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Abstract: Information gathering (IG) algorithms aim to intelligently select the mobile robotic sensor
actions required to efficiently obtain an accurate reconstruction of a physical process, such as an
occupancy map, a wind field, or a magnetic field. Recently, multiple IG algorithms that benefit
from multi-robot cooperation have been proposed in the literature. Most of these algorithms employ
discretization of the state and action spaces, which makes them computationally intractable for
robotic systems with complex dynamics. Moreover, they cannot deal with inter-robot restrictions
such as collision avoidance or communication constraints. This paper presents a novel approach
for multi-robot information gathering (MR-IG) that tackles the two aforementioned restrictions:
(i) discretization of robot’s state space, and (ii) dealing with inter-robot constraints. Here we
propose an algorithm that employs: (i) an underlying model of the physical process of interest, (ii)
sampling-based planners to plan paths in a continuous domain, and (iii) a distributed decision-making
algorithm to enable multi-robot coordination. In particular, we use the max-sum algorithm for
distributed decision-making by defining an information-theoretic utility function. This function
maximizes IG, while fulfilling inter-robot communication and collision avoidance constraints.
We validate our proposed approach in simulations, and in a field experiment where three quadcopters
explore a simulated wind field. Results demonstrate the effectiveness and scalability with respect to
the number of robots of our approach.

Keywords: robotics; distributed multi-agent systems; information gathering; Gaussian processes

1. Introduction

Information gathering (IG) is a key task in many robotic applications such as, e.g., magnetic
field mapping [1], environmental monitoring [2], or wind field mapping [3]. The IG task can clearly
benefit from distributed multi-robot coordination strategies: First, by means of parallelization, as tasks
could be split between robots, and second, in terms of robustness, as tasks of a faulty robot could be
overtaken by the rest of the team.

A common approach often used in the literature to solve multi-robot information gathering
(MR-IG) tasks is to use an underlying model of the physical process under study that, together with
an information-theoretic metric, is employed to predict the impact of certain robot actions and states
(see, e.g., [1,4]). In particular, in this work we assume Gaussian processes (GPs) for regression [5] as
underlying model, and mutual information (MI) [6] as information metric.
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GPs are state-of-the-art models to represent spatio-temporal fields [1–3,5]. Furthermore, the use
of GPs together with MI has been shown to significantly outperform former MR-IG algorithms [7,8].
However, most state-of-the-art algorithms employ discretization of the robots state and action spaces,
and do not take into account robots’ dynamics. This makes such strategies computationally intractable
for robotic systems with complex dynamics, like, e.g., an aircraft. This limits the applicability of
state-of-the-art algorithms to a reduced class of "simple" robots. In addition, most MR-IG algorithms do
not take into account inter-robot constraints like, e.g., inter-robot collision avoidance or communication
constraints. Such limitations preclude state-of-the-art algorithms to be transferred from simulations to
real world experiments.

In this paper we propose an algorithm that tackles the two aforementioned issues: generality of
the strategies, and handling of inter-robot constraints. Our algorithm consists of two major blocks.
First, we use rapidly-exploring random trees (RRT) to design an algorithm that can be generalized
to multiple classes of robots, as RRT is a state-of-the-art strategy to plan paths in continuous high
dimensional spaces. Second, we employ distributed constraint optimization (DCOP) techniques
to handle inter-robot constraints in a distributed fashion. In particular, we employ Max-sum
for multi-robot coordination [9]. Max-sum, in contrast to other DCOP techniques (see [9] for an
overview), makes efficient use of the computational and communication resources. In addition, it
offers approximate solutions that are close to optimal for many applications of interest like, e.g.,
exploration, or tracking [4], as well as a solution for cooperative games [10] that can be also used to
model multi-robot cooperation for IG tasks [11].

In this paper, we build on RRT and max-sum, together with GPs and MI, to derive a novel
active perception strategy that allows multiple robots to autonomously gather information of a
physical process of interest. Specifically, in opposition to state-of-the-art strategies (see Section 2), our
proposed strategy is able (i) to account for robots with complex dynamics that operate in a continuous
environment; (ii) to solve an IG task in a distributed fashion with local inter-robot communication; and
(iii) to incorporate spatial and temporal inter-robot constraints.

We evaluate our approach in simulations where multiple aerial vehicles, which are subject to
collision avoidance and communication constraints, cooperate to map a wind field. In addition, we
carry out an outdoor field experiment where a fleet of three aerial robots explore a simulated wind
field. Results of the experiment demonstrate the effectiveness, as well as the online realization of
the algorithm.

Let us also point out that the work presented here is largely based on our previous publication [12],
yet it extends the latter in several important respects. In particular,

• We introduce a discussion on state-of-the-art information metrics for IG. This discussion allows
us to motivate and proof, empirically through simulations, our specific choice.

• We introduce algorithmic approximations that permit an online realization of our algorithm.
In addition, we present a detailed analysis of our algorithm’s computational complexity.

• We include an inter-robot collision avoidance constraint that permits collision-free IG.
• We extend the simulations setup from four to up to eight robots. This allows us to show the

algorithm’s scalability as the number of robots increases.
• We analyze in detail the effect of algorithm parameters in the algorithm’s performance.
• We provide a full description of the experimental setup, and additional experimental results.

