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In this research, we examine the use of the Laney p’ control chart and the application of test rules to assess governmental
interventions throughout the COVID-19 pandemic and understand how certain activities and events that took place affected the
infection rate. Data for the infection rate (IR) were collected between October 31, 2020, andMarch 19, 2022.&e IR was calculated
by dividing the number of confirmed cases by the number of PCR (polymerase chain reaction) tests performed. &e IR data were
subsequently plotted on the Laney p’ control charts using the Minitab software. &e charts thereby allowed us to study the effects
on infection rates of the government’s moves to restrict the movements and activities of the population, as well as the results of
easing these restrictions. &e restrictive measures proved to be effective in decreasing the infection rate, whereas relaxing these
measures had the opposite effect. Typically, test signals are considered as an indication of a change in a process, although in some
situations we have observed that slight changes are not accompanied by a signal. Regardless, the analysis shows cases where using
test rules rapidly detected patterns and changes in IR, and allowing remedial action to be taken without delay. In this study, we use
the Laney p’ control chart to monitor the COVID-19 IR and compare its performance with that of the EWMA control chart. In
addition, we analyze the performance of various test rules in detecting IR changes. Comparing the Laney p’ control chart with the
EWMA control chart, the data showed that in most cases, the Laney p’ control chart was able to identify the change of IR faster.
Comparing the performance of different tests in detecting changes in the IR, one can see that no particular test outperformed the
others in all cases. We also recommend analyzing the data points in both single-stage and multistage analyses in accordance with
this new perspective rather than the traditional one used in process improvement projects. Accordingly, the single-stage analysis
gives a complete picture of how the infection rate is changing overall, whereas the multistage analysis is more sensitive to
small changes.

1. Introduction

On March 11, 2020, the World Health Organization (WHO)
declared the COVID-19 virus infection a pandemic [1]. As a
result, countries worldwide dealt with the crisis under various
uncertainty scenarios amidst the rise of new variants and
tried to predict what would happen in 2021 [2–4], while the
situation posed new challenges for policymakers everywhere.

Now, after two years of dealing with the pandemic, we
can look at the different approaches adopted to tackle
COVID-19 to learn what works best in controlling the virus.

Control charts play a crucial role in better understanding
processes and in monitoring and analyzing historical data.
Devised by Dr.Walter A. Shewhart of Bell Telephone Labs in

the 1920s, control charts were first utilized to address the
variation problem in the manufacturing process to improve
efficiency and reduce costs [5, 6]. Control charts are basically
run charts—data plotted over a certain period of time [7]—
with a mean line and control limits (see an example in
Figure 1).&e key quality characteristic is represented on the
y (vertical)-axis, and time is represented on the x (hori-
zontal)-axis. &e control limits are the boundaries shown on
the chart within which the given process can operate [8, 9].
&e upper and lower control limits are generally set at three
sigmas, and the mean is set at the midpoint of the control
limits [10, 11]. &e control limits are computed statistically,
based on probability distributions such as the Gaussian,
Poisson, or binomial distribution [12] (see Figure 1).
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Control charts have long been used to distinguish be-
tween common cause variation and special cause variation
[13]. &e first type, which belongs to the category of chance
or random variations, is the sum of themultitude of effects of
a complex interaction of random or common causes, many
of which are only slight. When special causes of variation are
present, the variation will be excessive, and the process is
classified as unstable, out of statistical control, or beyond the
expected random variations [14]. Certain control charts can
also assess both types of variations. &ese variations reflect
the variations intrinsic in the process due to the many details
that cannot be controlled precisely.

Control limits are warning signs that tell us variously
[15]:

(i) Carry on or do nothing (stable zone—common
causes of variation only).

(ii) Be careful and seek more information since the
process may be showing special causes of variation
(warning zone).

(iii) Take action, investigate, or, where appropriate,
adjust the process (action zone—special causes of
variation present).

&ere are several types of control charts, each of which
can be used to chart a number of different characteristics.
Among these, variables’ charts are used when the charac-
teristics can be objectively and quantitatively measured,
whereas attribute charts are used when the characteristics
can be counted [16]. Variables’ control charts may be kept
for individuals, averages, ranges, and standard deviations.
Control charts for attributes show how characteristics
normally vary over time, such as the percentage of defective
attributes or defects per unit [17].

Although control charts were first used in industry, other
service sectors, includinghealth care, soonadopted them,with
a number of applications of statistical process control (SPC)
charts subsequently reported inmedical settings (for the early
papers citing theuseof SPC inhealth care, see [18–23]; someof
the recent ones are shown in [24, 25]).

In their literature review on the use of control charts in
health care, Suman and Prajapati [26], for example,

identified 40 research papers of interest from the 142 they
initially examined. &e authors classified the papers into the
categories of emergency, surgery, epidemiology, radiology,
cardiology, pulmonary, administration, and pharmaceutical.
Each study detailed the types of study, the types of charts and
variables used, and the country involved.

