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Fasting-induced FGF21 signaling activates hepatic
autophagy and lipid degradation via JMJD3 histone
demethylase
Sangwon Byun1,6,7, Sunmi Seok1,7, Young-Chae Kim 1, Yang Zhang2, Peter Yau3, Naoki Iwamori4, H. Eric Xu5,

Jian Ma 2, Byron Kemper1 & Jongsook Kim Kemper 1*

Autophagy is essential for cellular survival and energy homeostasis under nutrient deprivation.

Despite the emerging importance of nuclear events in autophagy regulation, epigenetic control

of autophagy gene transcription remains unclear. Here, we report fasting-induced Fibroblast

Growth Factor-21 (FGF21) signaling activates hepatic autophagy and lipid degradation via

Jumonji-D3 (JMJD3/KDM6B) histone demethylase. Upon FGF21 signaling, JMJD3 epigen-

etically upregulates global autophagy-network genes, including Tfeb, Atg7, Atgl, and Fgf21,

through demethylation of histone H3K27-me3, resulting in autophagy-mediated lipid degra-

dation. Mechanistically, phosphorylation of JMJD3 at Thr-1044 by FGF21 signal-activated PKA

increases its nuclear localization and interaction with the nuclear receptor PPARα to tran-

scriptionally activate autophagy. Administration of FGF21 in obese mice improves defective

autophagy and hepatosteatosis in a JMJD3-dependent manner. Remarkably, in non-alcoholic

fatty liver disease patients, hepatic expression of JMJD3, ATG7, LC3, and ULK1 is substantially

decreased. These findings demonstrate that FGF21-JMJD3 signaling epigenetically links

nutrient deprivation with hepatic autophagy and lipid degradation in mammals.
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Lysosome-mediated autophagy is a highly conserved catabolic
process that recycles cytoplasmic components, including
damaged organelles and proteins, for cellular survival and

maintenance of energy homeostasis under nutrient-deprived
conditions1,2. Autophagy-mediated degradation of intracellular
lipid stores, lipophagy, also plays a critical role in maintaining
energy balance during nutrient deficiency by providing free fatty
acids for mitochondrial fatty acid β-oxidation and ATP produc-
tion3. Autophagy must be tightly regulated since defective
autophagy has been implicated in many diseases, including can-
cer, neurodegenerative disease, and metabolic disorders like
obesity, diabetes, and non-alcoholic fatty liver disease (NAFLD),
while excessive autophagy is also harmful because it promotes cell
death4–6.

It has long been accepted that autophagy is activated under
extremely stressful conditions, but increasing evidence demon-
strates that it is also regulated during feeding/fasting cycles under
physiological conditions7–10. Nutrient-sensing factors, such as
feeding-sensing FXR and SHP and fasting-sensing TFEB, CREB,
and PPARα, dynamically decrease or increase, respectively,
autophagic flux by modulating transcription of autophagic gene
networks7–10. Despite the emerging importance of nuclear events
in sustaining autophagy regulation, there have been only a few
studies on epigenetic control in response to environmental cues.
Histone acetyltransferase hMOF has a role in determining whe-
ther autophagy induction leads to cellular survival or death11,
and the AMPK-SKP2-CARM1 signaling axis epigenetically acti-
vates transcription of autophagy-related genes after nutrient
deprivation12. Further, histone demethylase LSD1, together with
SHP, epigenetically inhibits hepatic autophagy-network genes in
response to a late fed-state gut hormone, FGF1910. However,
in vivo epigenetic regulators that convert fasting signal into
induction of autophagy genes in animals are largely unknown.

Jumonji D3 (JMJD3/KDM6b) is a JmjC domain-containing
histone lysine demethylase that, together with demethylases UTX
and UTY, belongs to the KDM6 family and epigenetically acti-
vates genes by demethylating histone H3K27-me313. JMJD3 has
known functions in development, differentiation, and immu-
nity13, and in extending lifespan in response to mild mitochon-
drial stress14. Recently, JMJD3 was also shown to have a
metabolic function in mediating hepatic fasting responses by
acting as a gene-specific transcriptional partner of SIRT1, a key
cellular energy sensor15. JMJD3 activates transcription of direct
SIRT1 target genes that promote mitochondrial fatty acid β-oxi-
dation, including Cpt1, Pgc-1α, and Fgf21, but not direct SIRT1
target gluconeogenic genes15. Although fasting-induced JMJD3
promotes fatty acid β-oxidation, a role for JMJD3 in promoting
autophagy has not been shown.

In this study, we identify a function of JMJD3 in linking
nutrient deprivation to histone modifications and transcriptional
induction of hepatic autophagy in mice. Under nutrient depri-
vation, JMJD3 is activated by the fasting-induced hepatokine,
Fibroblast Growth Factor-21 (FGF21), and epigenetically upre-
gulates global autophagy-network genes. Mechanistically, FGF21-
activated PKA mediates phosphorylation of JMJD3, which is
important for its nuclear localization and interaction with PPARα
to transcriptionally activate autophagy. We further show that
FGF21-mediated autophagy induction and lowering lipids in
obese mice are dependent on JMJD3 and that the hepatic FGF21-
JMJD3-autophagy axis is likely dysregulated in NAFLD patients.

Results
JMJD3 epigenetically activates liver autophagy gene networks.
To explore epigenetic regulation of hepatic autophagy, we first
examined whether selected histone modifications were altered

by fasting in mouse liver. Levels of histone H3K27-me3 were
markedly decreased in fasted mice, and levels of JMJD3, which
activates genes by demethylating H3K27-me313, were increased
after fasting, whereas expression of UTX H3K27 demethylase
and EZH2 H3K27 methyltransferase was unchanged (Supple-
mentary Fig. 1). These results suggest that JMJD3 may epi-
genetically activate hepatic autophagy in response to nutrient
deficiency.

To examine the role of JMJD3 in global regulation of hepatic
genes, including autophagy genes, JMJD3 was downregulated
specifically in the liver by infection of JMJD3-floxed mice with
hepatocyte-targeting AAV-TBG-Cre15,16 (Fig. 1a), and effects of
the downregulation on global gene expression and H3K27-me3
levels were examined by RNA-seq and ChIP-seq, respectively.
Expression of 846 genes was decreased by downregulation of
JMJD3 (Fig. 1b, Supplementary Fig. 2a), which include genes
involved in autophagy, Ulk1, Atg3, Atg7, and Lc3; a transcrip-
tional activator of autophagy, Tfeb7; a lipase important for
lipophagy, Atgl17; and a fasting-induced hepatokine promoting
lipid catabolism, Fgf2118,19, and H3K27-me3 levels detected by
ChIP-seq at nearly all of these genes were increased (Fig. 1c,
Supplementary Fig. 2c). Remarkably, gene ontology (GO) analysis
of 564 potential JMJD3 target genes with both decreased
expression and increased levels of H3K27-me3 after down-
regulation of JMJD3, revealed that autophagy and lysosomal
function are potentially regulated by JMJD3 in fasted mice
(Fig. 1d, Supplementary Fig. 2b–d). Analysis of mRNA and
H3K27-me3 levels for selected autophagy genes validated these
genomic results (Fig. 1e, f) and occupancy of JMJD3 at these
genes in fasted mice was decreased as expected by liver-specific
downregulation of JMJD3 (Fig. 1g). These global analyses reveal a
potential role for JMJD3 in epigenetic induction of hepatic
autophagy.