The remainder of the paper is organized as follows. First, we review the related work in Section 2.
Then we state the problem formally in Section 3. Next we introduce in Section 4 the methods in which
our algorithm builds. Our algorithm relies on an information metric to decide robots’ action. Therefore,
we include in Section 5 a discussion about the suitability of several information metrics for our specific
problem. This is followed in Sections 6 and 7 by a detailed explanation of the different subsystems that
compose our system, and an assessment of the algorithm’s computational complexity, respectively.
Then we test the algorithm in simulations in Section 8, and verify in Section 9 its performance with a
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field experiment in which three quadcopters explore an unknown simulated wind field. We finalize
with a summary and outlook of the paper in Section 10.

2. Related Work

Multi-robot IG is a topic that has attracted lots of interest in the last years, and many strategies
have been proposed recently. Here we focus on model-based strategies that use GPs as underlying
model of a process of interest. In [6] the authors present a multi-robot exploration algorithm that
exploits the properties of GPs as underlying model and of MI as information metric. By leveraging the
submodularity property of MI, the authors derive a sequential greedy algorithm that offers worst case
guaranties. However, the algorithm proposed in [6] is centralized, as it requires robots to have access
to information from the complete team.

A solution that goes beyond a centralized architecture was proposed in [13], where the authors
propose a strategy that is semi-decentralized. That is, the algorithm combines a centralized and a
decentralized processing: On the one hand, a master robot selects a set of observation points that
maximize a joint entropy. On the other hand, robots perform data fusion in a decentralized fashion.

In contrast to [6,13], here we argue for the use of a decentralized architecture to decide robots
movement. Multiple works proposed decentralized IG methods with GPs; see, e.g., [1,4,13,14].
The previous techniques [1,4,13,14] employ a discretization of the robot state and action spaces and
search-based planning algorithms for exploration. Thus, they cannot consider kinematic constraints
associated to the robot motion for non-holonomic vehicles, like fixed-wing aircrafts.

Informative path planning techniques typically encompass algorithms that aim to plan a path
which is both feasible, given a robot’s dynamical constraints, and optimal with respect to some
information quality metric. Single-robot approaches for informative path planning in continuous
spaces have been proposed in [15–20]. However there is little work in the literature that propose
multi-robot informative path planning algorithms. In [17] the authors present a multi-robot
sampling-based informative path planner. However, [17] is limited to the particular case of tracking
applications. In [21] a multi-robot information gathering method is proposed, which is also designed
for tracking applications.

Extending the informative path planning problem to multi-robot settings involves two key tasks.
First, robots must be able to cooperate to maximize the fleet’s information gain. Furthermore, robots
must be able to handle mission-specific spatio-temporal inter-robot constraints. To tackle the two
aforementioned tasks, [8] and [22] divide the problem in task and path planning. In particular, [8]
and [22] consider at task level GPs and a MI utility function to determine informative points to be
visited in a multi-robot exploration scenario. Then, paths are planned towards those points in a
centralized way. In contrast, we propose in this paper an algorithm that allows robots to plan paths in
a decentralized fashion using inter-robot local communication.

One fundamental aspect in multi-robot IG is how to handle inter-robot spatio-temporal constraints.
In [23] the authors propose a method to handle such constraints for a target search problem. Specifically,
they employ the augmented Lagrangian method for the multi-robot cooperation. The use of the
Lagrangian methods typically requires constraints and the objective function, which guides robots
movement, to be differentiable. This limits the applicability of the algorithm to a selected class of
objective functions and constraints, and limits the generality of the algorithm. On the contrary, this
paper presents a method that is able to incorporate a large class of objective functions; the only
requirement is that the global objective function can be expressed as the sum of the individual objective
functions of each of the agents. To this end, we employ the max-sum algorithm from [24], and
extend it to allow exploration in a continuous space for robots with kinematic, kinodynamic and
spatial-temporal constraints.
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3. Problem Statement

We consider here a problem of exploring an a priori unknown physical process with N cooperative
robots autonomously and as accurately as possible, in the sense of minimizing the Root Mean Squared
Error (RMSE) between a process estimate (given by a GP model) and the (unknown) ground truth.
Additionally, exploration should be efficient, in the sense of minimizing the RMSE as fast as possible,
provided the (i) available resources, and (ii) complex constraints such as inter-robot collision avoidance
and communication constraints.

To achieve this, we make a few simplifying assumptions. Specifically, we assume the following:

1. The physical process of interest can be modeled with a GP sufficiently well.
2. This process is time-invariant during the IG task.
3. The robot positions are known exactly and are noise-free. That is, we assume that there exists an

external positioning system that provides us with a highly accurate localization, e.g., a Real-Time
Kinematic navigation for global positioning systems (GPS-RTK) for outdoor scenarios, or a motion
tracking system for indoor environments. Uncertainty in positioning could also be accounted for
using GPs [25], but it is out of the scope of this work.

Additionally, our problem is subject to the following physical constraints:

4. The robot i, with i = 1, ..., N, motion model is given by a known function xi(t + ∆t) = f(xi(t), ui)

that relates the robot’s current position xi(t) and future position xi(t + ∆t) given a control input
ui, where ∆t is the duration of a single time step.