Woodall [27] furthermorediscussedhowtheuseof control
charts in health-related applications differed from their use in
industrial practice.Attribute data, for instance, aremuchmore
prevalent in healthcare applications than in industrial practice.
Attributedata arebinary innature in that the initial responseof
an inspection activity yields only two possible outcomes: the
unit of inspection either conforms to a requirement or it does
not—a simple yes or no.&e response is discrete.&ep-chart is
based on the binomial distribution [28].

More complex charts that accumulate information over
time include the exponentially weighted moving average
(EWMA) chart [29]. &ere have been a number of appli-
cations of the EWMA chart reported in the medical liter-
ature [24]. Time-weighted charts have the ability to detect
small changes in the measure on the chart [30, 31].

Hospital epidemiologists are often concerned with out-
breaks or other acute deviations from the norm, which, in
continuous quality improvement (CQI) parlance, are referred
to as the “special cause variations” already mentioned [20].

Benneyan [32] summarized several similaritiesbetween the
concepts and terminology of epidemiology and SPC. Hospital
epidemiology programs, for instance, tend to be concerned
with both epidemic (nonsystemic) and endemic (systemic)
infections, which in SPC terminology equate to unnatural
(special cause) and natural (common cause) variability, re-
spectively. Surveillance programs focus on the detection of
sentinel and epidemic events (i.e., monitoring for unnatural
process variation). However, the more pressing epidemio-
logical concernof reducing endemicoccurrences equates to the
quality control efforts to improve a process whose defect rate,
though in a state of statistical control, is still unacceptably high.
&e author also discussed how SPC charts could be used to
identify special cause (atypical, nonendemic) events [33].

In brief, the research studies included both clinical- and
medical-related performance measures. Among them, the
following were included:

(i) the presence or absence of specific adverse post-
operative outcomes [34];

(ii) the rate of surgical site infections and 30-day
mortality rates [35];

(iii) the infection rates of ventilator-associated pneu-
monia (VAP) [36];

(iv) the number of hospital-associated infections
[37, 38]; and

(v) inpatient death, intensive care stay, reoperation, and
severe complicationswithin30days after surgery [39].

&e nonclinical process performance measures included
the following:

(i) the number of patients leaving the emergency de-
partment [22];
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Figure 1: Typical control chart.
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(ii) admission time and length of stay [10];
(iii) patient waiting time for obstetrics and gynecology

clinic appointments [40];
(iv) patient discharge time [41]; and
(v) patient waiting time in a pharmacy [42].

&e bulk of studies using control charts in an epide-
miological context have focused on infection control and
hospital epidemiology, but there is a relatively sparse lit-
erature based on the use of control charts in public health
data [43]. Control charts are still not part of standard public
health practice [44, 45].

According to [24], control charts have been recently
utilized to understand the unusual patterns in public health
data. More specifically with regard to COVID-19, Perla et al.
[43] stated: “Shewhart charts should become a standard
method for learning from data in the context of a pandemic
or epidemic.”

Parry et al. [46] designed a hybrid Shewhart chart to
model three phases of an epidemic: pregrowth, growth, and
postgrowth. &ey used chart to describe four “epochs”: pre-
exponential growth, exponential growth, plateau or descent,
and stability after descent, of the COVID-19 epidemic that
emerged by incorporating a c-chart and I-chart with a log-
regression slope. Perla et al. [43] used the same concept
(hybrid c-chart and I-chart) to detect within a geographic
area at the start and end of exponential growth in reported
deaths. &ey used case studies and simulation to evaluate
chart performance. &e hybrid chart detected the start of
exponential growth and identified early signals that the
growth phase was ending.

Velayati et al. [47] used a funnel chart, an adaptation of
the Shewhart p-chart, to compare between case fatality rates
of COVID-19 for all 67 counties in Alabama State, USA.
&ey concluded that funnel charts reliably identify counties
with unexpected high and low COVID-19 case fatality rates.

Mahmood et al. [48] employed the c and exponentially
weighted moving average (EWMA) control charts to
monitor the number of reported deaths in Pakistan due to
the COVID-19 pandemic. &ey were able to identify the
pregrowth, growth, and postgrowth phases.

Without a scientific and reliable method to understand
whether the variation in outcomes is attributed to
meaningful signals of change (corrective actions or certain
events) rather than variability we would expect, policy-
makers, care providers, and the public will be struggled to
recognize whether conditions are improving. During a
pandemic, timely and reliable signals that the number of
reported infection cases is rising or falling may have
enormous implications on public health and economics.
Control charts given their ease of use and interpretability
in real time offer a means to represent and interpret
variation that will be essential for a successful response to
pandemics.