JMJD3 activates hepatic autophagy under nutrient deficiency.
To examine whether induction of autophagy-network genes by
JMJD3 actually leads to autophagy, we examined the effects of
liver-specific downregulation or overexpression of JMJD3 on
autophagic markers, the ratio of lipidated LC3-II to non-lipidated
LC3-I, the levels of the autophagosome adapter p62, and
lysosome-associated membrane protein (Lamp)1 and Lamp220.
The ratio of hepatic LC3-II/I, the number of LC3 puncta, and
Lamp1 and 2 levels were decreased, and p62 levels were increased
by downregulation of JMJD3 in mice (Fig. 2a), indicative of
decreased autophagy20. Conversely, adenoviral-mediated liver-
specific expression of JMJD3 in mice resulted in the opposite
effects (Fig. 2b). Similar effects of overexpression or down-
regulation of JMJD3 on the number of GFP-LC3 puncta were
observed in Hepa1c1c7 cells (Fig. 2c).

Downregulation of JMJD3 also decreased the LC3-II/I ratio
and decreased the mRNA levels of genes involved in autophagy
and lysosomal functions in primary mouse hepatocytes (PMH)
(Supplementary Fig. 3a, b). Furthermore, while treatment with a
lysosomal inhibitor, bafilomycin-A1, increased autophagy
detected by increased LC3 puncta or ratios of LC3-II to LC3-I,
overexpression of JMJD3 further increased autophagy while
downregulation decreased it (Supplementary Fig. 3c–e). Similarly,
treatment with an mTOR inhibitor increased the LC3-II/I ratio,
and downregulation of JMJD3 decreased autophagy without
reversing the phosphorylation of the mTOR target, pS6
(Supplementary Fig. 3f). These results suggest that JMJD3
activates autophagy independent of either lysosomal or mTOR
action. Overall, these results, together with global studies (Fig. 1),
demonstrate that JMJD3 transcriptionally activates hepatic
autophagy under nutrient deprivation.
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JMJD3 promotes autophagy-mediated degradation of lipids.
As key genes important for lipophagy, including Atgl, Tfeb, Pgc-
1α, and Fgf217,17,21, are direct targets of JMJD3 (Fig. 1, Sup-
plementary Fig. 2), and JMJD3 promotes fatty acid β-
oxidation15, we further examined whether JMJD3 activates
hepatic lipophagy.

Overexpression of JMJD3 in Hepa1c1c7 cells increased the
number of GFP-LC3 puncta that co-localized with BODIPY-
stained lipids and the opposite effects were observed after
downregulation of JMJD3 (Fig. 2d). Furthermore, in electron
microscopy studies, autophagic vesicles within lipid droplets
were observed in mouse liver after adenoviral-mediated
expression of JMJD3 (Supplementary Fig. 4a). Exogenous
expression of JMJD3 in livers of mice fed a normal chow diet
(ND) increased the LC3-II/I ratio (Fig. 2e), decreased hepatic
lipid (Fig. 2f, Supplementary Fig. 4b) and triglyceride (TG)
levels, and increased serum ketone body levels (Fig. 2g). In
mice fed a high-fat diet (HFD), expression of JMJD3 resulted in
increased autophagy and decreased hepatic TG levels, but these
JMJD3-mediated effects were blunted in autophagy-defective
Atg7-downregulated mice (Fig. 2e–g). These results suggest
that JMJD3 promotes lipophagy, which contributes to
decreased liver TG levels and that autophagy is important for
the JMJD3-mediated lipid-lowering effects.

Fasting-induced autophagy is blunted in FGF21-LKO mice.
Fasting increased JMJD3 occupancy and decreased histone
H3K27-me3 levels at selected genes promoting lipophagy,
including Tfeb, Ulk1, Atgl, and Fgf21, in mice (Supplementary
Fig. 5). As the fasting-induced FGF21 promotes lipid
catabolism18,19 and lysosomal function21, we examined whether
FGF21 has a role in JMJD3-induced autophagy using liver-
specific FGF21-knockout (FGF21-LKO) mice22.

The increased ratio of LC3-II/I, decreased p62 levels, and
increased LC3 puncta (Fig. 3a,b), and induction of Tfeb, Pgc-1α,
Ulk1, Atg7, Atgl, and JMJD3 (Fig. 3c) observed after fasting of
control mice were attenuated in FGF21-LKO mice. These results
suggest that physiological levels of endogenous FGF21 induced by
fasting promote hepatic autophagy in an autocrine-manner.
Consistent with these results, treatment with FGF21 increased
JMJD3 occupancy and demethylation of H3K27-me3 at numer-
ous autophagy genes, and increased expression of these genes
(Fig. 3e, f).

In hepatocytes, the increased levels of LC3, Lamp1/2, and
JMJD3 expression in nutrient-deprived medium were attenuated
by downregulation of FGF21 (Fig. 3g). Moreover, expression of
JMJD3 increased the LC3-II/I ratio but this JMJD3-mediated
effect was also blunted by FGF21 downregulation (Fig. 3h). These
findings reveal a critical role for hepatic FGF21 in hepatic
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RTPCR (n= 5–10 mice). f, g ChIP assays: effects of the downregulation of JMJD3 on f H3K27-me3 levels and g occupancy of JMJD3 at the indicated genes
(n= 3 mice). Source data are provided as a Source Data file. All values are presented as mean ± SD. Statistical significance was measured using the
e–g two-way ANOVA with the Bonferroni post-test. *P < 0.05, **P < 0.01, and NS statistically not significant.
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autophagy induced either by nutrient deprivation or over-
expression of JMJD3.

JMJD3 has a critical role in FGF21-induced hepatic autophagy.
As JMJD3 epigenetically induces hepatic expression of Fgf21 in
response to fasting15, we further examined whether JMJD3 is also
important for FGF21-induced hepatic autophagy. FGF21 treat-
ment in mice increased the LC3II/I ratio and Lamp1/2 levels
(Fig. 4a), LC3 puncta (Fig. 4b), and expression of Tfeb, Ulk1, and
Atg7 (Fig. 4c), but these FGF21-mediated effects on autophagy
were markedly blunted by downregulation of hepatic JMJD3.
Consistent with these findings in mice, in primary mouse hepa-
tocytes (PMH), FGF21 treatment increased p-ERK levels and the

LC-II/I ratio and decreased p62 levels (Supplementary Fig. 6a).
Furthermore, treatment with FGF21, but not rapamycin,
increased expression of JMJD3 (Supplementary Fig. 6b). These
results indicate that JMJD3 is important for hepatic autophagy
induced by FGF21. As JMJD3 induces FGF21 expression and
FGF21 signaling activates JMJD3, which is required for FGF21
induction of autophagy, these findings reveal an intriguing
feedforward loop between FGF21 and JMJD3 to activate hepatic
lipophagy upon nutrient deprivation.