5. Robots can only directly communicate if they are neighbors, i.e. if they are separated by less
than a distance rc. This defines a robots communication graph Gc(Vt, Et) at time t, with Vt =

{x1(t), ..., xN(t)}, and Et =
{
(xi(t), xj(t)) : i, j ∈ {1, ..., N}, i 6= j, ||xi(t)− xj(t)|| ≤ rc

}
. We also

assume that there exists an underlying communication protocol, like, e.g., TCP/IP, which ensures
an error-free data transmission.

Furthermore, robots must fulfill the following mission-related constraints:

6. Inter-robot collision avoidance : two robots collide if they are separated less than a distance rs.
Distance rs shall take into account robots’ shape, as well as the potential uncertainty in robot
positions.

7. Network connectivity : the network of robots requires a periodic connectivity, with a maximum
disconnection time of kc∆t seconds, where kc is a constant that denotes a number of time steps.

Let us now introduce some notation that we will use in the remainder of the paper. The position of
robot i will be denoted by xi(t) ∈ X f ree, where X f ree ∈ Rds corresponds to the free space in the robot’s
configuration space, with ds being the dimensionality of the environment in which a process of interest
takes place. The physical process at position x ∈ X f ree is denoted as y(x) ∈ R. Typically, however,
a process is not observed directly, but is measured using some sensors. Here we assume a simple sensor
model that represents a measured process as z(x) = y(x) + ε(x), where z(x) is a process sample, y(x)
is the unobserved true process value, and ε(x) is a random noise. In the following we will assume that,
for different measurements, noise samples ε(x) are independent and identically distributed according
to N (0, σ2

n); i.e., they follow a Gaussian distribution with zero mean and variance σ2
n .

The afore-described problem requires an infinite number of steps to be completed, which
corresponds to an infinite horizon IG task. However, for the sake of computational feasibility, a common
approach in IG is to divide an infinite horizon problem into multiple finite horizon problems that can
be solved individually and sequentially. In particular, here we assume an horizon of kc time steps.
That is, every kc time steps robots solve an IG problem to find a set of paths P = {P1, ...,PN}, with
Pi ⊂ X f ree, i = 1, ..., N, which maximizes a global utility function UI(·, ·). The utility function UI(P , X)
depends on the paths P , and on measurements already gathered by robots at positions contained in
matrix X ⊂ X f ree. Additionally, robots must fulfill physical and mission related-constraints. Once
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robots find a solution to the finite horizon IG problem, robots follow Pi while taking measurements
along it, and repeat the procedure again.

More formally, in this paper we propose an approximate solution to the following finite
horizon problem:

maximize
P

UI(P , X)

subject to Pi = {xi(t + dt), ..., xi(t + kcdt)}
xi(t + ktdt) = f(xi(t + (kt − 1)dt), ui),

||xi(t + ktdt)− xj(t + ktdt)||22 ≥ rs,

Gc(Vt+kcdt, Et+kcdt) is connected.

(1)

with kt = 1, ..., kc, i, j = 1, ..., N and i 6= j, and Pi ⊂ P .
To solve problem (1) we build on three main methods: GPs, RRT, and max-sum algorithm. Next

we give an overview of the three methods.

4. Background

4.1. Gaussian Processes for Modelling Spatial Data

A GP is a collection of random variables, any finite number of which have a joint multivariate
Gaussian distribution [5]. A GP is defined by m(x), the mean function, and by k(x, x′, θ), the covariance
function, over positions x, x′. Here we assume a zero mean prior function m(x), which implies an
absence of a priori known values of the process. The covariance function depends on hyperparameters
θ. We use the squared exponential (SE) [5] covariance function due to its capacity to model smooth
processes. This function is determined by hyperparameters θ = [σ2

f , l, σ2
n ]

T , being l the characteristic
length-scale (informally, "how close" two positions x and x′ have to be to influence each other
significantly); σ2

f represents the maximum allowable covariance; and σ2
n is the variance of the noise

fluctuations [5].
We use the following definitions: X = [x[1], x[2], · · · , x[n]]T is a matrix where each row corresponds

to a spatial location where a robot has gathered a measurement. Vector z = [z[1], z[2], · · · , z[n]]T stores
the corresponding measurements. And in matrix X∗ = [x[1]∗ , x[2]∗ , · · · , x[p]∗ ]T each row is a “probe”
location – points in space where we predict the process value using the GP model. In this paper,
“probe” locations correspond to points where robots aim to potentially take a measurement. Moreover,
we define matrices K, K∗, K∗∗ from the covariance function k(x, x′, θ) as follows:

K =


k(x[1] , x[1]) · · · k(x[1] , x[n])

...
. . .

...
k(x[n] , x[1]) · · · k(x[n] , x[n])

 , K∗ =


k(x[1] , x[1]∗ ) · · · k(x[1] , x[p]∗ )

...
. . .

...
k(x[n] , x[1]∗ ) · · · k(x[n] , x[p]∗ )

 , K∗∗ =


k(x[1]∗ , x[1]∗ ) · · · k(x[1]∗ , x[p]∗ )

...
. . .

...
k(x[p]∗ , x[1]∗ ) · · · k(x[p]∗ , x[p]∗ )

 . (2)

Let us emphasize that K, K∗, and K∗∗ are all functions of θ through k(·). We do not include this
dependency to simplify notation.

