed ion channel dynamics and their
associated delays. Introducing a hard delay with scenario B, we find that we can reproduce the
experimentally observed range of velocities. With scenarios C and D we introduce temporally
distributed ion channel dynamics. The instantaneous onset and exponential decay of scenario
C yields velocities that are slightly faster than experimental results.

In scenario D we explore two sets of parameters. The first set of parameters is obtained by
using electrophysiological parameters found in the literature. As it is not obvious how to
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Fig 5. Propagation velocity as function of fibre diameter and axon diameter. A: In myelinated axons, the
relationship between velocity and fibre diameter is nearly linear, with a slightly supralinear relationship at small
diameters. Here we compare the different scenarios with experimental results (grey-shaded area). B: In unmyelinated
axons, the propagation speed increases approximately with the square root of the axon diameter. Here, p indicates the
relative ion channel density compared with a node of Ranvier. Decreasing the ion channel density results in slower
action potential propagation.

https://doi.org/10.1371/journal.pchi.1007004.g005

choose the time constants governing the temporal profile of the ion channel currents, we
decided to choose them such that the shape of action potentials of our spike-diffuse-spike
model match the shape of action potentials of the biophysical model used by Arancibia-Car-
camo et al. [24]. The velocities obtained with this set of parameters fall within the range of
experimental results. The second set of parameters is obtained by fitting the model parameters
to data generated by the same biophysical model (see Methods). The latter yields velocities
slightly below the experimental range, but it matches well the results from the biophysical
model.

The present framework also enables us to study unmyelinated axons, in which case the cur-
rent influx must be adapted, in addition to the physical and electrotonic distance between two
neighbouring nodes, which is [ and I/A,,, respectively. Since A, is proportional to V/d, the result-
ing velocity is also to be expected to scale with /d, see Fig 5B. Making the assumption that
the membrane conductivity scales linearly with the ion channel density p (p is measured rela-
tive to the ion channel density of a node), the time constant of the unmyelinated axon scales
with 7 = 7,/p, and the cable constant scales with A = A,/ /p. We study different ion channel
densities, beginning with the same density as in nodes in the myelinated axon, and then reduc-
ing the density to 10% and 2% of the original density. We find that reducing the ion channel
density also decreases the propagation velocity. For p = 1 we find that the propagation velocity
is considerably faster than in myelinated axons at small diameters.

Node and internode length. Two geometric parameters that are not readily accessible to
non-invasive MRI techniques are the length of the nodes of Ranvier, and the length of inter-
nodes. Here we examine the effect of the node and internode length on the speed of action
potentials. We assume that the channel density in a node is constant, which is in agreement
with experimental results [52]. The channel current that enters the node is proportional to its
length, yet the increase of the node length also means that more of this current flows back
across the node rather than entering the internodes. Another effect of the node length is the
additional drop-off of the amplitude of axonal currents. Node lengths are known to vary
between 1ym and 3uym [24].
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The length of internodes is known to increase with the fibre diameter [21, 22]. This increase
can be understood in light of the fact that the cable constant A is proportional to the fibre
diameter, and therefore increasing the internode length ensures that the ratio L/A remains at a
suitable point for signal transmission.

We restrict the analysis to the activation by sodium currents, since potassium currents are
slow and only play a minor role in the initial depolarisation to threshold value. The results are
shown graphically for scenario D with standard parameters in Fig 6A, and for parameters fit-
ted to the biophysical model by Arancibia-Carcamo et al. [24] in Fig 6B. Changing the thresh-
old value did have a small effect on the maximum velocity, but did not change the relative
dependence on the other parameters.

We find that the propagation velocity varies relatively little with changes in the nodal and
internodal length. For scenario D with standard parameters, we find that velocities across the
investigated range of parameters are above 70% of the maximum, and for the parameters fitted
to the biophysical model the sensitivity is even less. Interestingly, we find that decreasing node
length and internode length simultaneously, the velocity increases steadily.

In Fig 6C and 6D we show cross-sections of Fig 6B, and compare these results with numeri-
cal results from the cortex model used in [24]. There is a good agreement between our
model and the biophysical model, with the biggest discrepancies occurring at short node
and internode lengths. We assume that these discrepancies arise due to the fact that the bio-
physical model only uses 50 nodes, whereas we consider N = 1000 nodes to determine the
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Fig 6. Velocity dependence on node length and internode length. A: Propagation velocity plotted against node
length and internode length. Contours indicate percentages of maximum velocity. (Scenario D with standard
parameters.) B: Same as A, with fitted parameters. C: Propagation velocity as function of internode length (scenario D
with fitted parameters), and comparison with numerical results from biophysical model. D: Propagation velocity as
function of node length, and comparison with the model by Arancibia-Carcamo et al. [24].

https://doi.org/10.1371/journal.pcbi.1007004.9006
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Fig 7. Relative propagation velocity as function of g-ratio. A: Result of our spike-diffuse-spike model, and v = k(In
(1/g))” fitted to this result (first with & = 0.5 fixed, and then with k and « fitted). B: Fitted a changes with the ratio of
internode length to node length in the spike-diffuse spike model (lines), and in the biophysical model (dots).
Parameters: fitted parameters (see Table 1 in Methods section).

https://doi.org/10.1371/journal.pcbi.1007004.9007

velocity. In the Methods section, we show that reducing the number of nodes significantly
alters the results at short node and internode lengths (Fig 13 in Methods section).