FGF21 can directly act on hepatocytes and induce lipophagy.
FGF21 lowers TG levels in liver, but it remains controversial
whether the liver is a direct target organ for the FGF21 action or
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indirectly targeted through the CNS18,19,23,24. We, thus, examined
whether FGF21-mediated autophagy observed in mice can also
occur in isolated hepatocytes. FGF21 treatment increased
autophagy and decreased cellular TG levels in PMH (Fig. 4d, e),
and increased autophagy gene expression (Supplementary
Fig. 6c). Each of these FGF21-mediated effects was blunted by
downregulation of JMJD3. Furthermore, FGF21 treatment
increased co-localization of LC3 puncta and lipids in Hepa1c1c7
cells, but these effects were blunted by JMJD3 downregulation
(Fig. 4f). These results suggest that FGF21 can directly act on
hepatocytes and induce lipophagy, which is associated with
decreased TG levels.

PPARα is a key component of the FGF21-JMJD3-autophagy
axis. We next examined the mechanism by which JMJD3 trans-
mits the FGF21 signal to epigenetically activate autophagy genes.
We first identified transcriptional factors that might recruit
JMJD3 to autophagy genes by examining candidate factors that

are known to promote autophagy, PPARα7,9, CREB8, and
FOXO112. The increase in the LC3-II/I ratio induced by JMJD3
expression was largely blocked by downregulation of PPARα,
while a substantial increase was still observed after down-
regulation of CREB or FOXO1 (Supplementary Fig. 7a). Com-
parative analyses of our RNA-seq data (Fig. 1b, Supplementary
Fig. 2a) with published PPARα microarray25 or ChIP-seq9 data
revealed that ~70% of hepatic genes downregulated in JMJD3-
depleted mice had binding peaks for PPARα (Fig. 5a) and ~70%
of the hepatic genes downregulated in PPARα-KO mice also had
increased levels of histone H3K27-me3 (Supplementary Fig. 7b).
These genes, potentially regulated by both PPARα and JMJD3,
were involved in autophagy, lysosome, and lipid catabolism based
on GO analysis (Fig. 5a).

To determine the importance of PPARα in the FGF21-JMJD3-
autophagy axis, we utilized PPARα-KO mice. Fasting increased
LC3-II/I ratios and autophagy gene expression in control mice,
but these effects were blunted in PPARα-KO mice (Fig. 5b).
Conversely, activation of PPARα by treatment with an agonist,
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WY14643, increased LC3-II/I ratios and expression of autophagy
genes in a JMJD3-dependent manner in PMH (Fig. 5c) and
increased the interaction of JMJD3 with PPARα (Supplementary
Fig. 7c). The effects of FGF21 treatment (Fig. 5d) or JMJD3
expression (Fig. 5e, Supplementary Fig. 7d) on autophagy were
also blunted in PPARα-KO mice. Further, FGF21 treatment
increased co-occupancy of JMJD3 and PPARα at Tfeb, Atg7, and
Atgl genes (Fig. 5f). Consistent with these results, the interaction
of JMJD3 with PPARα was increased after treatment with FGF21,
but not with rapamycin (Supplementary Fig. 7e, f). In reporter
assays, expression of JMJD3 enhanced PPARα-mediated trans-
activation of Tfeb-luc and Atg7-luc (Fig. 5g). Collectively, these
findings demonstrate that PPARα is a key component of the
induction of autophagy network genes mediated by the fasting-
triggered FGF21-JMJD3 axis.

JMJD3 phosphorylation at T1044 is critical for its function. We
further investigated the mechanism by which FGF21 signaling
activates JMJD3. In mass spectrometry analysis, Thr-1044 was the
only phosphorylation site detected in JMJD3 from FGF21-treated
hepatocytes (Fig. 6a, Supplementary Fig. 8a). Indeed, p-Thr
JMJD3 levels for WT-JMJD3, but not T1044A-JMJD3, were
increased by FGF21 treatment in PMH (Fig. 6b, Supplementary

Fig. 8b). These results indicate that JMJD3 is phosphorylated at
Thr-1044 in response to FGF21.

We next examined the role of the FGF21 signal-induced
JMJD3 phosphorylation in induction of autophagy genes. JMJD3
was detected in the cytoplasmic and mitochondrial fractions and
FGF21 treatment increased nuclear localization of JMJD3 in
PMH (Supplementary Fig. 8c, d) and also in Hepa1c1c7 cells
(Fig. 6c). Further, FGF21 treatment increased the interaction of
JMJD3 with PPARα, the expression of Atgl, Atg7, and Tfeb and
the LC3 II/I ratio (Fig. 6d, Supplementary Fig. 8e, f). These
FGF21-mediated effects were blocked by the p-defective T1044A
mutation of JMJD3, while effects similar to those in FGF21-
treated cells were observed even in vehicle-treated cells with a p-
mimic T1044E mutation (Fig. 6c, d, Supplementary Fig. 8d–f).
Notably, FGF21-induced phosphorylation of JMJD3 was detected
in both the cytoplasm and nucleus of FGF21-treated cells, while
the interaction of JMJD3 with PPARα was detected only in the
nucleus (Supplementary Fig. 8g). Collectively, these results
indicate that FGF21-induced phosphorylation of JMJD3 is critical
for its activation and for the induction of autophagy genes.

FGF21-activated PKA mediates the phosphorylation of JMJD3.
Analysis of JMJD3 sequence adjacent of Thr-1044 revealed motifs
for several kinases, including PKA, as well as, a well-known
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FGF21 signaling kinase, ERK18,19 (Supplementary Fig. 9a). Fast-
ing overnight increased the phosphorylation of JMJD3 and both
PKA and ERK in control mice, but not in FGF21-LKO mice
(Fig. 6e), consistent with mediation of the phosphorylation by
fasting-induced FGF21. Indeed, FGF21 treatment in mice
increased phosphorylation of JMJD3 and both PKA and ERK
(Fig. 6f) and increased the interaction of JMJD3 with PKA, but

not with ERK (Supplementary Fig. 9b). In in vitro kinase assays,
PKA, but not ERK, phosphorylated WT-JMJD3, but not T1044A-
JMJD3 (Fig. 6g) and in GST pull down assays, PKA directly
interacted with JMJD3 through the domain containing Thr-1044
(Fig. 6h, Supplementary Fig. 9c). Importantly, in PMH, FGF21-
induced phosphorylation of JMJD3 was significantly blunted by
treatment with an inhibitor of PKA, but not of MEK/ERK

14,561

PPARα-cistrome
(15,117)