In this study, we use the Laney p’ control chart to
monitor the COVID-19 infection rates and compare its
performance with that of the EWMA control chart. We also
examine the application of the SPC test rules and investigate

the effect of various government precautionary decisions
and actions, as well as various events, such as lockdowns, on
the infection rate. We subsequently evaluate which tests are
the most effective in detecting changes quickly.

&e paper is organized as follows: Section 2 describes the
methodology followed in this research; Section 3 presents
the discussion of the results; and finally, Section 4 presents
the conclusions.

2. Materials and Methods

Figure 2 presents the steps followed in conducting this
research. &e following subsections describe each step in
detail (Figure 2).

2.1. Data Collection. All the data used for this study cor-
respond to those available both in public and in open
sources. Data (the number of confirmed cases and a number
of tests performed) were initially obtained from Appel et al..
&e dataset includes several statistics, the number of con-
firmed cases and the number of tests performed. &e data
were recorded daily. Since some data were missing (number
of confirmed cases or number of tests performed) for certain
dates, the authors referred to press releases [49] to fill in the
gaps and also to confirm the accuracy of the data obtained
from [50] through random checks for some days. Prior to
October 31, 2020, the Jordan Ministry of Health (MOH)
recorded only the number of confirmed cases. &e ministry
also reported the number of tests performed from that date
onward. &e MOH monitors the rates per week (pandemic
week), with each week starting on Saturday. &e weeks are
numbered, and Saturday, October 31, 2020, for example, is
identified as PW 44–20; Saturday, January 2, 2021, is labeled
as PW 1–21. &e authors collected the data up to March 19,
2022.

2.2.ControlChartDevelopment. As the focus of this research
is on the percentage of confirmed cases from the PCR tests
performed, the most appropriate control chart is the p-chart.

2.2.1. p-Chart. &e p-chart monitors the proportion of
nonconforming items, that is, the fraction nonconforming
or fraction defective, which indicates the infection rate (IR).
In this case, it is a fraction of the cases confirmed by PCR
tests.

&e centerline (p—the average fraction defective) is
obtained by the following formula:

CL � p �
􏽐

m
i�1Di

􏽐
m
i�1ni

, (1)

where Di represents the nonconforming units in sample i, ni
is the number of items per sample i (sample size), and m is
the number of samples.

&e control chart limits are obtained by the following
formula:
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UCL/LCL � p ± 3

��������
p(1 − p)

ni

􏽳

. (2)

2.2.2. �e Laney p’ Control Chart. One needs to be careful
when using the p control chart, especially when sample sizes
are very large, as overdispersion may occur. In fact, Laney
[51] cautioned about overdispersion, as this can cause the
control limits to be too close together, leading to the
identification of an “inappropriately” large number of data
points signaling special cause variation. To prevent this
occurrence, he proposed the Laney p’ control chart [51].

&e upper and lower control limits (UCL and LCL) are
given by

UCL
LCL

� p ± 3σpiσz, (3)

where

σpi �

��������
p(1 − p)

ni

􏽳

,

σz �
R′

1.128
,

R′ �
1

k − 1
􏽘

k

i�2
Ri′,

Ri
′ � zi − zi− 1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌(i � 2, . . . .., k),

zi �
pi − p

σpi

.

(4)

&e Laney p’ control chart is a widely used healthcare
quality monitoring that has a very large sample size
[31, 52–54]. Ahsan et al. [55] compared the performance of

the Laney p’ control chart with that of the conventional p
control chart based on graphic visualization and average run
length (ARL) criteria. &ey concluded that the p-chart be-
comes extremely oversensitive and cannot be used to monitor
the process, while the p’ control chart gives realistic results.

Typically, the control limits are initially calculated based
on a historical set of data, as these limits are then used for
ongoing monitoring as new data are collected and plotted.
&e retrospective analysis of historical data is referred to as
Phase I, whereas the prospective monitoring of future data is
referred to as Phase II [56].

&e centerline and the upper and lower control limits are
recalculated with each successive data point that is added to
the control chart. We created the control charts using the
Minitab software [57].

2.2.3. Exponentially Weighted Moving Average (EWMA).
&e EWMA chart statistic is a weighted moving average of
current and past individual outcomes and is updated with
each procedure. &e weight is exponential, meaning that the
contribution of past observations decreases going back in
time [29].