Myelin thickness. The relative thickness of the myelin layer is given by the g-ratio, which
is defined as the ratio of inner to outer radius. Hence, a smaller g-ratio indicates a relatively
thicker layer of myelin around the axon. In humans, the g-ratio is typically 0.6-0.7, although it
is also known to correlate with the axon diameter [54]. In our mathematical framework, the g-
ratio affects the electrotonic length constant A of the internodes, which scales with 1/ 1n (1/g).
A classical assumption is that the propagation velocity scales in the same manner [1]. Our
results suggest (see Fig 7A) that the velocity depends more strongly on the g-ratio. We there-
fore generalised this relationship to v = k(In(1/g))%, and find (fitting both x and @) our results
best match o = 0.68 (scenario D with fitted parameters). However, the fitted coefficient o also
depends on the ratio of internode length and node length, L/l. We find that a increases mono-
tonically with this ratio (see Fig 7B), and approaches zero when L/l approaches zero. The latter
represents the case of an unmyelinated axon.

In Fig 8 we present two-parameter plots of the velocity as function of the g-ratio and axon
diameter (Fig 8A), and g-ratio and fibre diameter (Fig 8B). If the axon diameter is held con-
stant, the velocity increases monotonically with decreasing g-ratio. However, if the fibre diam-
eter is held constant, then the velocity saturates at around g = 0.5, because decreasing g at
constant fibre diameter means decreasing the axon diameter.

Ephaptic coupling and entrainment

We demonstrate here that it is possible to study the effects of ephaptic coupling on action
potential propagation within our framework. We choose two axonal fibres as a simple test
case, but more complicated scenarios could also be considered using our analytical approach.
Ephaptic coupling occurs due to the resistance and finite size of the extra-cellular space. We
follow Reutskiy et al. [31] in considering the axonal fibres to be embedded in a finite sized
extra-cellular medium (the space between the axons within an axonal fibre bundle). The result-
ing cable equation for the n™ axon reads

ov,-v) 18V, (V,-V)

c, el ‘
" ot R Ox? R

ax,n m

+I7(1), (29)
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Fig 8. Effect of diameter and g-ratio on propagation velocity. A: Velocity plotted against g-ratio and axon diameter.
B: Velocity plotted against g-ratio and fibre diameter.
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with V, being the potential of the extra-cellular medium. In the Methods section we describe
how to obtain solutions to this set of equations.

We explore solutions to Eq (29) in a number of ways, which are graphically represented in
Fig 9. We focus on sodium currents as described by scenario D with standard parameters.
First, we study how the coupling could lead to entrainment, i.e. synchronisation of action
potentials. To this end, we compare the time courses of V;(¢) and V,(¢) in a pair of axons,
where an action potential is emitted in the first axon at ¢ = 0, and in the second axon at t = At.
We then compare the £, in the neighbouring nodes, and find that for any low threshold values
Vinr the difference between the £, is less than At, meaning the two action potentials are re-syn-
chronising, see Fig 9A. Next, we asked how the coupling affects the speed of two entrained
action potentials. Now we set At = 0, in which case V(f) = V(). We compare the depolarisa-
tion curves of the simultanously active axons with when only one axon is active, and find that
the voltages rise more slowly if two action potentials are present, thus increasing t,, and
decreasing the speed of the two action potentials, see Fig 9B. Thirdly, we considered the case
when there is an action potential only in one axon, and computed the voltage in the second,
passive axon. We find that the neighbouring axon undergoes a brief spell of hyperpolarisation,
with a half-width shorter than that of the action potential. This hyperpolarisation explains why
synchronous or near-synchronous pairs of action potentials travel at considerably smaller
velocities than single action potentials. The hyperpolarisation is followed by weaker
depolarisation.

active
passive

axon 1
axon 2

0.02 004 006 008 0.1 0 0.02 004 006 008 0. -0.5 0 0.5 1 1.5 2
tg, / ms ty, / ms t/ ms

Fig 9. Ephaptic coupling reduces AP speed and leads to AP synchronisation. A: Depolarisation curves for a pair of action
potentials with initial offset of 0.02ms converge, reducing the time difference between action potentials. B: Depolarisation of a
synchronous pair of action potentials is slower than for a single action potential. C: An action potential induces initial
hyperpolarisation and subsequent depolarisation in an inactive neighbouring axon. Parameters: standard parameters, R;! = 0.

https://doi.org/10.1371/journal.pcbi.1007004.9009
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Discussion

We have developed an analytic framework for the investigation of action potential propagation
based on simplified ion currents. Instead of modelling the detailed dynamics of the ion chan-
nels and its resulting transmembrane currents, we have adopted a simpler notion by which a
threshold value defines the critical voltage for the ion current release. Below that threshold
value the membrane dynamics is passive, and once the threshold value is reached the ion cur-
rent is released in a prescribed fashion regardless of the exact time-course of the voltage before
or after. We studied four different scenarios, of which the simplest was described by a delta-
function representing immediate and instantaneous current release. The three other scenarios
incorporated delays in different ways, from a shift of the delta function to exponential currents
and, lastly, combinations thereof. The latter seemed most appropriate considering experimen-
tal results.