616 230Genes
number

Downregulated
genes in Jmjd3
depleted mice

(846) 

d

Ratio (II/I)

50 -

37 -

10 -

15 -

ACTIN

LC3-I
LC3-II

Fd Fs Fd Fs

C57BL/6 Pparα-KO 

Pparα-KO Pparα-KO 

Pparα-KO (Fd) 

Pparα-KO (Fs) 

Pparα-KO (Veh) 

Pparα-KO (FGF21) 

1.0 2.6 2.4 24 28 25 2.8 2.4 1.8 1.8 1.3 2.7

WT(Fd)

WT(Fs)

1

R
el

 m
R

N
A

 le
ve

l

4

0

2

6 **
**

**
**

**
**

Atg7Tfeb Atgl

b c

e

WY14643:

LC3-I15

10

AAV-GFP

ACTIN
50

37

JMJD3
250

150

1.0 1.4 0.9 9 11 8

AAV-Cre

kd +– +−

LC3-II

0.4 0.6 0.5 0.9 1.2 1.5 Ratio (II/I)

(   Jmjd3) 

Jmjd3 f/f PMH

WT (Veh)

WT (FGF21)

R
el

 m
R

N
A

 le
ve

l

4

0

2

6 **
**

**
**

**
**

Atg7Tfeb Atgl

GO ID Gene ontology term p-Value
GO:0006955 Immune response 1.45E–33

GO:0048583 Response to stimulus 5.25E–20

GO:0006629 Lipid metabolic process 1.28E–10

GO:0006631 Fatty acid metabolic process 1.28E–07

GO:0034440 Lipid oxidation 3.77E–05

GO:0031410 Cytoplasmic vesicle 6.66E–05

GO:0006914 Autophagy 8.84E–05

GO:0005764 Lysosome 1.57E–04

GO:0016298 Lipase activity 9.18E–03

a

FGF21

ACTIN
50 -

37 -

LC3-I
LC3-II

10 -

15 -

C57BL/6 

1.0 0.8 1.3 12 15 16 1.3 1.0 1.1 0.9 1.3 1.3 Ratio (II/I)

− + − +

AAV-GFP(Veh)

AAV-GFP(WY14643)

AAV-Cre(Veh)

AAV-Cre(WY14643)R
el

 m
R

N
A

 le
ve

l

Atg7Tfeb Atgl

6

0

2

8

4

**
**

**
** **

**

Ad-GFP
Ad-Jmjd3

P
un

ct
a 

#/
ce

ll

**
**

25

15

5

0

C57
BL/

6

Ppa
rα

-K
O

10

20

Ad: Jmjd3GFP GFP Jmjd3

C57BL/6

p62 p62 p62 p62 

LC3 LC3 LC3 LC3 

R
el

 lu
ci

fe
ra

se
ac

tiv
ity

 

f g

0.02

0

0.04

0.06 **
**Atg7

IgG JMJD3

%
 o

f i
np

ut

0.02

0

0.08

0.04

0.06

**
**Tfeb

2nd Ab: IgG JMJD3

Tfeb, Atg7, AtglPPARα
JMJD3siC (Veh)

siC (FGF21)

siPparα (Veh)

siPparα (FGF21)

Re-ChIP; (1st Ab: PPAR�)

PMH

0.02

0

0.06

0.04

**
**Atgl

IgG JMJD3

2

0

6

4
**

**

****

JMJD3
PPARα
siPparα – –

–
– – +

+–
+

+ +–
– –

– – ++

Tfeb_luc
Tfeb(PPRE)_lucX

Atg 7_luc
Atg 7(PPRE)_lucX

– –

–
– – +

+–
+

+ +–
– –

– – ++

4

0

12

8 **
**

****

– –

–
– – +

+–
+

+ +–
– –

– – ++ – –

–
– – +

+–
+

+ +–
– –

– – ++

Fig. 5 JMJD3 coactivates PPARα to induce hepatic autophagy. a Venn diagram (top) for genes with PPARα cistrome detected by ChIP-seq and hepatic
genes inhibited by liver JMJD3 downregulation (as shown in Fig. 1b). G/O analysis (bottom) of the overlapping genes. b WT or PPARα-KO mice were
fasted (Fs) for 24 h or refed for 24 h (Fd) after fasting. Levels of LC3 in liver extracts measured by IB with the LC3-II/I ratios shown below the blot (top, n=
3 mice). The mRNA levels of indicated genes (bottom, n= 5 mice). c PMH from JMJD3-floxed mice were infected with AAV-GFP or AAV-Cre for 72 h and
treated with vehicle or WY14643 for 12 h. The indicated proteins were detected by IB with the LC3-II/I ratios shown below the blot (top, n= 3 culture
dishes). The mRNA levels of indicated genes (bottom, n= 5 mice). d C57BL/6 or PPARα-KO mice were fasted for 1 h and treated with vehicle or 0.1 mg/kg
FGF21 for 3 h. Hepatic levels of LC3 measured by IB with the LC3-II/I ratios shown below the blot (top, n= 3). The mRNA levels of indicated genes
(bottom, n= 5 mice). e LC3 and p62 detected by IHC. Representative images of liver sections (left) and the average number of puncta/cell (right, n= 10
hepatocytes) are shown (scale bar= 10 μm for LC3, 50 μm for p62). f re-ChIP: Hepatocytes were transfected with PPARα siRNA, 72 h later, cells were
treated with FGF21 for 2 h. PPARα was immunoprecipitated followed by immunoprecipitation of JMJD3, and enrichment of Tfeb, Atg7, and Atgl sequences
was determined (n= 3 culture dishes). g Hepa1c1c7 cells were transfected with a luciferase reporter containing the PPARα binding site or mutated site
from Tfeb or Atg7 and with plasmids and siRNAs as indicated. After 36 h, the cells were treated with 50 μM WY14643 and 100 ng/ml FGF21 overnight.
Luciferase activities were normalized to β-galactosidase activities (n= 4 culture dishes). Source data are provided as a Source Data file. b–g Values are
presented as mean ± SD. Statistical significance was measured using the g one- or b–f two-way ANOVA with the Bonferroni post-test. **P < 0.01.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-14384-z ARTICLE

NATURE COMMUNICATIONS |          (2020) 11:807 | https://doi.org/10.1038/s41467-020-14384-z | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


(Fig. 6i). These findings indicate that FGF21 signal-activated PKA
mediates the phosphorylation of JMJD3, which is important for
induction of autophagy.