From measurements z at positions X, we can predict the process values y∗ at locations X∗ and
the associated uncertainties. Vector y∗ is a random vector with the following conditional distribution:
p(y∗|X∗, X, z) = N (µ∗, Σ∗), where µ∗ and Σ∗ are computed as (see [5] for more details):

µ∗ = m(X∗) + KT∗K−1(z−m(X)),

Σ∗ = K∗∗ −KT∗K−1K∗.
(3)
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Learning a GP model implies estimating the value of the hyperparameters θ∗ that best fit the
measurements z at locations X. This estimation is generally formulated as a maximum-likelihood
problem, where the log-marginal likelihood (LML) with respect to θ is maximized:

θ∗ = argmax
θ

{
−1

2
zTK−1z− 1

2
log |K|

}
. (4)

This is a nonlinear optimization problem that requires application of numerical optimization
techniques [5].

4.2. Rapidly Exploring Random Trees

The RRT algorithm allows robots to plan paths in complex high dimensional spaces [26]. The RRT
algorithm iteratively constructs a graph G(V , E) (tree) with a set of vertices V and edges E with the
goal of finding possible trajectories starting from a state xA.

The algorithm is realized as follows: It draws a sample xrand randomly from a uniform distribution
defined over X f ree. Then it finds the nearest neighbor xnearest (in terms of the cost-to-reach) of xrand in
the set of vertices V . Next it simulates driving the robot from xnearest to xrand according to the robot’s
controller. In particular, it drives the robot a maximum distance η, which is a user-selected parameter
that sets the maximum branch size. This results in a new state xnew. If trajectory E(xnearest, xnew) does
not collide with any obstacles, it adds vertex xnew and edge E(xnearest, xnew) to tree G. This process is
repeated during Np iterations.

4.3. Max-Sum Algorithm

Let us consider a team of N robots, where each robot i can control a decision variable Di that can
take values from domain Ci = {C [1]i , C [2]i , ..., C [ki ]

i }. In this paper, C [i
′ ]

i ⊂ Ci with i′ = 1, ..., ki consists of a
set of potential measurement locations that robot i could visit. We denote the set of variables for which
we aim to solve the assignment problem as D = {D1,D2, ...,DN}. For example, for a team of three
robots with identical domain size ki = 4 with i = 1, 2, 3, a possible assignment for the variables could
be D = {D1 : C [1]1 ; D2 : C [4]2 ; D3 : C [1]3 }.

In max-sum [9], the goal of the robots is to maximize a global utility function U(D) = ∑N
i=1 Ui(D̄i),

where Ui(D̄i) denotes utility function of robot i, and D̄i ⊂ D. For instance: coming back to the previous
three robots example, D̄1 = {D1,D2} implies that the utility of robot 1 depends on its own decision,
and on the decision of robot 2, but not on the one from robot 3. Within this setting, we wish to find the
optimal assignment D∗ such that U(D) is maximised: D∗ = argmax

D
∑N

i=1 Ui(D̄i).

Max-sum formulates this assignment problem as a factor graph [27]. A factor graph is a bi-partite
graph with two types of nodes: variables and factors. Edges in this graph represent the dependencies of
factors on variables. For instance, the factor graph in Figure 1 represents U(D) = U1(D̄1) + U2(D̄2) +

U3(D̄3), where D̄1 = {D1,D2}, D̄2 = {D1,D2,D3} and D̄3 = {D2,D3}.
Max-sum is a message passing algorithm on factor graphs. Messages are passed along the edges

of the factor graph in order to determine the variable values that maximise U(·). We distinguish
between two types of messages:

• Factor to variable message; denoted si→j. It is the maximum value of factor Ui for each possible
value of Dj.

• Variable to factor message; denoted qj→i. It is the maximum value of Ui neighboring factors for
each possible value of Dj.

For more details on the definition of messages we refer the reader to the original paper [9].
Provided the definitions of messages we can now summarize the execution of max-sum algorithm.
First, each of the robots arbitrarily initializes qj→i and sends it to its adjacent function nodes. This
triggers an exchange of messages between variable and utility function nodes. The messages exchange
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will continue until message values converge, or after an user-defined number of iterations. Next,
each of the robots evaluates the marginal function of variable Di: zi(Di) [9]. Then, by simply finding

argmaxDi
zi(Di), each individual robot i is able to determine which C [i

′ ]
i , for i′ = 1, 2, .., ki, it should

visit such that U(·) is maximized.
Max-sum algorithm delivers an exact solution in cases where the factor graph is acyclic, i.e. it has

no loops. Otherwise, if the factor graph is cyclic, i.e., it has loops (as in, e.g., Figure 1), max-sum has
been empirically shown to converge to an approximation of the exact solution [9]. Moreover max-sum
is robust against communication delays. Since max-sum messages are transmitted asysnchronously
and do not follow a pre-defined order, max-sum is resilient to delays in the data transfer.

Robot 1 

Robot 2 

Robot 3 

(a) Multi-robot network.

Robot 1 Robot 2 Robot 3 

(b) Factor graph.

Figure 1. Left: a multi-robot network, where arrows depict inter-robot communication. Right: a factor
graph representing utility function U(D) = U1(D1,D2) + U2(D1,D2,D3) + U3(D2,D3). Diamonds
correspond to factors, and circles correspond to variables. Note that dependencies between factors and
variables are determined by the multi-robot communication network (Figure 1a).