The simplified description of the ion currents permitted the use of analytical methods to
derive an implicit relationship between model parameters and the time the ion current would
depolarise a neighbouring node up to threshold value. This involved the solution of the convo-
lution integral of the ion current with the Green’s function of the passive cable equation. From
the length of nodes and internodes and the time to threshold value between two consecutive
nodes (t,) resulted the velocity of the action potential.

We only obtained an implicit relationship between the threshold value V,;, and the parame-
ter tgp, which needed to be solved for t,p using root-finding procedures. However, in compari-
son to full numerical simulations, our scheme still confers a computational advantage, as the
computation time is about three orders of magnitude faster than in the biophysical model by
Arancibia-Carcamo et al. [24]. In the Methods section we have shown that one can achieve a
good approximation by linearising the rising phase of the depolarisation curve. We did not
explore this linearisation further, but in future work it might serve as a simple return-map
scheme for action potential propagation, in which parameter heterogeneities along the axon
could be explored.

We used our scheme to study the shape of action potentials, and we found that the ion cur-
rents released at multiple nearby nodes contribute to the shape and amplitude of an action
potential. This demonstrates that action potential propagation is a collective process, during
which individual nodes replenish the current amplitude without being critical to the success or
failure of action potential propagation. Specifically, the rising phase of an action potential is
mostly determined by input currents released at backward nodes, whereas the falling phase is
determined more prominently by forward nodes (cf. Fig 4).

Our scheme allowed us to perform a detailed analysis of the parameter dependence of the
propagation velocity. We recovered previous results for the velocity dependence on the axon
diameter, which were an approximately linear relationship with the diameter in myelinated
axons, and a square root relationship in unmyelinated axons. Although the node and inter-
node length are not accessible to non-invasive imaging methods, we found it pertinent since a
previous study [24] looked into this using numerical simulations. Our scheme confirms their
results qualitatively and quantitatively, and performing a more detailed screening of the node
length and the internode length revealed that for a wide range the propagation velocity is rela-
tively insensitive to parameter variations.

We also studied the effect of the g-ratio on the propagation velocity, which was stronger
than previously reported, as we find that the velocity is proportional to (In(-g))* with & = 0.7,
whereas the classical assumption was « = 0.5 [1]. Furthermore, we found that o depends on
the ratio between node length and internode length, which to the best of our knowledge has
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not been reported before. Intuitively, changing the thickness of the myelin sheath of relatively
short internodes has a smaller effect than changing the myelin thickness around long inter-
nodes (relative to the node length).

The main results of our spike-diffuse-spike model were compared with the biophysically
detailed model recently presented by Arancibia-Carcamo et al. [24]. The latter uses the
Hodgkin-Huxley framework and models the myelin sheath in detail, including periaxonal
space and individual myelin layers. To enable the comparison between the two models, we
fitted parameters of our spike-diffuse-spike model to output of the biophysical model. In
spite of the differences in the model setup, we find that the results of the two models agree
well.

The framework developed here also allowed us to study the effect of ephaptic coupling
between axons on action potential propagation. We found that the coupling leads to the con-
vergence between sufficiently close action potentials, also known as entrainment. It has been
hypothesised that the functional role of entrainment is to re-synchronise spikes of source
neurons. We also found that ephaptic coupling leads to a decrease in the propagation speed of
two synchronous action potentials. Since the likelihood of two or more action potentials to
synchronise in a fibre bundle increases with the firing rate, we hypothesise that a potential
effect could be that delays between neuronal populations increase with their firing rate, and
thereby enable them to actively modulate delays. In addition, we examined the temporal volt-
age profile in a passive axon coupled to an axon transmitting an action potential, which led to
a brief spell of hyperpolarisation in the passive axon, and subsequent depolarisation. This
prompts the question whether this may modulate delays in tightly packed axon bundles with-
out necessarily synchronising action potentials. The three phenomena we report here were all
observed by Katz and Schmitt [55] in pairs of unmyelinated axons. Our results predict that the
same phenomena occur in pairs (or bundles) of myelinated axons.

There are certain limitations to the framework presented here. First of all, we calibrated
the ion currents with data found in the literature. This ignores detailed ion channel dynamics,
and it is an open problem how to best match ion currents produced by voltage-gated dynam-
ics with the phenomenological ion currents used in this study. Secondly, we assumed that the
axon is periodically myelinated, with constant g-ratio and diameter along the entire axon.
The periodicity ensured that the velocity of an action potential can be readily inferred from
the time lag between two consecutive nodes. In an aperiodic medium, the threshold times
need to be determined for each node separately, resulting in a framework that is computa-
tionally more involved. Here it might prove suitable to exploit the linearised expressions for
the membrane potential to achieve a good trade-off between accuracy and computational
effort. Heterogeneities in the g-ratio or the axon diameter would be harder to resolve, as the
corresponding cable equation and its Green’s function would contain space-dependent
parameters. If individual internodes are homogeneous, then one could probably resort to
methods used in [36] to deal with (partially) demyelinated internodes. Thirdly, we studied
ephaptic coupling between two identical fibres as a test case. Our framework is capable of
dealing with axons of different size too, as well as large numbers of axons. In larger axon bun-
dles, however, it might be necessary to compute the ephaptic coupling from the local field
potentials, as the lateral distance between axons may no longer allow for the distance-inde-
pendent coupling we used here. Nevertheless, it would be interesting to extend our frame-
work to realistic axon bundle morphologies, and test if the predictions we make here, i.e.
synchronisation of action potentials and concurrent increase in axonal delay, still hold. If yes,
then there may also be the possibility that delays are modulated by the firing rates of neuronal
populations.
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Methods
The cable equation

To model action potential propagation along myelinated axons, we consider a hybrid system
of active elements coupled by an infinitely long passive cable. The latter represents the myelin-
ated axon and is appropriately described by the cable equation, whereas the active elements
represent the nodes of Ranvier whose dynamics are governed by parametrically reduced,
phenomenological dynamics.