&e EWMA statistic (zi) is defined as follows:

zi � λpi +(1 − λ)zi− 1(i � 1, . . . , m), (5)

where pi is the data point, and λ is a constant selected for the
chart. &e EWMA chart depends on the selected value of λ,
where a smaller value of λ leads to quicker detection of small
shifts [58]. Experience with EWMA charts suggests that a λ
value between 0.1 and 0.3 gives the best performance [24]. z0
is usually set as the average of the series. &e centerline (p) is
obtained by formula (1). &e upper and lower control limits
(UCL and LCL) are given by the following formula:

UCL
LCL

� p ± 3

��������������������

p(1 − p)λ 1 − (1 − λ)
2i

􏽨 􏽩

2λ

􏽳

. (6)

2.3. Sensitizing Rules. As stated above, one of the main
objectives of utilizing control charts is to determine, based
on the movement of the points, when a process is out of
control so that necessary actions can be taken. A control
chart may be said to display a lack of control under a variety
of circumstances, any of which can provide some evidence of
nonrandom behavior [59] and can indicate changes in the
process average or spread.

Initially, Shewhart [60] defined a process as “out of
control” when a single point was plotted outside the control
limits. &e Western Electric Company [61] proposed criteria
to evaluate a process and detect the presence of unusual
patterns such as runs or trends. Later on, several other criteria
were added [62], which are known either as supplementary
rules [33] or as sensitizing rules [63], as seen in Table 1. A
control chart may be said to display a lack of control under a
variety of circumstances, any of which can provide some
evidence of nonrandom behavior and can indicate changes in
the process average or spread. &e main objective of this set
of rules was to increase the sensitivity of the Shewhart charts

Data collection

Control chart
development

Analysis

Conclusion

Events compilation

Discussion of sensitizing
rules 

Figure 2: . Research methodology.
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and improve their potential to detect nonrandom patterns
[64]. &e rules are summarized in Table 1. For a good dis-
cussion of some of these rules, see [65].

Although some industries use all of these rules, only a
subset of the rules are typically used in health care [7].
According to research [66], rules 2, 3, and 4 are widely
recommended. Minitab 20 [57]performed rules 1, 3, 5, and 7
(shown in Table 1) on attribute data. &ese rules are
reproduced in Table 2 using the Minitab numbering scheme.

Rules 2–4 are consistent in the sense that the chance of
occurrence of each rule in a stable (in-control) process is
approximately equal to the chance of Rule 1 occurring in a
stable process [14]. &ere follows a brief discussion of each
test rule.

2.3.1. Rule Test 1. A single point outside the control limits
will trigger a signal from this test. As mentioned earlier,
the control limits are usually set at three standard devi-
ations above and below the mean. &e test signals an
increase or decrease in the rate. &e disadvantage of this
test, however, is its lack of sensitivity to small shifts in the
mean [67, 68].

2.3.2. Rule Test 2. &is test detects a run of eight consecutive
points on one side of the centerline, where a run is defined as
one or more consecutive data points on the same side of the
centerline [69].&e number of consecutive data points varies
from reference to reference [28].

Researchers [70, 71] have suggested variants of this rule,
including the following:

(i) Whenever 11 successive points occur on the control
chart, at least 10 will be on the same side of the
centerline.

(ii) Whenever there are 14 successive points on the
control chart, at least 12 will be on the same side of
the centerline.

(iii) Where 17 successive points occur on the control
chart, at least 14 will be on the same side of the
centerline.

(iv) In the case of 20 successive points on the control
chart, at least 16 will be on the same side of the
centerline.

2.3.3. Rule Test 3. &is test, which indicates 6 points in a
row—all increasing or decreasing—is usually known as the
trend rule [68]. As such, the test covers two cases. A gradual
movement of points toward a control limit is called a trend.
Trends moving up or down indicate that the process is
changing [72] (see Figure 3).

&e case of points in a row, either all increasing or
decreasing, is also known as a run-up or run-down [73]. Six
decreasing points in a row indicate an improvement and
show that the rate of infection or the spread of the virus is
under control, signaling that the actions taken are paying off.
However, 6 points all increasing can act as an alarm, showing
that the virus is spreading and the number of cases is rising,
signaling that action needs to be taken.

Two issues need to be raised regarding the application of
this rule. First, there is some inconsistency in the literature as
to how many successive points should all increase or all
decrease in value before a signal is produced by the chart
[68].&e choice of six points is the most common to define a
trend [65, 74], although some authors suggest using seven
[11, 14, 75]. &is test is the same rule used with a run chart,
for which Provost and Murray [24] recommended using five
points. Oakland and Oakland [14] referred to this as a
warning signal. Note that using five points increases the
chance of false signals, known as committing a type 1 error,
i.e., signaling that a process is out of control when, in fact, it
is not.

Minitab 20 [57] gives the user the option to choose the
number of points.

Second, if the drift in the rate is small, then the prob-
ability of six or seven consecutive points all increasing or
decreasing is very small. Hence, AIAG [75] explained that
for seven points in a row to consistently increase or decrease,

Table 1: Sensitizing rules [63].