Beneficial FGF21 effects on fatty liver are JMJD3-dependent.
FGF21 and its analogs have beneficial lowering lipid effects in obese
animals and humans26–28. Knowing that JMJD3 promotes hepatic

autophagy, including lipophagy (Fig. 2), and mitochondrial fatty
acid oxidation15, and importantly, FGF21-induced autophagy is
dependent on JMJD3 (Fig. 4), we next asked whether JMJD3 has a
role in mediating the lipid-lowering effects of FGF21. Adminis-
tration of FGF21 to high-fat diet (HFD) obese mice decreased
body weight without significant changes in food intake and
decreased the size of liver (Fig. 7a). Levels of hepatic lipids and
TG (Fig. 7b) and long-chain acylcarnitine were decreased,
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and levels of serum ketone bodies (Fig. 7c) and glucose toler-
ance (Fig. 7d) were increased. O2 consumption and CO2 pro-
duction (Fig. 7e, Supplementary Fig. 10) were increased,
indicating increased energy expenditure. FGF21 treatment also
increased autophagy gene expression and autophagy (Fig. 7f, g).

Each of these FGF21-mediated effects was blunted in hepatic
JMJD3-downregulated mice (Fig. 7a–g). These results demon-
strate that JMJD3 is required for FGF21-induced autophagy
and beneficial outcomes, particularly lowering lipids, in obese
mice.
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Expression of KLB in fatty livers improves FGF21 signaling.
Circulating FGF21 levels are highly elevated in non-alcoholic fatty
liver disease (NAFLD) patients, as well as, in obese animals,
suggestive of impaired FGF21 signaling18,29,30. Further, decreased
autophagic flux and defective autophagy have been implicated in
the development of NAFLD5,6,31. We, therefore, examined the
effect of a HFD on FGF21 signaling and hepatic autophagy
in mice.

Responsiveness to FGF21, as measured by increased p-PKA
and p-ERK levels, was impaired, and FGF21-mediated induction
of autophagy was absent in HFD obese mice compared to lean
mice (Fig. 8a). Since β-Klotho (KLB) is the essential coreceptor
for FGF21 action18,19, and its hepatic expression is downregulated
in obesity32, we examined the effect of feeding a HFD for different
lengths of time on expression of JMJD3, KLB, and FGFR. The
mRNA levels of JMJD3 and KLB were decreased, whereas those of
Fgfr1 and Fgfr4 were increased, after feeding a HFD (Fig. 8b),
suggesting that decreased expression of KLB may contribute to
FGF21 resistance in obesity.

We, therefore, further tested whether restoring KLB levels in
obese mice can rescue FGF21 signaling and subsequently,
expression of JMJD3 and hepatic autophagy (Fig. 8c, top).
Viral-mediated liver-specific expression of KLB in HFD obese
mice resulted in increased p-ERK and p-PKA levels, increased
JMJD3 protein levels, and increased ratios of LC3II/I proteins
(Fig. 8c). These results suggest that restoring expression of KLB in
obese mice improves FGF21 signaling and consequently, FGF21-
induced autophagy.

Expression of JMJD3 and autophagy genes is reduced in
NAFLD. To assess potential human relevance of our findings, we
examined the expression of JMJD3 and key autophagy genes in
livers of human NAFLD patients. Autophagy has been reported
to be defective in these patients5,6,31. Intriguingly, hepatic mRNA

levels of JMJD3, TFEB, ULK1, ATG7, and ATGL, were all
decreased in both simple steatosis and advanced NASH-fibrosis
patients compared to normal subjects (Fig. 9a). The mRNA levels
of KLB was also decreased in the patients (Fig. 9a) with decreased
p-ERK levels, suggesting impaired FGF21 signaling18,29,30

(Fig. 9b). Protein levels of JMJD3, TFEB, ATG7, ULK1, LC3-II,
and p-ERK, detected by IB of liver extracts (Fig. 9b) or IHC of
liver sections (Fig. 9c), were decreased in the patients. While these
results in humans are only correlative and do not necessarily link
a defective FGF21-JMJD3 axis with defective autophagy in the
patients, these findings are consistent with results in obese mice
(Figs. 7 and 8), suggesting that the FGF21-JMJD3-autophagy axis
is dysregulated in NAFLD.

Discussion
The present study shows that histone demethylase JMJD3 is a key
epigenetic activator of hepatic autophagy as part of a fasting-
induced FGF21-JMJD3 signaling axis in mice. Numerous
autophagy-network genes are induced by this axis under nutrient
deprivation, including autophagy components, ATG7, LC3, and
ULK1, autophagy gene activators, TFEB and Pgc-1α7, a lipase for
autophagy-mediated lipid degradation, ATGL17, and expression
of JMJD3 and FGF21, so that this axis likely has a major impact
on autophagy. Since JMJD3 is conserved in many organisms13,14,
including plants, yeast, C. elegans, mice, and humans, JMJD3-
mediated epigenetic induction of autophagy might be a common
adaptive mechanism for cellular survival and the maintenance of
energy balance when nutrient deprivation persists.

Defective autophagy contributes to abnormal accumulation of
hepatic TG and to fatty liver5,6 but the underlying mechanisms
are not clearly understood. In this study, we identify a signaling
mechanism by which JMJD3 promotes autophagy, including
lipophagy, mediated by the fasting-induced hepatokine, FGF21.
Impaired autophagy in FGF21-LKO mice strongly suggests that
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hepatic FGF21-induced physiologically during fasting can activate
autophagy in an autocrine/paracrine manner. Remarkably,
FGF21-mediated increases in autophagy and decreases in hepatic
TG levels in mice were markedly attenuated by downregulation of
hepatic JMJD3. Furthermore, JMJD3-mediated decreases in

hepatic TG levels were largely abolished by liver-specific down-
regulation of ATG7 in mice, suggesting the critical role of func-
tional autophagy in regulation of lipid levels by JMJD3. Recently,
JMJD3 was shown to promote browning of white adipose tissue
upon cold exposure, thereby increasing energy expenditure33. It
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will be, thus, interesting to see whether JMJD3 is also activated in
adipocytes by fasting-induced FGF21 signaling to regulate energy
balance as is the case in the liver.

Nutrient deprivation in the liver promotes hydrolysis of TG
from lipid droplets to supply free fatty acids for mitochondrial β-
oxidation for energy production and substrates for ketone body
formation. Recently, we have shown that JMJD3, together with
the fasting-sensing factors, SIRT1 and PPARα, promotes fatty
acid β-oxidation, and that liver-specific downregulation of JMJD3
led to fatty liver and glucose intolerance15. In the present study,
we further show that JMJD3 promotes autophagy-mediated lipid
degradation and that JMJD3 is important for FGF21-mediated
beneficial effects on decreased liver TG levels and improved
autophagy in obese mice. These findings, together, identify
JMJD3 as a key epigenetic activator mediating hepatic fasting
responses by inducing transcription of hepatic network genes
involved in autophagy-mediated lipolysis and fatty acid β-
oxidation to maintain energy balance.