In general, a myelinated axon can be described by the following cable equation:

ov. 10V Vv
C - 47

m E = R Ox2 R chan(V7 t)’ (30)

where V(x, t) is the trans-membrane potential, I;,,,(V, £) represents the ionic currents due to
the opening of ion channels, and x represents the spatial coordinate longitudinal to the cable.
C,, and R,,, are the capacitance and resistance of myelinated segments of the cable. Multiplying
both sides of (30) with R,,, yields

v 0V
== 31
T at )\’ axg \4 + RmIchan(t)? ( )

where 7= C,,R,,and A = /R, /R, are the time constant and cable constant pertaining to the
internodes. All model parameters are listed in Table 1.

Table 1. List of model parameters used in this manuscript.

Parameter standard values fitted values (AC model)
Cp 3.6/In(1/g)pFem™" N.A.
R,, 130MQcm In(1/g) 130MQcm In(1/g)
R, 140Qcm/d? N.A.
T 0.47ms 1.45ms
T, 33us 20us
A 9.65 x 10°d,/Ing 1 12 x 10°d\/Ing "
M 38.9\/d/um pm 48.1+/d/um pum
d lum 0.73um
g 0.6 0.81
I 1um lum
L 100d 100d
T 20us 70us
Th 40us 160us
T, 150us 150us
Tk 300us 300us
I 50pA/um’ 200pA/um’
Vinr 15mV 4mV

Unless explicitly stated, we use the parameters presented in this table. For most figures we use the standard
parameters, and where stated we use parameters fitted to the Arancibia-Carcamo cortex model. The fitting procedure

is described in the subsection ‘Fitting parameters to biophysical model’.

https://doi.org/10.1371/journal.pcbi.1007004.t001
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Cable parameters. The capacitance of a cylindrical capacitor (such as a myelin sheath, or
the insulating part of a coaxial cable) can be found by considering the following relationship,

2me

" n(l/g)’

with g being the g-ratio, i.e. the ratio between axon diameter and fibre diameter. The parame-
ter € denotes the permittivity of the medium. The radial resistance of the cylinder is given by:

(32)

o 1
R,=—In—-.
el (33)
The parameter p describes the resistivity of the cylindrical medium.
Experimental values for the capacitance and radial resistance of a myelinated axon are
reported in Goldman and Albus [20],
1 1
C,=kn"'- R, =kiln—, (34)
4 8
with (taking values from [56] and assuming ¢ = 0.8 in the frog)
k, = 3.6pFem™, k, = 130MQcm. (35)

The values for k; and k, correspond to the following values for permittivity and resistivity:

e=57x10"sQ " 'm™!, p=8.16 x 10°Qm. (36)

Finally, the axial resistance per unit length along the inner medium of the cylinder is given
by

4p
R — ax 37
(4 ndg ) ( )

where p,, = 110Qcm [20] is the resistivity of the inner-axonal medium, and 7d*/4 its cross-sec-
tional area.
With these constants at hand, we can now define the parameters of Eq (31):

L~ 9.65 x 10°dy/Ing™!, 1= 0.4Tms. (38)

We treat the axonal diameter d and the g-ratio g as free parameters, and p,,,, k1 and k, are
treated as constants.

Analytical solution. The inhomogenenous cable equation can be written in compact
form:

tV=AV - V4], (39)

with V indicating the time derivative of V, and V" indicating the second spatial derivative of

V. Fourier transformation in x yields an ordinary differential equation of the form,
W=+ 1)V 41, (40)

where " indicates the Fourier transformed quantity. The homogeneous part of Eq (40) has the

solution

V = Cexp (—(VK> + 1)t/7). (41)
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The inhomogeneous solution in ¢ can be found by the method of variation of the constant,
which yields the following convolution integral in #

- /0 L exp (SO + 1)t — ) /0)T (K 5)ds. (42)

T

The inverse Fourier transform of Eq (42) then yields the following double convolution inte-
gralin x and #:

(x—y)’t t—s

V(

Since we assume the nodes of Ranvier to be discrete sites described by delta functions in x,
this integral becomes ultimately a convolution integral in time only.
Thus, we can identify the Green’s function of the cable equation (Eq (1)) as

1 x*tt
G(x, t) = m exp ( — m — ; . (44)

This is Green’s function representing the time evolution of the voltage in a cable due to an
instantaneous, normalised input current at distance x at time ¢ = 0. A graphical representation
of G(x, t) is given in Fig 10A for various values of x.