Rule
One or more points outside of the control limits
Two of three consecutive points outside the two-sigma warning limits but still inside the control limits
Six points in a row steadily increasing or decreasing
Four of five consecutive points beyond the one-sigma limits
A run of eight consecutive points on one side of the centerline
Fifteen points in a row in zone C (both above and below the centerline)
Fourteen points in a row, alternating up and down
Eight points in a row on both sides of the centerline with none in zone C
An unusual or nonrandom pattern in the data
One or more points near a warning or control limit

Table 2: Test rules for special causes [57].

Rule Reference to
Table 1

One or more points outside of the control
limits 1

A run of eight consecutive points on one side
of the centerline 5

Six points in a row steadily increasing or
decreasing 3

Fourteen points in a row alternating up and
down 7

Journal of Healthcare Engineering 5



they can either be equal to, greater, or lesser than the
preceding points. Even so, it is possible to produce a sloping
sawtooth pattern of points like the one shown in Figure 4.

For this case, the Western Electric Company [61] stated
that a trend could be present if a high proportion of suc-
cessive points were increasing/decreasing, but the company
failed to define “a high proportion.” In this case, most
software [57] will not trigger a signal but will result in a
missed signal. A signal has to be detected visually. It would
be helpful to suggest some criteria similar to those suggested
for the run rule presented earlier.

2.3.4. Rule Test 4. &is test to indicate 14 points in a row,
alternating up and down, was not identified.

However, Stapenhurst [76] emphasized that the rules
given above are simply guidelines, indicators of a special
cause of variation. He added that these guidelines should be
used as more of a confirmation than as a rule to be rigidly
followed.

An important remark is that in the EWMA chart, the
plotted statistics are not independent from subgroup to
subgroup, and thus, only Rule 1 can be used to detect special
causes.

3. Results and Discussion

In order to provide the decision makers with real-time
feedback, and as quickly as possible without any delays, the
IR of each pandemic week was added to the control chart as
at the control soon as it became available. We were not
looking chart as a completed picture; instead, we observed it
as the data evolved with each addition of information.

3.1. Charts’ Development. As mentioned earlier, data col-
lection started in PW 44–20. &e pandemic reached its first
peak (in PW 46–20), following the general parliamentary
election the previous week, on Tuesday, November 10, 2020
(PW 45–20). In response, the government enforced a
general curfew starting at 10 : 00 pm on election night and
ending on the morning of Sunday, November 15, 2020, at
6 : 00 am. &is measure to contain and prevent the virus’s

possible spread due to gathering crowds affected a
downward trend between PW 47–20 and PW 4–21. It
follows that no test signal was triggered when drawing the
control charts (Laney p’ and EWMA) up to PW 50–20, as
seen in Figure 5.

Once PW 51–20 was added, test 1 was triggered on PW
46–20 and PW 47–20 for EWMA chart only (Figure 6).

Once PW 52–20 was added, tests 1 and 3 were triggered
in the same week, and test 1 was triggered on PW 46–20 for
the Laney p’ control chart. For the EWMA chart, test 1 was
triggered in the same week and on PW 48–20. Figure 7
clearly indicates the decreasing rate of infection, as the UCL
and LCL are functions of the centerline (the mean); thus,
adding more points below the centerline reduces the mean.

&e addition of each of the data points PW 1–21, PW
2–21, PW 3–21, and PW 4–21 triggered tests 1 and 3 for the
week, and test 1 in PW 45–20, PW 47–20, and PW 44–20,
respectively, for the Laney p’ control chart. As seen in
Figure 8(a), test 1 signal was no longer present for PW
52–20, and the point was no longer out of control, indicating
that as the mean was decreased, the IR was decreasing. More
points from the UCL side were labeled as out of control,
showing a slow decrease in the IR, which reached the lowest
level in PW 4–21. Similar behavior is seen in Figure 8(b) for
the EWMA chart.

Adding point PW 5–21 triggered test 2, but did not
trigger test 3, thus indicating a shift in direction as the IR
began to increase, although it was not a big jump. None-
theless, this should be seen as a signal that the situation was
changing. Despite this short jump, the absence of test 3 and
the presence of test 2 together showed a slow decrease in the
IR overall. It is worth mentioning that in PW 52–20, cases of
the Alpha variant were discovered in Jordan. In addition,
starting PW 2–21, the government relaxed some of the
restriction measures, lifting the Friday curfew and reducing
the weekday curfew by two hours.&e IR was still decreasing
but at a slower pace, and it took about 4 weeks for the IR to
change direction and start to increase (Figure 9(a)). Note
that the EWMA chart did not signal this jump in the IR
(Figure 9(b)).
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When, in PW 5–21, certain recreational facilities were
allowed to reopen and then in PW 6–21, a hybrid mode of
teaching was subsequently introduced for grades fromKG to
Grade 3, and for Grade 12. &e relaxation of restrictions had
a dramatic effect on the IR. &ese actions, alongside the
appearance of the Alpha variant, escalated the IR in the
period from PW 5–21 to PW 11–21. PW 7–21 triggered test
2, but test 1 was not triggered, indicating a rise in the IR.