Despite extensive studies on FGF2118,19, intracellular signaling
mechanisms by which the FGF21 signal is transformed to epi-
genetic regulation of genes is poorly understood. The present
study reveals that FGF21-activated PKA mediates the phos-
phorylation of JMJD3, which is important for its nuclear locali-
zation and activation of autophagy genes. In recent
phosphoproteome studies in adipocytes, FGF21 treatment
increased phosphorylation of numerous kinases in addition to
ERK1/2, including PKA34, which supports our conclusion that
PKA is a mediator of the FGF21-JMJD3-autophagy axis. Our
studies in vivo, hepatocytes, and in vitro provide strong evidence
that PKA-mediated phosphorylation of JMJD3 at Thr-1044 in
response to FGF21 acts as a key epigenetic switch to activate
JMJD3, which results in induction of autophagy genes by
demethylation of histone H3K27-me3 (Model, Fig. 9d). The cri-
tical role of PKA in mediating the FGF21-JMJD3-autophagy axis
was surprising since FGF21 signaling is usually through the ERK
pathway18,19. Further, we observed that inhibition of ERK, like
PKA, also blocked FGF21-mediated autophagy (Supplementary
Fig. 11), but not phosphorylation of JMJD3 (Fig. 6i), suggesting
that ERK either acts downstream of PKA or independently of
PKA/JMJD3. Further studies will be required to fully understand
the interaction between PKA and ERK in response to
FGF21 signaling.

There is increasing evidence that the cellular response to
nutrient deficiency involves intriguing feed-forward auto-
regulatory loops. Upon nutrient deprivation, TFEB, a key tran-
scriptional activator of autophagy, increases expression of Tfeb
itself and also of Pgc-1α and Pparα, transcriptional activators of
Tfeb7. Recently, JMJD3, together with SIRT1 and PPARα, was
shown to form a positive autoregulatory loop upon fasting, and
induces hepatic expression of their own genes, as well as, that of
Fgf2115. In the present study, we further show that FGF21 acti-
vates JMJD3 via phosphorylation and in turn, this FGF21-
activated JMJD3 induces expression of Fgf21. JMJD3 also epi-
genetically upregulates expression of its own gene and gene
activators of autophagy, Tfeb, Pgc-1α, Sirt1, and Pparα. Thus,
fasting triggers a positive feed-forward loop for autophagy
induction wherein key components of the loop, including Jmjd3,
Fgf21, Tfeb, and Pparα, positively regulate expression of each
other to reinforce and amplify cellular responses to the fasting
signal in the liver.

Circulating FGF21 levels are elevated in NAFLD patients18,29,30,
suggestive of FGF21 resistance in obesity and defective autophagy
has been implicated in the development and pathogenesis of
NAFLD5,6,31. In the current study, we observed that hepatic
expression of the FGF21 coreceptor35, KLB, is reduced in human
NAFLD patients, as well as in obese mice, consistent with

decreased FGF21 signaling. Remarkably, in vivo rescue of KLB
expression in obese mice restored p-ERK and p-PKA levels,
indicative of improved responsiveness to FGF21 signaling, and
increased hepatic autophagy. We also observed that hepatic
expression of autophagy components, ATG7, ULK1, and LC3-II,
as well as autophagy gene activators, JMJD3 and TFEB, and p-
ERK levels are decreased in NAFLD patients. Although correla-
tive, these results suggest that a defective FGF21-JMJD3 axis may
contribute to decreased autophagy flux in these patients, which
has been reported previously34. Additional studies in humans will
be required to determine whether there is a causal link between
decreased FGF21 signaling and JMJD3 levels and decreased
expression of autophagy genes and development of fatty liver in
the patients.

Autophagy was shown to improve health and extend
longevity36,37. Intriguingly, both JMJD3 and FGF21 extend life
span in mice14,38, which potentially could be a result of their
effects on promoting autophagy as shown in this study. Con-
versely, defective autophagy has been implicated in many diseases
and aging36,37. Small molecule modulators targeting autophagy
have been extensively studied as possible pharmacological agents
for treatment of human diseases39,40. In this study, FGF21-
induced phosphorylation of JMJD3 at Thr-1044 was important
for induction of genes involved in hepatic autophagy and lipid
degradation. Notably, such epigenetic regulators like JMJD3 often
act in a gene-specific manner15 and posttranslational modifica-
tions of gene regulatory proteins may also modulate transcrip-
tional outcomes in a gene-selective manner16,41,42. FGF21 signal-
induced phosphorylation of JMJD3 at a single residue, Thr-1044,
may, thus, provide a highly specific therapeutic option for treat-
ment of NAFLD and other diseases associated with autophagy
dysfunction.

Methods
Materials and reagents. Information on antibodies is provided in Supplemental
Table 1. Rapamycin, bafilomycin A1, WY14643, oleic acid, and inhibitors of ERK
and PKA were purchased from Sigma Inc, ON-TARGETplus mouse siRNAs for
PPARα (J-040740), CREB1 (J-040959), FOXO1 (J-041127), FGF21 (M-063178-01-
0005), and JMJD3 (J-063799) from Dharmacon, Inc, adenoviruses for JMJD3 and
shRNA for ATG7 and KLB AAV viruses from Vector Builder, and AAV-TBG-Cre
from Vector Biolabs.

Animal experiments. For liver-specific downregulation of JMJD3, 8-week-old
male JMJD3-floxed mice15 were injected with AAV-TBG-Cre or -GFP (1.0 to 2.0 ×
1011 active viral particles), and 12 weeks later the mice were fasted overnight or
injected with FGF21 (0.1 mg/kg) 3 h before killing. For adenoviral expression of
JMJD3, C57BL/6 mice were injected with Ad-GFP (control) or Ad-JMJD3 (0.5 to
1.0 × 109 active viral particles) 4 weeks before killing. For hepatic expression of
JMJD3 or shRNA for ATG7, C57BL/6 male mice were injected with Ad-JMJD3 or
Ad-shATG7 for 4 weeks before killing. PPARα-KO (Jackson Lab) and FGF21-LKO
mice22 were fasted for 24 h or fed with normal chow. For hepatic downregulation
of JMJD3 in obese mice, male JMJD3-floxed mice fed a HFD (60% fat; Research
Diets) for 4 weeks were injected with AAV-TBG-Cre or -GFP and administrated
FGF21 (5 mg/kg, i.v.) once every 2 days for 4 weeks as reported26. For GTT,
mice were fasted overnight and injected i.p. with 2 g/kg glucose, and blood glucose
levels were measured using an Accu-Chek Aviva Glucometer (Roche), and liver
TG levels were measured using a Kit (Abcam, ab65336). The metabolic rate was
measured by indirect calorimetry using the Comprehensive Lab Animal Mon-
itoring System (Columbus Instruments). Mice were housed individually and
maintained at 23 °C with 12 h light/dark cycles. Food and water were available ad
libitum and O2 consumption and CO2 production were measured. All animal use
and viral protocols were approved by Institutional Animal Use and Care and
Biosafety Committees at the University of Illinois at Urbana-Champaign (UIUC).