We note here that the Green’s function contains two time scales. The first is the characteris-
tic time scale of the cable, 7, which indicates the voltage decay across the myelin sheeth. The
second time constant is x*7/4A”, which is the time it takes exp(—x7/4A’t) to reach 1/e ~ 0.37.
This time depends on all cable parameters, and if x/A < 1 it is significantly faster than 7.
Hence, if t < 7, the cable equation can be approximated by

1 x2T
Gt) = J=am P\ ")

or, conversely, in the limit # > 7, it can be approximated by

- f) . (46)

1
G ———— €exp <
VAt T

—~

x,t) =

See Fig 10B for a comparison.
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Fig 10. Green’s function of the cable equation. A: Green’s function for various distances x. B: Green’s function for
x = lmm, showing the slow (dotted) and fast (dash-dotted) approximation.

https://doi.org/10.1371/journal.pcbi.1007004.g010
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Nodal properties

Like the myelinated parts of the axon, the Ranvier nodes are characterised by their electrophys-
iological properties through the membrane resistance and membrane capacitance, denoted by
R, and C,, which result in a characteristic length scale A,, and a characteristic time scale 7,. We
use the following values for R,, [20] and C, [57]:

R, =33Qcm? C, =1pFem™, (47)

where R, = g;'!, i.e. the inverse leak conductance. With 7, = C,R,, we obtain a characteristic
time of 7, = 33us. This value is striking, since typical time constants for neurons at dendrites
and the soma range from 10ms to 100ms. This can be explained by the higher density of
sodium channels at the nodes of Ranvier than at the soma. As reported in [58], there are
approximately 1200 channels per um” at nodal segments, and only about 2.6 channels per um*
at the soma. Thus, the ratio of ion channel densities between node and soma is nearly 500. We
assume here that the conductance scales linearly with the channel density, which is supported
by the fact that the membrane resistance is approximately 10kQcm? at the soma.

Current influx and separation. The channel current that flows into the axon, I 4,,(f) is
counter-balanced by currents flowing axially both ways along the axon, I;4(f), and a radial
current that flows back out across the membrane of the node, I,,,4.:

Ichan(t) = Inode(t) + Icahle(t>' (48)

The ratio of currents that pass along the cable and back across the nodal membrane is deter-
mined by the respective resistances:

R

T
RnodeInode - ?Imblw

(49)
where R, is the longitudinal resistance of the axon, defined by R, = R,,,/A. This relationship
yields

I

chan

:71+ R

2Ry0de

(50)

cable

Hence, with the maximum amplitude of the channel current being I, the maximum ampli-
tude of current entering the cable is fI,, where we abbreviate

_ 1
_1+ Ry ° (51)

2Ry0de

B

Approximations and analytical solutions

It is, in general, not possible to find closed-form solutions to the Hodgkin-Huxley model due
to the nonlinear dependence of the gating variables on the voltage. We therefore focus here on
idealisations of the currents generated by the ion channel dynamics, which is described by a
function I ,,(1).

In mathematical terms, the depolarisation of the neighbouring node is a convolution of the
current entering the cable with the solution of the homogeneous cable equation G(x, t), which
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describes the propagation of depolarisation along the myelinated axon:
t
chble (‘x7 t) = Rm / Icahle(t - S)G(‘x’ S>ds‘ (52)
0

In the following we present the mathematical treatment for the scenarios introduced in the
Results section, and we focus here on an input current at a single site.

Scenario A—Fast current. The (in mathematical terms) simplest scenario is the one in
which the ion current is described by the Dirac delta function:

Ly (£) = 1,0(2 = 1)) (53)

Without loss of generality we set the time of the current, to, to zero. The depolarisation
along the cable, and specifically at the neighbouring node at distance x is then given by the
Green’s function of the cable equation itself:

V(x,t) = % exp (— éf?i;t - ;) (54)

If only one current is injected into the cable, the time #,, when the threshold value Vy,, is

reached is given implicitly by

R, I 2 t,
Vthr — M exp | — x2T _ . (55)
7,

dnt,, T

Eq 55 yields an implicit relation for t,, and the model parameters. There is no obvious way
of solving 55 for t,, explicitly. One can solve it using Newton’s method, and test various param-
eter dependencies by arc-length continuation. However, we explore here the possibility to
derive an approximate solution for ,,, and consequently for the axonal propagation speed v,
by linearisation of (55).

A suitable pivot for the linearisation is the inflection point on the rising branch, i.e. V = 0
and V > 0. This ensures that the linearisation around this point is accurate up to order O(t?),
and error terms are of order O(#*) and higher. It also provides an unambiguous pivot for the
linearisation. Differentiating (54) twice yields

. X' 3%t 3-2/A° 1 1
V = — —+—=|V. 56
(16%4 PR A TR T 56)

We multiply all terms by £* such that the lowest order term in ¢ is of order zero. Since 7 is
much larger than the rise time of the depolarisation, we disregard terms of order O(#*) and
higher. The resulting quadratic equation for the inflection point, t;, yields two positive roots,
the smaller of which is

3x%t 1 5 2
ti:m<l—\/l—§(3—2xﬁ»)>. (57)

In the limit of x/A < 1 we can further simplify this expression to give

x’t
t, = (77 (58)

with { = 1/2 — 1/+/6. The linear equation for the time-to-spike and the firing threshold is
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Fig 11. Depolarisation curves and their linear approximation. A: Depolarisation curve for instantaneous input current (scenario
A). B: Depolarisation curve for exponential input current (7, = 100pus).

https://doi.org/10.1371/journal.pchi.1007004.9011

then given by
V., — V()
t = t+ thr. i 59
p=tbs (59)
The quantities V(t;) and V/(t,) can be approximated to be
R, I, A 1
V(t) ~ =222 ——, 60
0~ T e (- ) (60)
and
-
V() ~ —V(t,). 61
( 1) 4€2x21_ ( z) ( )

A comparison of the full nonlinear solution with the linear approximation is shown in Fig
11A.