5. Information Metric

Information metrics are used by robots to guide their movement by selecting positions X∗ that
maximize a particular information metric. Here we compare information metrics in the context of GPs
based on two properties that are useful for IG. These two properties are:

• monotonicity as we increase the number p of potential measurement locations X∗. That is, we are
interested in information metrics that yield a higher value as we consider longer paths, i.e., paths
with a higher p; and

• submodularity respect to p. In short, a submodular information metric offers diminishing returns
as we increase p. This justifies the use of finite horizon approaches (as we do in this paper), as
the amount of information obtained by increasing p becomes irrelevant from a certain value of p.
For a detailed overview of submodularity applications in the context of GPs, we refer the reader
to [28].

We analyze three information metrics: (i) Differential Entropy, (ii) Mutual Information
Non-Measured, and (iii) Mutual Information All. To better support this analysis, we include in
Figure 2 a graphical representation of some basic notation employed in this paper.
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X* X* 

X 

Figure 2. Graphical representation of the notation employed in this paper. We depict an scenario in which
a robot i (colored red) aims to explore a process (in the background) in an environment populated with
obstacles (colored black). Orange stars correspond to measurements that were previously gathered by the
robot at positions X. White stars are potential measurements locations X∗. As in this chapter we consider

a path planning mechanism, X∗ belong to potential paths P [1]
i , P [2]

i that could be traversed by the robot.
Information metrics are utilized here to quantify the informativeness of potential paths. In addition, we also
represent VX f ree , together with associated grid cells, which are needed to compute some metrics.

Differential Entropy. We denote the differential entropy of a process given by random variable
YX∗ , defined at potential measurement locations X∗ , as H(YX∗ |X), with X the location of measurements
gathered by the robot up to now. H(YX∗ |X) can be calculated with H(YX∗ |X) = 1

2 log((2πe)p|Σ∗|),
with Σ∗ calculated with (3).

Mutual Information Non-Measured. We define Mutual Information Non-Measured as the MI
between: a random variable YX∗ ; and a random variable YVX f ree

\{X∪X∗} that represents the physical

process at VX f ree that would remain unmeasured after visiting X∗. Note that we employ here VX f ree

instead of X f ree because MI for GPs is evaluated at a set of discrete locations [28]. Therefore, to calculate
MI we discretize X f ree by overlaying a lattice graph with vertices VX f ree . Also note that, for x ∈ X, X∗
and x′ ∈ VX f ree , we assume that x = x′ if x lies within the cell associated to x′ (see Figure 2).

Mutual Information Non-Measured is given by: I(YVX f ree
\{X∪X∗}; YX∗ |X) = H(YVX f ree

\{X∪X∗}|X)
−H(YVX f ree

\{X∪X∗}|X, YX∗). This expression has a clear interpretation for IG: we aim to sample at

locations X∗ that yield a maximum inter-dependence with process YVX f ree
\{X∪X∗}, defined at all

positions in the environment that will remain unmeasured.
Mutual Information All. In this chapter we propose the use of Mutual Information All. This

calculates the MI between a random variable YX∗ ; and a random variable YVX f ree
. Mutual Information

All is given by the following expression: I(YVX f ree
; YX∗ |X) = H(YVX f ree

|X)− H(YVX f ree
|X, YX∗). This

metric is similar to Mutual Information Non-Measured, but it has an interesting property that we
discuss next.

The three afore-described information metrics are submodular [29]. To study the metrics’
monotinicity, we carried out a simple simulation. Specifically, we considered a one-dimensional
space VX f ree that consists of 90 equally separated positions. Then we assumed that a robot already
took ten measurements, drawn from a GP at positions X randomly selected from VX f ree . For this
setup, we evaluated the afore-described information metrics as we increase p (illustrating longer
planing horizons). That is, we randomly selected from VX f ree a number of potential measurements
positions, which is given by X∗. Results from this experiment are depicted in Figure 3, where each dot
corresponds to a realization of the experiment.

From Figure 3 we can draw the following conclusion: Differential Entropy is non-monotonic,
which goes against the principle of “information never hurts”. Non-monotonocity is a property that is



Sensors 2020, 20, 484 9 of 25

particularly undesirable for algorithms that aim to plan over an horizon longer than one step, as it is
the case in Equation (1).
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(c)
Figure 3. Evaluation of several information metrics as we increase the number of potential
measurements. (a) Differential Entropy; (b) Mutual Information Non-Measured; (c) Mutual Information
All. Figure 3c corresponds to our proposed metric.

In addition to entropy, we analyzed two uses of MI: Mutual Information Non-Measured
and Mutual Information All. According to Figure 3, Mutual Information Non-Measured is only
monotonic in the first part of the curve. This implies that Mutual Information Non-Measured does
not allow us to plan over arbitrarily long horizons, as longer paths may result in a lower value of
the information metric. Note that this property goes again against the principle of “information
never hurts”.

In contrast, here we propose the use of Mutual Information All as information metric to tackle
this problem. Mutual Information All is monotonic (see Figure 3c), which is an ideal choice for
IG tasks.

6. Distributed Multi-Robot Information Gathering Algorithm

We present in this section the algorithm that we propose to obtain an approximate solution
of Equation (1). Our proposed algorithm works as follows: first, each robot plans a set of potential
paths Pi that it could follow (Section 6.1). Specifically, each robot generates a RRT, whose root is the
robot’s current position. Next, robots cooperate in order to select a path that maximizes UI(·, ·) subject
to physical and mission-related constraints from Equation (1). Here UI(·, ·) corresponds to Mutual
Information All, as indicated in Section 5. To solve this multi-robot cooperation problem we propose
the use of a DCOP algorithm: max-sum [9].