Metabolomic analysis. For measuring acylcarnitine levels, liver samples (5 mg)
were mixed with 500 μl of 90% of acetonitrile, sonicated for 10 s, and placed on ice
for 20 min. After centrifugation at 14,000 rpm for 10 min, 100 μl of the supernatant
was collected, and then, analyzed by using the Q-Exactive MS system (Thermo
Fisher Scientific). Software Xcalibur 4.1.31.9 was used for data acquisition and
analysis. The samples (15 μl) were injected into a Dionex Ultimate 3000 series
HPLC system instrument in an isocratic flow (0.35 mL/min; 50% methanol in
water with 0.1 % formic acid). Mass spectra were acquired under positive ESI
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(sheath gas flow rate, 49; aux gas flow rate: 12; sweep gas flow rate, 2; spray voltage,
3.5 kV; capillary temp, 259 °C; Aux gas heater temp, 419 °C) and the AGC target
was 1E6 with a maximum injection time of 50 ms. The acylcarnitines were iden-
tified by the accurate mass. For measuring serum β-hydroxybutyrate level, 150 μl of
acetonitrile was added to 50 μl of blood. Samples were vortexed, centrifuged at
14,000 rpm at 4 °C for 10 min, 100 μl of supernatant was transferred into a glass
vial and derivatized by adding 50 μl of N-Trimethylsilyl-N-methyl tri-
fluoroacetamide+ 1% trimethylchlorosilane (Thermo Fischer Scientific) for 1 h at
50 °C, and then, injected into the GC-MS system consisting of Agilent 7890B gas
chromatography and an Agilent 5977 A MSD. Separation performed on a ZB-5MS
capillary column (Phenomenex). A constant flow rate of 2 ml/min for the helium
carrier gas was maintained at 70 °C for 5 min, followed by increases of 5 °C/min to
120 °C, then 40 °C/min to 300 °C for 5 min. The mass spectrometer operated in
positive electron impact mode at 69.9 eV ionization energy at m/z 33–600 scan
range. Samples were analyzed in combined scan/SIM mode (m/z 233). β-
hydroxybutyrate identification was performed using the mass spectra obtained
from the authentic standards (Sigma-Aldrich) and additionally confirmed with
NIST08 and W8N08 libraries (John Wiley & Sons, Inc.). A calibration curve was
generated for the 10-0.15 mM concentration range. Quantitation was performed
using Mass Hunter Quantitative Analysis B.08.00 (Agilent Inc.) software. LC-MS
and GC-MS analyses were performed in the Metabolomics Laboratory of Roy J.
Carver Biotechnology Center, University of Illinois at Urbana-Champaign.

RNA-seq. JMJD3 was downregulated by infection of JMJD3-floxed mice with
AAV-TBG-Cre, and controls were injected with AAV-GFP. The mRNAs from
livers of fasted mice (n= 3/group) were prepared using the RNeasy mini prep kit
(Qiagen). The cDNA libraries were sequenced using an Illumina HiSeq2000
(Illumina, San Diego, CA) to produce paired-end 100 bp reads. One library of reads
per biological sample was examined for sequencing errors prior to mapping.
Sequencing alignment was performed by STAR ver 2.5.0a. Gene ontology analysis
was performed using the program DAVID.

ChIP-seq. JMJD3-floxed mice were infected with AAV-TBG-Cre or AAV-GFP for
3 months and fasted for 16 h (n= 2/group). The precleared liver chromatin
samples were immunoprecipitated with H3K27-me3 antibody, chromatin was
eluted, and DNA was isolated. Samples containing 18 ng of DNA were used for
genomic sequencing (Biotechnology Center, UIUC). Raw sequencing reads were
processed using the AQUAS pipeline (https://github.com/kundajelab/chipseq_
pipeline, git commit version id: 910ba91b9e9ba51f51497b39134c8e737a5184a5),
which is based on the ENCODE (phase-3) histone ChIP-seq pipeline specifications.
The project-specific parameters used were ‘-type histone -species mm10 –use_
pooled_ctl’. Specifically, reads were mapped to the mouse reference genome
(mm10) using bwa (version 0.7.13). Post-alignment filtering was done by Samtools
(version 1.2) and Picard (version 1.126). Peak calling was done by MACS (version
2.1.0). The final overlapped peaks across replicates were determined as the H3K27-
me3 enriched regions. Mouse gene annotation (refGene) for mm10 was down-
loaded from the UCSC Genome Browser. GO analysis was performed using
DAVID (david.abcc.ncifcrf.gov).

Mass spectrometry. Flag-mouse JMJD3 was expressed in PMH and 48 h later,
the cells were treated with 5 µM MG132 for 4 h and then, treated with FGF21
(100 ng/ml) for 30 min. Flag-JMJD3 was purified by binding to M2 agarose, the
beads were washed 10 times with IP buffer, and the bound proteins were analyzed
by LC-MS/MS. Mass spec analyses were carried out using a Thermo LTQ Fusion
Orbitrap connected to a Thermo Dionex 3000 nano RSLC. Chromatography was
accomplished using a 15-cm Thermo Acclaim PepMap 100 C-18 column with
mobile phase of 0.1% FA in water (A) and acetonitrile with 0.1% FA (B) at a flow
rate of 300 nl/min and temperature at 40 °C. Peptides were eluted from 5% B to
60% B in 60 min. The mass spectrometer was operating in the data dependent
mode, and precursor scans from 300 to 1500 m/z (120,000 resolution) were fol-
lowed by collision (35% NCE, 1.6 m/z isolation window, 60 s exclusion window).
Raw data were analyzed by in house Mascot Server (version 2.5.1) against the
NCBIProt Mus musculus database 0829 (1 September 2019) containing
150,813 sequences. Search parameters were: peptide mass tolerance 10 ppm; frag-
ment tolerance 0.6 Da; cleavage agent was trypsin; miscleaves 2,3,4; variable
modifications were set for Acetyl (Protein-term), Oxidation (M), Phospho (ST),
Phospho (Y); FDR 1%. Protein identification and PTM cutoff were set for p < 0.05.
The p value for the identification and characterization of the phosphorylated
JMJD3 peptide was calculated using Mascot43 (Matrix Science (London, UK),
which uses probability based scoring.

Transmission electron microscopy. Mouse liver samples were fixed in Kar-
novsky’s fixative and with 2% osmium tetroxide followed by the addition of 3%
potassium ferricyanide for 30 min. After washing with water, samples were stained
with uranyl acetate, dehydrated with ethanol, and the sample was embedded in
epoxy using the Epon substitute Lx112. Ultrathin sections were stained with uranyl
acetate and lead citrate, and imaged with a Hitachi H600 transmission electron
microscopy (TEM).

Immunofluorescence. Hepa1c1c7 cells were transfected with expression plasmids
for GFP-LC3 and JMJD3 and 48 h later were incubated in complete media or HBSS
for 2 h. Lipids were stained with BODIPY and counterstained with DAPI and were
detected by confocal microscopy. For IHC, proteins in mouse liver were detected
using an HRP/DAB kit (ab64261, Abcam). Nuclei were stained with hematoxylin,
and samples were imaged with a Nanozoomer (Hamamatzu). Liver tissue was
frozen in OCT compound, sectioned, and stained with H&E and Oil Red O.