Scenario B—Delayed fast current. Again we consider a fast current, but one which is
emitted with a delay A after the membrane potential has reached the threshold value. If we
denote by ¢, the time of the threshold crossing, then the ionic current is given by

L () = 1,0(t = 1, = A). (62)

However, by simple linear transformation we may also use t, to denote the time of the
spike. In this case, a spike will be generated after t,, + A in the adjacent node, where ¢, is the
time to the threshold crossing in the same node, given by Eq (55). The speed of a propagating
action potential is then given by

L+ 6
- tsp + A’ ( )
neglecting finite transmission speeds at nodes. In the limit of ¢, — 0 we obtain the result
L+1
_ 64
=t (64
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which implies that action potentials can never travel faster than (L + /)/A. However, if multiple
neighbours are taken into account, the velocity can be faster than this estimate. For example,
in Fig 5A we show results for this scenario with A = 30us. For an axon diameter of d = 1ym
(which corresponds to D =~ 1.67ym with g = 0.6), we obtain a velocity of about 6m/s, whereas
(L + )/A is approximately 3.3m/s (with L = 100um).

Scenario C—Exponential current. At this point, we make the assumption that the chan-
nel current rises infinitely fast, and drops off exponentially. In mathematical terms, the cur-
rents generated by an action potential at a particular node have the following form:

Ly (8) = Lyexp (=(t = ,) /7)O(t — ), (65)

where I denotes the amount of current generated by the channel dynamics, and t, denotes the
time the spike is generated. The Heaviside step function ® ensures that I,;,,,(f) = 0 for t < t,.
Without loss of generality we set #5 = 0.

The propagated depolarisation is now given by the convolution of the exponential function
with the Green’s function of the cable equation:

x’t

| s
V(x, t) = e "/*R, 1/— (——.+T)d. 66
) =R ) T P T 7)) (66)

1

Here we use t™! = —77' 4 17'. We now briefly sketch how to solve this integral. Disregard-

ing prefactors, the integral I to be solved here is of the form

I/Ot\}gexp(jJrZ)ds. (67)

Using the substitution r = /s yields

Vi 2
a r
I 2/U exp< r2+b)dr (68)

In addition, we define a second integral of the form

Vit 2
1 a r
12 = 2/(; ; exp (—ﬁ + E) dr. (69)

Next, we apply the substitution w, = +/ar % ir//b to these two integrals, which yields

N r? a

t b -

I1=2 - exp| 24/~ ) exp (=W dw,, (70)
/oc ~Jatir/Vb p< \/;> p(-wi)dw.

and

W] 1 a
t b
L =2 — = exp( +2ii /=) exp (—w? )dw,. (71)
2 /90 —Jatir/vVb P( b> p (—wi)dw,

The two integrals can be combined as follows:

N

i\/LEI —Val, = QLﬁ " exp <:|:2i\/g> exp (—w?)dw,. (72)
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The integral on the right is straightforward to evaluate:

bl - Vil = Ve (j:21\/ et (Ve %) 1) 73)

Eliminating I, then yields

T

Using the appropriate prefactor and the expressions for a and b, we finally obtain

V(x,t) = e‘/“%\}%ﬁﬁ [exp (:i\{;) (e f@?\[f %) - 1)] (75)

Here, 3 represents the imaginary part of the argument. The complex argument of the error

function arises due to 7, < 7, but this equation also holds if 7. > 7 provided that 7 is redefined

ast =1t — 1!

Once more, we aim to linearise this implicit solution around the inflection point, which in
this scenario is identified as V (¢,) = 0. Differentiating V() twice yields

V—Tlgv f/fRﬁ\I/;/_ [Pexp (ziﬁ) exp ((2’;\/\} f) )], (76)

X' x’T n Xt X’ N 1 1 (77)
16 20%8 2078 2W%c 2 1 T d

with

Since the inflection point occurs at small ¢, the terms in P(f) dominate the curvature of the
rising phase of V(t). Multiplying P with t* and carrying on terms up to quadratic order then
yields the following equation for t;:

2 1 1
ﬂ—2ti+2<7——>t?:0. (78)
T
For 7, < 7, this then leads to

t;ﬁ(p\/u??e—%)). (79)

In the limit of 7. < 7, this expression reduces to

T 4x*t
t. == 1+——-—1]. 80
o4 ( + 7\.217[ > (80)

Conversely, if 7, > 7, we find

t.

Loy =1 (81)

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007004  October 17,2019 25/33


https://doi.org/10.1371/journal.pcbi.1007004

O PLOS

COMPUTATIONAL

BIOLOGY

Action potential propagation and synchronisation in myelinated axons

A comparison of the linear approximation with the full nonlinear problem is shown in
Fig 11B.