Test 2 was not triggered with the addition of PW 8–21,
and the Laney p’ control chart monitored big jumps above
the mean (Figure 10(a)).&e EWMA chart still triggers a test
1 signal from the LCL side. &e government officially an-
nounced the second wave of the pandemic in the same week.
Restriction measures were reintroduced, most notably a
nationwide Friday curfew from &ursday 10 : 00 p.m. until
Saturday 6 : 00 a.m., excluding the time of Friday prayers,
and a weekday nighttime curfew was extended to between
10 : 00 p.m. and 6 : 00 a.m.

We can see that timely countermeasures and actions
could have helped prevent escalation if control charts had
been employed earlier, especially as signals started showing
in PW 5–21, at least three weeks before the government took
any action. With PW 9–21, the IR continued rising. Adding
PW 10–21 to the Laney p’ control chart triggered the upward
test signal (test 3) when the government reverted to online
teaching for all grades (Figure 11(a)). Test 1 was not trig-
gered with the addition of PW 10–21 to the EWMA chart
(Figure 11(b)).

&e addition of PW 11–21 to the Laney p’ control chart
triggered tests 1 and 3 after the government extended the
curfew by 3 hours, to start at 7 : 00 pm. &e upward period
leads to the second peak in PW 11–21, as shown in
Figure 12(a).

After adding PW 12–21 to the Laney p’ control chart, test
3 was not triggered, but test 1 was, indicating that the IR had
slowly started to change direction. PW 13–21 did not trigger
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Figure 11: PW 10–21. (a) Laney p’ control chart and (b) EWMA chart.
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Figure 12: PW 11–21. (a) Laney p’ control chart and (b) EWMA chart.
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Figure 10: PW 9–21. (a) Laney p’ control chart and (b) EWMA chart.
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any test, indicating a faster decrease in the IR, as shown in
Figure 13(a). &e EWMA is still showing an increase in the
IR (Figure 13(b)).

&e period fromPW12–21 to PW20–21 showed a decline
in the IR, resulting from the government maintaining the
curfew until PW 17–21. Furthermore, the customary large
gatherings of people for the congregational evening prayers
(Taraweeh), usually held in Ramadan, the fasting month for
Muslimsduring thisperiod (PW15–21 toPW19–21),werenot
permitted.&en inPW17–21, the government relaxed someof
the restrictions, lifting the Friday curfew, so the Taraweeh
prayers were allowed and public parks reopened. In addition,
the government reduced the number of curfew hours during
the 3-day Eid al-Fitr feast that marks the end of Ramadan,
when families and friends visit each other (Figure 14).

A limited number of cases of the Brazilian variant were
found in Jordan in PW 12–21, but, as Figure 15 shows, the
variant did not spread in the country.

Similarly, although the cases of the Delta variant were
first reported in PW 18–21, a relatively stable period and a
low number of new cases between PW 21–21 and PW 37–21
were observed.

Test 1 was triggered from the LCL for all points PW
19–21 to 24–21.

In PW 25–21, besides test 1, test 2 was also triggered. In
this week, fully vaccinated people were exempted from the
weekday night curfew. In PW 28–21, the government also
reduced the night curfew for the nonvaccinated.

Another religious feast came during PW 29–21 (Eid al-
Adha), when families and friends visit each other. &is
caused a slight rise in the IR in the period from PW 30–21 to
PW 32–21. No test was triggered by this slight rise (Fig-
ure 16). In PW 35–21, the government announced the end of
the curfew. Commercial stores and leisure facilities reopened
in the same week.

From September 22 to October 2, 2021 (from PW 38–21
to PW 40–21), large numbers of people attended the Jerash
culture festival. A huge debate ensued in the local and social
media on the negative effect these gatherings were expected
to have on the IR. Tomakematters worse, four concerts were
held between PW 40–21 and PW 44–21 in different cities in
Jordan. For the Laney p’ control chart, tests 1 and 2 were
triggered for all the points from PW 24–21 to PW 42–21.
When PW 43–21 was added, in addition to tests 1 and 2, test
3 was also triggered, indicating a rise in the IR. Adding
points PW 44–21 and PW 45–21 again triggered tests 1, 2,
and 3. Between PW 46–21 and PW 49–21, tests 2 and 3 were
triggered, showing an upwardmovement to the third peak in
PW 49–21, as shown in Figure 17(a). &e EWMA chart only
after adding PW 49–21 did not trigger test 1 (Figure 17(b)).

One reason for the rise in the IR may have been the
easing of some of the restrictions, especially the effect of the
Jerash festival and the concerts.

A downward trend was subsequently observed, from PW
50–21 to PW 52–21, where test 1 was triggered from the LCL
side, as shown inFigure18(a), indicatinga sharpdrop in the IR.