Max-sum requires that each robot knows its own set of potential paths, as well as its neighbors’
set of potential paths. This set of paths we term robot’s domain. To this end, we include a module that
allows robots to find its neighbours, and to send its domain (Section 6.2).

Once a robot receives its neighbors’ domain, it executes Max-sum (Section 6.3). Max-sum allows
us to solve a combinatorial optimization problem [9]. To solve the optimization problem, each robot
must evaluate all combinations of potential paths from the received domains (including its own
domain). As we previously mentioned, here we consider a robot’s domain as the set of all paths that
are contained in the generated RRT. Since RRTs could grow large, the number of total paths could
increase as well. This would result in an increase of the complexity of the combinatorial optimization,
which could make the optimization computationally intractable. To solve this issue, we propose a
procedure in which each robot groups the RRT paths into clusters, which reduces the robots’ domain
size (Section 6.2).

Max-sum outputs a cluster for each individual robot that solves (1). Then, each robot selects a
path within its cluster. This is realized by evaluating Mutual Information All (Section 6.4).

Next, robots follow the selected paths while taking measurements along them. Measurements
encode the knowledge robots have about the process of interest. Therefore, they exchange the gathered
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measurements through the network; i.e. they perform data fusion (Section 6.5). Finally, robots update
their GPs model with the new measurements in order to improve the process model (Section 6.6).

In Figure 4 we depict a block diagram of the proposed algorithm. In particular, the diagram
corresponds to the modules that each single robot executes. Modules are executed in a loop, where
each loop iteration solves Equation (1). Next we explain the algorithm’s modules in detail.

Calculate Candidate Paths

& Generate Clusters

Search Neighbors

& Send Domain

Follow Path

& Collect Measurements

Calculate Max-Sum Utilitites

& Execute Max-Sum

Exchange Measurements

(Data Fusion)

Update

GPs Model

Figure 4. Algorithm block diagram. Shadowed blocks represent modules that require communication
between robots.

6.1. Calculate Candidate Paths and Generate Clusters

The first step of the algorithm is the computation of a set of feasible paths given xi and f(·). This
is realized with the kinodynamic RRT algorithm. We introduce a constraint in RRT that guarantees
collision-free paths between robots that cannot directly communicate with each other. We realize
this by limiting the RRT planning horizon to a maximum distance of (rc − rs)/2, with rc and rs the
communication and safety radius, respectively (see constraints 5 and 6 in Section 3).

Let us denote the set of paths generated by robot i with RRT as Pi,rrt (see Figure 5a). Ideally,
we would like robots to exchange Pi,rrt, and calculate Pi ∈ Pi,rrt that solves (1). However, as we
pointed out in Section 6 introduction, this would translate in evaluating multiple combinations of
paths, which is computationally intractable. Therefore, we introduce the concept of spatio-temporal
clusters. In Figure 5 we illustrate the clustering procedure with an example.

Spatio-temporal clusters give us flexibility to adapt our algorithm to the robot’s computational
capabilities: as we increase the number of spatial and temporal divisions, we get closer to the actual
RRT. However, clusters may lead to a loss of performance when optimizing U(·), since robots combine
several paths into a cluster during the cooperation procedure. Nevertheless, we demonstrate in
Section 8.5 that performance decrease is negligible for a sufficiently large number of clusters (approx.
18 clusters for our setup).

Next we explain the clustering procedure in detail. First, we define kt temporal horizons. Temporal
horizons represent time spans of a path, which are given by the robot’s motion model. For each of the
temporal horizons, we extract the corresponding paths from the RRT. Then, we group paths of equal
temporal horizon into ks spatial clusters. This last step is realized running the k-means technique [30]
over the complete paths.
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(b) Clusters
Figure 5. Spatio-temporal clustering. On the left hand side we depict a Rapidly exploring Random
Trees algorithm (RRT). On the right hand side we depict the clusters calculated with our proposed
clustering procedure for the RRT. Specifically, we considered one temporal horizon and three spatial
clusters; i.e. kt = 1, ks = 3, respectively. Each of the colors represent a spatio-temporal cluster.
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The clustering procedure is executed by each of the robots individually, yielding kt × ks clusters
for each robot. We denote the clusters of robot i by Ci =

{
C[1]

i , C[2]
i , ..., C[ktks ]

i

}
. Note that C[j]

i ⊂ Pi,rrt

for all j = 1, ..., ktks. Let us recall that, according to notation introduced in Section 4.3, Ci corresponds
to robot i domain.

6.2. Search Neighbors and Exchange Domains

Robots move as they explore the process of interest, which results in a variation of the network
topology. Therefore, we introduce a neighbors search mechanism. Robots realize this by sending
an identification message with its ID. Robots that receive the identification message (see robots
communication model defined in constraint 5, Section 3) add the corresponding robot’s ID to its set of
neighbors. Then each robot i = 1, 2, ..., N sends Ci to their neighbors. The sharing of domains is the
input needed to initiate the multi-robot cooperation procedure, which we explain next in detail.