Scenario D—Combination of exponentials. Scenario C involved a single exponential
function to describe the time course of the channel currents. We now explore more complex
time-profiles of channel currents, which can be realised by the sum over M exponential time
courses with different amplitudes A; and time constants 7;:

Ichun(t) = IOZ:AS €xp (_(t - to)/fs)' (82)

In particular, we consider current profiles of the form
Ly (t) = L,C'(1 — exp (—t/1,))" exp (—t/1,). (83)

The normalising factor C ensures that the maximum value of I,;,,,(?) is Iy, which can be deter-
mined experimentally. For the sodium current, we use the current density iy, = 50pA/um?, mul-
tiplied by the surface area of the node, throughout the manuscript. This current density yields
an amplitude of approximately 100mV for action potentials with standard parameters, although
it is twice as high as reported in an experimental study [52]. The reason for the experimental val-
ues to be lower might be that for the electrophysiological recordings the axons are severed [59],
and ion channels are likely to reorganise and redistribute under such conditions.

Eq 83 can be recast in the form

I (f) = Ioclsi():(i)(—l)s exp <— (T—Sl+%) t>. (84)

The maximum current is reached at

tmax = Tl ln <VI_2 + 1>7 (85)
T

1

and has the amplitude

2 ' 1 )¢
I (t )=IC'=1I iz ) 86
chan( mux) 0 0 ,yi_f_i_l '})i_f‘f'l ( )

To construct realistic action potentials, we include both sodium and (fast) potassium chan-
nels. The sodium gating dynamics of the original Hodgkin Huxley model are governed by a
term m’h, where m is the activating gating variable, and # is the inactivating gating variable.
Schwarz et al. [60] assume that the dynamics of the resulting ion channel currents can be
approximated by

Ichan,Nu = IO7NaCIT];,3(1 - eXp (_t/rm))s eXp (_t/rh)’ (87)

with Cy, ; being the normalisation constant. Baranauskas and Martina [17] presented data
that best fit the Hodgkin-Huxley model with mh, i.e. a linear relationship with the activating
gating variable m. In this case, the activation current in our framework reads

IchumNu = IO.NaCI?I;.l(l - eXp (_t/‘cm)) exp (_t/‘ch)7 (88)

with Cy,,; being the normalisation constant for y = 1. The parameters 7,,, and 7, represent the
time constants of the activation and inactivation of the sodium ion channels. The time
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Fig 12. Comparison of action potentials in the spike-diffuse-spike model and the biophysical model. We chose the
time scales 7, = 20us and 7, = 40us such that the profile, and in particular the rising phase of the action potential in the
spike-diffuse-spike model matches well the action potential of the cortical axon model by Arancibia-Carcamo et al. [24].

https://doi.org/10.1371/journal.pcbi.1007004.9012

constants are voltage-dependent [60], but for simplicity we assume here that they remain con-
stant throughout the formation of the action potential. Throughout this article we use Eq (88)
to describe the sodium channel dynamics. The time constants are chosen such that the result-
ing action potential fits best the numerical results for the cortex model in [24], see Fig 12 for a
graphical comparison.

Likewise, we can define the potassium current as follows:

Ly = TG (1 = exp (=1/1,)) exp (=1/7,), (89)

4 In
4 Tk
o= (a2 ) (90)
45 41) \45 11

Here, 7, represents the time scale of the activation of the potassium ion channels. Although
there is no inactivating current for potassium in the Hodgkin-Huxley model, we define 7 as
characteristic time with which the potassium current decays. The peak current density ix =

with

3.75pA/um? is 7.5% of ixy, a ratio we derive from the sodium and potassium conductances
used for myelinated axons in [61] (g, = 1.2S/cm’ and g, = 0.09S/cm?).
Finally, denoting the solution to an exponential input current with time constant 7, by

1) = et BBl 77 3| ex ixﬁ er v i LA
od(x,t;1,) = 5 \/_\Sl p<x\/%>< f(ZX\/f—i_ \/;> 1>]> (91)
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we express the solution to combinations of exponential currents by
V(X, t) = ZA5¢(xv £ Ts)? (92)
s=0

with

A, = <y>(—1)2 rs=<%+r—12>l. (93)

Once more we seek to identify the inflection point, i.e. where V = 0. The different time
scales 7, make it difficult to find a closed-form solution, like the ones we found for the previous
scenarios. However, we find that a suitable approximation for the inflection point is

ti = ti,cab + ti,chan’ (94)
where t; .,;, is the inflection point of the Green’s function of the cable equation in the limit of

x/A > 1, and t; ;,4, is the inflection point of the rising phase of the ion current. ¢; ., can be
derived from Eq 57,

V2xt (95)

ti,cab = 4}\‘ I

and t; 4y, is found to be

i,chan = _Tl ln
i)
T Ty

with , 7;, and 7, as in Eq 83.

2
2 4z 1
t R R (96)
.