ChIP, re-ChIP, and CoIP. Liver tissue was minced, washed twice in PBS, and then
incubated with 1% formaldehyde for 10 min at 37 °C. Glycine was added to
125 mM for 5 min at room temperature. Chromatin solutions in sonication buffer
(50 mM Tris-HCl, pH 8.0, 2 mM EDTA, and 1% SDS) were sonicated four times
with 10 s intervals using a QSonica XL-2000 instrument at power output setting 8.
Then, chromatin sample was precleared and chromatin was immunoprecipitated
using 1–2 µg of antibody or IgG. The immune complexes were collected by
incubation with a Protein G Sepharose slurry for 1 h, washing with 0.1% SDS,
1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl, pH 8.0, three times containing
successively 150 mM NaCl, 500 mM NaCl, or 0.25 M LiCl, and then eluted and
incubated overnight at 65 °C to reverse the crosslinking. DNA was isolated for
qPCR. For re-ChIP, chromatin samples were immunoprecipitated with the first
antibody, the beads were washed, chromatin was eluted with 10 mM DTT, diluted
20X with 20 mM Tris-HCl, pH 8.0, 150 mM NaCl, 2 mM EDTA, 1% Triton X-100,
and immunoprecipitated with the second antibody. Sequences of primers used for
the qPCR are in Supplementary Table 2. For CoIP, cell extracts were prepared by
brief sonication in CoIP buffer (50 mM Tris–HCl, pH 8.0, 150 mM NaCl, 2 mM
EDTA, 0.5% NP‐40, 5% glycerol). The samples were incubated with 1-2 μg of
antibodies for 3 h and 30 μl of a 25% protein G agarose slurry was added. One hour
later, beads were washed with CoIP buffer three times and bound proteins were
detected by IB.

Cell culture. Primary mouse hepatocytes (PMH) were isolated by collagenase
(0.8 mg/ml, Sigma, Inc) perfusion through the portal vein of mice anesthetized with
isoflurane. Hepatocytes were filtered through a cell strainer (100 µm nylon, BD),
washed with M199 medium, resuspended in M199 medium, centrifuged through
45% Percoll (Sigma, Inc.), and cultured in M199 medium containing 10% FBS.
Hepa1c1c7 and HepG2 cells were cultured in DMEM containing 10% FBS.

Luciferase reporter assays. DNA fragments near Tfeb and Atg7 that contained
PPARα peaks9 were amplified by PCR from mouse genomic DNA and cloned into
the pGL3-basic vector (Promega). The DR1 motifs were mutated using site-
directed mutagenesis (Agilent Tech). Hepa1c1c7 cells were transfected with indi-
cated plasmids and luciferase activities were normalized to β-galactosidase
activities.

Nuclear localization studies. Nuclear and cytoplasmic fractions of the PMH cells
were isolated using NE-PER Nuclear and Cytoplasmic Extraction Reagents
(Thermo-Fisher Scientific Inc.) and the proteins were detected by IB. Cytoplasmic
GAPDH and nuclear LAMIN-A were detected to assess the quality of the frac-
tionation. For imaging studies, Hepa1c1c7 cells were fixed with 4% paraf-
ormaldehyde, permeabilized with PBS containing 3% BSA, 0.1% Triton X-100,
incubated with M2 antibody for 2 h, washed and incubated with Alexa Fluor 488-
conjugated donkey anti-mouse IgG for 1 h. Nuclei were stained with Hoechst
33,258 and imaged by confocal microscopy (Zeiss, LSM700).

In vitro kinase assay. Flag-JMJD3 proteins expressed in HepG2 cells were isolated
by M2-agarose, the beads were washed with the lysis buffer and with kinase buffer
(50 mM Tris-HCl, pH 7.5, 10 mM MgCl2, 1 mM DTT). Flag-proteins bound to
M2-agarose were incubated with 20 μM ATP and 20 ng of PKA (Biorbyt) or ERK1/
2 (MyBiosource) in kinase buffer at 30 °C for 30 min, and JMJD3 phosphorylation
at Thr was detected by IB.

GST pull down assay. Bacterially expressed and affinity purified GST-JMJD3
proteins15 were incubated with Pka or ERK1/2, and bound proteins were
detected by IB.

Quantification of mRNA. RNA was isolated from liver and quantified by q-
RTPCR, normalized to 36b4 mRNA. Primer sequences are in Supplementary
Table 2.

NAFLD patient study. Liver specimens from 15 unidentifiable normal individuals
or steatosis or severe NASH-fibrosis patients were obtained from the Liver Tissue
Procurement and Distribution System that operates under a contract from the
National Institutes of Health. Because the specimens or data were not collected
specifically for this study and no one on our study team has access to the subject
identifiers linked to the specimens or data, this study is not considered human
subjects research and ethical approval was not required (See §46.104 in Part 46—
Protection Of Human Subjects in the Electronic Code of Federal Regulations at the

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-14384-z ARTICLE

NATURE COMMUNICATIONS |          (2020) 11:807 | https://doi.org/10.1038/s41467-020-14384-z | www.nature.com/naturecommunications 13

https://github.com/kundajelab/chipseq_pipeline
https://github.com/kundajelab/chipseq_pipeline
https://david.abcc.ncifcrf.gov
www.nature.com/naturecommunications
www.nature.com/naturecommunications


following link: https://www.ecfr.gov/cgi-bin/retrieveECFR?gp=
&SID=83cd09e1c0f5c6937cd9d7513160fc3f&pitd=20180719&n=pt45.1.46&r=-
PART&ty=HTML#se45.1.46_1104). Protein levels were detected by IB and IHC
and mRNA levels were quantified by q-RTPCR.

Statistical analyses. GraphPad Prism 6 (GraphPad software version 6.01) was
used for data analysis. Statistical significance was determined by the
Mann–Whitney test or one- or two-way ANOVA with the Bonferroni post-test for
single or multiple comparisons as appropriate. Whenever relevant, the assumptions
of normality were verified using the Shapiro–Wilk test, Kolmogorov-Smirnov test
and the D’agostino-Pearson omnibus test. P-values < 0.05 were considered as sta-
tistically significant.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request. The RNA-seq and ChIP-seq data are deposited in the
GEO database with the Accession Numbers GSE137555 [https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE137555] and GSE138157 [https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE138157], respectively. The mass spectrometry proteomics data
have been deposited to the ProteomeXchange Consortium via the PRIDE partner
repository (http://www.ebi.ac.uk/pride) with the dataset identifier PXD015672. The
source data underlying Figs. 1a, e–g, 2a–e, g, 3a–h, 4a–f, 5b–g, 6b, d–I, 7a–h, 8a–c, and
9a, b and Supplementary Figs. 1a–c, 3a–f, 5, 6a–c, 7a, c–f, 8b–g, 9b, c, 10, and 11 are
provided as a Source Data file.
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