6.3. Calculate Robot Utilities and Execute Max-Sum

Once robots exchange domains, they execute a max-sum algorithm to perform an assignment
of clusters that approximately solves (1). Specifically, robots cooperate to find the individual cluster

Di : C[i′ ]
i ∈ Ci, with i′ = 1, 2, .., ki, that each robot should select in order to maximize a global utility

function U(·). Here we define U(·) so that it consists of two terms:

• an information gathering term, denoted as ŨI(D, X), which measures the informativeness of
a particular assignment of clusters D given previously collected measurements X. Note that
here we refer to ŨI(·) ≈ UI(·) as robots aim to find a joint cluster assignment, instead of a joint
assignment of paths as in (1); and

• a constraint satisfaction term, denoted as UC(D), which enforces problem (1) constraints.

The combination of these terms yields our proposed utility function:

U(D, X) = ŨI(D, X)−UC(D). (5)

Let us next describe ŨI(·), UC(·) in more detail.

6.3.1. Information Gathering Utility—ŨI(D, X)

We define ŨI(·) as the MI between YVX f ree
, and a joint assignment of clusters D, conditioned on X.

This corresponds to Mutual Information All, described in Section 5, and is given by the following
expression: ŨI(D, X) = I(YVX f ree

, YD1 , YD2 , ..., YDN |X), with YDi a GP that represents y(x) for all x ∈ Di,

i = 1, 2, ..., N.
Our goal is to maximize ŨI(·) in a decentralized fashion. To this end, we employ max-sum

algorithm, and we express ŨI(·) as a sum of functions that are associated to each individual robot (see
Section 4.3). By applying the chain rule for MI, and decomposing I(YVX f ree

, YD1 , YD2 , ..., YDN |X) as a

difference of conditional entropies, we can express ŨI(·) as:

ŨI(D, X) = I(YVX f ree
, YD1 , YD2 , ..., YDN |X) =

N

∑
i=1

I(YVX f ree
, YDi |YDi+1 , ..., YDN , X) (6)

=
N

∑
i=1

H(YVX f ree
|YDi+1 , ..., YDN , X)− H(YVX f ree

|YDi , ..., YDN , X).

Equation (6) cannot be directly applied for a decentralized system that relies on local
communication between robots, as robot i domain only contains information about robot i neighbors;
not about all robots with a higher ID (as required in Equation (6)). We solve this issue by applying the
principle of locality [13,24]. This allows us to assume that two random variables YDj , YDk are statistically



Sensors 2020, 20, 484 12 of 25

independent if spatial locations contained in Dj,Dk are sufficiently distant. For our applications of
interest, the principle of locality is a reasonable assumption as a process spatial correlation is typically
much smaller than robots communication range. For example, in this paper’s motivating problem of
mapping a wind field, the structures (thermals) are only a few hundred meters in size. In contrast, the
robots communication range tend to be in the order of kilometers.

By considering the locality assumption we can now formulate Equation (5) as:

U(D, X) =
N

∑
i=1

H(YVX f ree
|YN (Di+1:N), X)− H(YVX f ree

|YDi , YN (Di+1:N), X)−UC(Di,N (Di)), (7)

whereN (Di+1:N) denotes assignment variables associated just to the neighbors of robot i with a higher
ID, and N (Di) denotes assignment variables that are associated to neighbors of the i-th robot.

6.3.2. Constraint Satisfaction Utility—UC(D)
The role of UC(·) is to satisfy that mission-related constraints (constraints 6, 7 in Section 3) are not

violated. To this end, we set UC(·) = 0 if robots are in a configuration that is far from violating the
constraints. Otherwise, we set UC(·) to a value that increases within a “escape” distance re as robots
get closer to a configuration where constraints could be violated. In case a constraint is violated we set
UC(·) = ∞ (see Figure 6).

Collision  
avoidance 

Communication 
constraint 

No constraint 

𝑟𝑠 𝑟𝑐 

“Escape” 
distance 

“Escape” 
distance 

0 Inter-robot 
distance 

𝑼𝑪(∙) 

∞ 

𝑟𝑠 + 𝑟𝑒  𝑟𝑐 − 𝑟𝑒 

Figure 6. Graphical illustration of UC(·).

Next we describe how we account for problem specific constraints:

1. Inter-robot collision avoidance : we penalize robots that are separated a distance smaller than
rs + re.

2. Periodic network connectivity : we penalize robots configurations that could lead to a disconnected
network at t + kc∆t; i.e., at the end of robots’ paths.

As robots rely on local communication, it is not trivial to guarantee a periodic network
connectivity [31]. Therefore, as in [23], we guarantee connectivity by forcing robots to form a minimal
topology – chain topology. That is, we encourage robots to be at least connected to their peers that have
an immediate lower and higher ID. This way, we can solve the communication constraint only with
local communication. Note that in our proposed approach more complex mechanisms like e.g., [31,32]
could be introduced in the cooperation procedure to guarantee network connectivity.

6.3.3. Path Selection

Equation (7) can be optimized in a decentralized fashion using max-sum algorithm (see
Section 4.3). In our case, max-sum outputs for each robot i, i = 1, 2, ..., N, an optimal cluster D∗i ∈ Ci.
D∗i is a cluster that contains multiple paths. Therefore, robots must select a path P∗i to follow from D∗i .
This is done by calculating the MI between YVX f ree

, and a random variable YPi that represents all possible

path assignments within the selected cluster, with Pi ∈ D∗i . We condition MI on the knowledge about
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the selection of clusters
{
D∗j
}

j∈Ni
of neighboring robotsNi, and previously gathered measurements X.