Adding PW 1–22 triggered test 1, and although adding
PW 2–22 did not trigger any test, the point is in the in-
control region of the chart, indicating that the IR was

increasing, as seen in Figure 19(a). Adding PW 3–22 trig-
gered test 1, but this time from the UCL side, indicating a
large increase in the IR (Figure 19(a)). &e EWMA chart did
not trigger test 1. &is rise followed the discovery of the first
Omicron variant cases in Jordan, announced in PW 49–21.

For the Laney p’ control chart, adding PW 4–22 and PW
5–22 both triggered test 1. PW 5–22 also signaled test 2 in
PW 46–21 and PW 47–21. &e effect of adding this point on
the mean is evident; the mean increased dramatically, and
PW 46–21 and 47–21 points are below the mean as a result
(Figure 20).

Likewise, adding PW 6–22, PW 7–22, and PW 8–22 also
triggered test 1 and caused PW 48–21, 49–21, and 50–21 to
signal test 2, respectively. Finally, adding PW 9–22 triggered
test 1. In the EWMA chart, adding the points PW 4-22–PW
9–22 triggered test 1.

3.2. Test 3 Missed Signals. &e discussion in this section is
limited to the Laney p’ control chart since test 3 applied does
not apply to the EWMA chart.

&ere were three occasions in the analysis when a trend
was observed, but test 3 was not triggered.

A downward period starting from PW 12–21 would have
triggered test 3 in PW 17–21, except that PW 16–21
(IR = 12.96%) was slightly higher than PW 15–21
(IR = 12.63%), as seen in Figure 21. &e second occasion was
in PW 21–21 (IR = 3.7%), which was slightly higher than in
PW 20–21 (IR = 3.64%). Although a drop is visually clear in
both cases, it was missed by test 3 (see Figure21).

&e third occasion was the upward period from PW
34–21 to PW 49–21. Although test 3 signaled on PW 43–21,
it could also have triggered on PW 40–21, but was delayed
because PW 37–21 (IR 3.12%) was lower than PW 36–21 (IR
3.26%). &e opportunity to take some earlier restrictive
actions was lost, and the rise in the IR continued until PW
49–21. On all three occasions, test 3 failed, but a trend was
clearly identified.

3.3. Multistage Analysis. We treated all the data points as a
single stage whenmonitoring the IR, with the centerline and
the upper and lower control limits recalculated with each
successive data point added to the control chart. As is
typical in process improvement projects, the plotted data
involved two parts: that is, data corresponding to the
current state, and data corresponding to the improved
future state, after interventions and corrective actions were
implemented.

We then attempted to use the concept of stages in a fresh
approach to see whether any new perspectives could be
gained from the analysis. Triggering test rule 1 depends on
the value of the point with regard to the UCL and LCL.
Similarly, triggering test 2 depends on the value of the point
with regard to the CL. Triggering test 3 may also be affected
since counting the number of points may be interrupted by
starting a new stage. &e UCL, LCL, and CL are recalculated
using only the new data points that belong to the stage.

A stage ends when the point added causes a test to be
signaled for the same point.
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Figure 15: PW 19–21. (a) Laney p’ control chart and (b) EWMA chart.
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Figure 14: PW 17–21. (a) Laney p’ control chart and (b) EWMA chart.
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Figure 13: PW 13–21. (a) Laney p’ control chart and (b) EWMA chart.
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Figure 17: Upward period, third peak (PW 49–21). (a) Laney p’ control chart and (b) EWMA chart.
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Figure 16: PW 35–21. (a) Laney p’ control chart and (b) EWMA chart.
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Figure 18: PW 52–21. (a) Laney p’ control chart and (b) EWMA chart.
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Figure 20: PW 9–22. (a) Laney p’ control chart and (b) EWMA chart.
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Figure 19: PW 9–22. (a) Laney p’ control chart and (b) EWMA chart.
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Stage 1 contained points up to PW 52–20, where signals
were triggered for tests 1 and 3, indicating a fall in the rate, as
shown in Figure 7(a).

Starting stage 2 from PW 1–21 and adding the points to
PW 8–21, test 1 was signaled on PW 8–21 from the UCL,

indicating a rise. After adding more points to the chart starting
at stage 3, the next signal was test 1 on PW 18–21, signaling a
decrease, and ending stage 3, as shown in Figure 22.

After adding points to the chart up to PW 28–21 in
stage 4, no signals were observed (Figure 23(a)). Adding

1 2 3

1

1

1

1

Tests are performed with unequal sample sizes.