Influence of distant nodes

Action potentials are driven by the ionic currents generated at multiple nodes along the axon.
Due to the linear nature of the cable equation, the effect of multiple input currents can be
described by linear superposition:

V(x, t) = Z U(|x — nL|,t — nt,), (97)

where U is the r.h.s. of the respective scenario considered, i.e. U(x, t) describes the depolarisa-
tion due to the current at a nearby node. To keep with our previous definition, time is defined
by setting ¢ = 0 when the neighbouring node reaches threshold. The relationship between the
firing threshold V. and the time-to-spike ¢, is therefore given by

N
Vi = U(nL,nt). (98)
n=1

The effect of distant nodes is dampened by the fact that in addition to passing along myelin-
ated segments, currents from distant sources also pass by unmyelinated nodes, and thereby
further lose amplitude. Because the distance between two points on the cable is given by L/ in
the cable equation, the added distance due to a node with finite length is I[/A,,. Therefore, the
physical distance between two consecutive nodes is L + [, and their electrotonic distance is
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Fig 13. Effect of number of nearest nodes on velocity. We demonstrate here that considering only a small number of nodes can
lead to considerable discrepancies in the computed velocity at small node and internode lengths. A: N = 1000, as in Fig 6A. B: N = 30.
C: N =10.

https://doi.org/10.1371/journal.pcbi.1007004.9013

L + (M)l in units of L. This leads to the updated equation for the membrane potential, Eq (9)
in the Results section.

As we have shown in Fig 4, the formation of an action potential is a collective process that
incorporates ion channel currents from multiple nearby nodes. Throughout the manuscript
we set N = 10 to ensure all currents are incorporated, although for the standard parameters
N =20 would produce very similar results. However, as we show in Fig 13, reducing N can
lead to a considerable reduction of the propagation velocity at short internode lengths.

This framework allows us to describe unmyelinated axons as well. Since the internode
length is zero in this case, the node length [ is now an arbitrary discretisation of the axon. The
membrane potential is now described by

Vix,t) =Y U(x—nll,t—nt,), (99)

where the length constant A in U needs to be replaced by a length constant A that characterises
the electrotonic length of the unmyelinated axon. We introduce a parameter p that describes
the channel density of the unmyelinated axon relative to the channel density of a node of Ran-
vier. We assume that the conductivity of the axonal membrane scales linearly with the channel
density, which implies that the electrotonic length constant of an unmyelinated axon is
A=2,/ /P» and its time constant is 7 = 7, /p. The velocity of an action potential is now
defined as v = I/t

In addition to the correction terms introduced in Eq (9), we also investigate delays that
occur at the nodes due to finite transmission speeds. We assume that action potentials travel
with velocities v determined by Eq (9) along myelinated segments, and with velocities v,
inferred from Eq (99) at nodes. The corrected velocity is then given by Eq (12) in the Results
section.

Ephaptic coupling and entrainment

Here we explain how to solve Eq (29) with non-zero extra-cellular potential. The potential
between intra-cellular medium and extra-cellular medium is P, = V,, — V,, which determines
the channel dynamics. It follows from the electric decoupling of the fibre bundle from the
external medium that the sum of longitudinal currents within the fibre bundle is zero [31]:

3, 3V,
-1 e -1 n_
RiGa+ D R =0, (100)
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R, denotes the axial resistance of the extra-cellular medium, which depends inversely on its
cross-sectional area. As a result, we obtain the cable equation in terms of P,;:

o’p
2 mn 2
P, + P, _7‘"8 24 R, I(E) + ol § Rm W =0, (101)

where a is the coupling parameter:

1
* R 1+Zm uxm- (102)
This is a general result, but in the following we focus on two fibres.
Since these equations are linear, they can be decoupled (using orthogonalisation) into
P, -, &P, .
T at 7\’?2 axg P12+I ( ) (103)
with Py, = P, + ¢, ,P,, I = I + ¢, , I, =1 4 aR;L (A + ¢,A)), and
AZ=202+ aR, (A5 + ¢;')Y), where
%erR1+1 AR, + 1
CLZ — ( ax,1 )z 1( ax,2 ) (104)
20,0R Y
A (R +1) = A (aRy), + 1 MR
(a ax,1 + )2 (OC ax,2 + ) + ax2. (105)
20,0R 1 s SR

In the case of identical axons, this expression simplifies to ¢; , = 1. These equations
can be solved as above, and the solutions of the coupled equations can be recovered using
P, = (Pl - PQ)/(CI - 52) and P, = _(C2P1 - C]PQ)/(CI - Cz)'

In the limit of small extra-cellular volume and/ or highly resistive extra-cellular medium

(R} — 0), the coupling parameterisoc = 1/ R_! . We explore this case in the Results

m= tax,m*

section.

Fitting parameters to biophysical model

In order to compare the spike-diffuse-spike model with the biophysical model presented in
[24], we generate data points using the biophysical model for the parameters reported therein
for the cortex model, and fit our model parameters to these data points. We define a grid of

3 x 3 data points in L — [-space at L = 27ym, L = 82ym and L = 152ym, and [ = 0.5um,
I'=1.5um and [ = 3.5um. On this grid we determine the action potential velocity of the bio-
physical model, which is treated as data for the fitting procedure. Next, we use the least squares
curve fit as implemented in MATLAB to fit the following eight parameters of the spike-dif-
fuse-spike model to the data: A, 7, A,,, T, Tp> 1> Lo, and Vyp,,. We use this fitting procedure
because there is no direct correspondence between our model and the biophysical model. The
latter implements a Hodgkin-Huxley formalism, as well as a detailed model of the myelin
sheath that models each membrane individually and includes periaxonal space. We used the
code made available on github by the authors of [24].
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