P=0.1472

P=0.0656

P=0.1666

0.00

0.05

0.10

0.15

0.20

0.25

Pr
op

or
tio

n

44
–2
0

50
–2
0

1–
21

4–
21

7–
21

10
–2
1

13
–2
1

16
–2
1

47
–2
0

PW
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Figure 23: Stage 4.
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point PW 29–21 signaled for test 2 (8 consecutive points
under the centerline), however, and PW 20–21 and PW
21–21 signaled for test 1 from the UCL, as shown in
Figure 23(b).

Next, adding PW 30–21 to the same stage signaled test
1 from the UCL, which was not signaled in the single-stage
analysis. &is indicated an increase in IR (Figure 23(c).
Adding PW 31–21 did not signal any test, whereas adding
32–21 signaled test 1 (Figure 23(d)). However, since

signaling a test marks the end of a stage, PW 30–21 starts
stage 5.

In stage 5, points were added up to PW 41–21 with no
signals. However, PW 42–21 signaled test 1 from the UCL,
indicating an increase in the IR.

Starting stage 6 from PW 43–21 and adding the points
at PW 49–21 signaled tests 1 and 3, as shown in
Figure 24(a). Starting stage 7 and adding points from PW
50–21 to PW 3–22 triggered no test signals. PW 4–22
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Figure 24: Stages 1–8. (a) Laney p’ control chart and (b) EWMA chart.

Table 3: Comparison between tests 1 and 3 in detecting process change.

Direction
Single stage Multistage

Laney p’
EWMA Multistage

Test 1 Test 3 Test 3∗

1 Downward PW 52–20 PW 52–20 PW 51–20

2 Upward PW 11–21 PW 10–21 PW 10–21∗∗
PW 7–21∗∗ PW 5–21∗∗

3 Downward PW 19–21 PW 17–21 PW 19–21
4 Upward PW 30–21 test 1
5 Upward PW 46–21∗∗ PW 43–21 PW 37–21 PW 49–21∗∗ PW 40–21
6 Downward PW 52–21
7 Upward PW 3–22 PW 6–22 PW 3–22∗∗ PW 4–22
∗test 3 variant, ∗∗ test did not trigger.
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signaled test 1 from the UCL, ending stage 7, and starting
stage 8.

Comparing the analysis carried out in the multistage
with that carried out in the single stage for the Laney p’
control chart, one can see that the control chart is more
sensitive to small changes in the IR when using the mul-
tistage analysis.

4. Conclusions

In this paper, we show the use of control charts in moni-
toring the progression of COVID-19 cases in Jordan.

If the control charts had been used, some early signs
would not have been missed. In PW 5–21, for example, early
signs of rising IR were detected, but no action was taken until
PW 8–21. &e charts would have allowed the government to
take the appropriate actions more quickly and effectively.

&e charts have proved useful in enabling us to study the
effect of government actions designed either to restrict or to
ease the social activities allowed. Furthermore, the charts
confirmed that, as expected, restrictions effectively decreased
the infection rate, whereas relaxing the restrictions proved to
increase the rate.

&is approach differs from the more traditional ap-
proach adopted in process improvement projects. &e
single-stage analysis gives the complete and overall
picture of how the infection rate is changing, whereas the
multistage analysis is more sensitive and reveals
the smaller changes. &erefore, we recommend analyzing
the data points both at the single stage and at the
multistage.

Typically, test signals are considered indicators of a
change in the process. However, we have seen that in some
situations, the lack of a signal can also indicate a change in
the process. Further, adding points to the chart may
trigger a signal on the same point in some cases, whereas
in other cases, it may trigger a signal on other previous
points.

Variants of tests 2 and 3 are not implemented in the SPC
software; we therefore invite software developers to include
these invaluable tests.

Comparing the performance of tests 1 and 3 in
detecting process change, one can see that no test out-
performed the other, as shown in Table 3. &e downward
period (1), for example, was identified by both tests in PW
52–20. Using the test rules in the typical way, the upward
period (2) was identified by test 3 one week earlier than by
test 1. However, when using the test rule in the nontypical
way, i.e., when the test does not signal, it is clear that test 3
identified the process change in PW 5–21, five weeks
earlier. &e downward period (3) was identified by test 1 in
PW 19–21, but if the variant of test 3 had been used, the
downward trend would have been identified earlier in PW
17–21.

&e upward period (4) was missed by all tests in the
single-stage analysis but was detected by test 1 in PW 30–21
using the multistage analysis. &e downward period (6) was
identified only by test 1 in PW 52–21.&e upward period (7)
was first identified by test 1 in PW 3–22.

When comparing the Laney p’ control chart with the
EWMA control chart, the EWMA chart signaled
the downward period (1) in Table 3, one week earlier than
the Laney p’ control chart. In other downward or
upward changes of direction (2, 3, 5, and 6), Laney p’ control
chart outperformed the EWMA chart. Both control
charts signaled in the same week for a change of direction
(7).
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All data used to support the findings of the study can be
obtained from the author upon request.
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