More formally, each robot i aims to find P∗i such that P∗i = argmax
Pi

I(YVX f ree
, YPi |

{
D∗j
}

j∈Ni
, X). Let us

remark that this procedure is done by each of the robots independently.

6.4. Follow Path and Collect Measurements

The output of the cooperation stage is a pathP∗i . Then robots followP∗i , and collect measurements
along it. Robots add measurements values to z, and measurements positions to X.

6.5. Exchange Measurements (Data Fusion)

Data fusion allows robots to have a common understanding about the process of interest. In this
paper we focus on multi-robot coordination strategies, and consider decentralized data fusion out of
the scope of this work. Therefore, we implement a simple flooding algorithm to carry out the data
fusion. Note that decentralized data fusion approaches like, e.g., [33] could also be considered. Our
data fusion algorithm works works as follows: First, robots broadcast z, X to their neighbors. Second,
once a robot receives z, X it will broadcast those again if this is the first time that they were received.
This will continue till all robots receive measurements of the complete team.

6.6. Update GPs Model

Finally, robots update the GPs model with new measurements. This is done by each of the robots
individually by optimizing Equation (4).

7. Computational Complexity

In this section, we carry out a study of the computational complexity of the proposed algorithm.
We divide this study in three variants of the algorithm in order to highlight different aspects of
the approach:

• NoCluster. This corresponds to the algorithm described in Section 6, but without considering
the clustering method. That is, we consider there are as many clusters as paths resulting from
the RRT for all time horizons (that is, as nodes in the RRT), where each cluster has a single path.
This allows us to highlight the complexity in terms of the number of collected measurements, and
total number of robots.

• Cluster. This is the algorithm described in Section 6. Here we highlight complexity reduction
that results by introducing a clustering method.

• ClusterSimplified. This corresponds to algorithm described in Section 6 plus additional
techniques that we introduce to reduce the computational complexity. These techniques: are
kd-trees, sparse GPs [34], and the principle of locality [35]. Note that sparse GPs, and principle of
locality are approximations that do not yield exact solutions. Nevertheless, these techniques have
been shown to work well in practice in a large domain of problems as discussed in [34,35].

Next we analyze the worst-case computational complexity for the three aforementioned
algorithm variants.

7.1. NoCluster

The NoCluster variant has three main components that define the algorithm’s computational
complexity: (i) RRT planner, (ii) calculation of max-sum utilities, and (iii) update of the GPs model.

• The complexity of RRT is given by O(Np log Np), with Np the number of RRT planner
iterations [26].

• The complexity of max-sum algorithm is determined by the calculation of
H(YVX f ree

|YDi , YN (Di+1:N), X) in (7). This is given by the GPs regression, which is cubic on
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the total number of elements m [5] contained in VX f ree , Di, N (Di+1:N) and X. Since a robot
calculates the utility of each combination of clusters (in this case, smaller or equal than Np),

the overall complexity of max-sum is O(m3N|NC |
p ), with |NC| the number of elements of

NC , N (Di+1:N).
• The complexity of the GPs model update in (4) is given by O(n3iG), where n is the total number

of gathered measurements, and iG is a user-defined parameter that sets the number of iterations
we allow the optimizer to calculate the GPs hyperparameters.

The complexity of the NoCluster variant is thus determined by max-sum, as m >> n, and
typically Np >> iG. The benefit of using a distributed approach such as max-sum is illustrated by
noticing that the complexity scales with the number of neighbors, and not with N. However, it is
clearly influenced by Np, which is typically large for robots with complex dynamics, or environments
with multiple obstacles. Therefore, in order to reduce the algorithm’s computational complexity we
propose in this paper a concept of clustering.

7.2. Cluster

In the Cluster variant, the RRT structure is exploited to group Np nodes in ks × kt clusters. This
yields a max-sum complexity of O(m3(kskt)|NC |). The complexity is thus now dependent on the total
number of clusters, which is typically much smaller than Np due to the tree structure. Of course,
the clustering method adds additional complexity to the algorithm. However, this is negligible [30]
compared to max-sum complexity. In particular, [30] has a running time of O(Npksktdcic), with dc

the maximum number of dimensions of a k-means state, and ic the number of iterations of Lloyd’s
algorithm [30].

The complexity reduction of the Cluster variant is vital for an online algorithm. However, it
could not be sufficient for an exploration algorithm that must run in real time. Specifically, the Cluster
variant faces two main problems due to the complexity increase: (i) in max-sum algorithm as m grows,
and (ii) in the GPs model update step as n grows.

7.3. Cluster Simplified

In order to alleviate the computational complexity of the two aforementioned problems we
propose a solution that we term ClusterSimplified. On the one hand, we exploit the principle of
locality to reduce the complexity, assuming that x, x′ that are far apart are uncorrelated, and therefore
do not need to be considered to carry out regression. In particular, in this work we assume that x, x′

are far if k(x, x′, θ) < σn/10. Let us point out that this is a reasonable assumption as in this paper we
consider sensors with a negligible noise level. To efficiently search for locations that are correlated, we
structure the data in a kd-tree.

The complexity of GPs regression is further alleviated by employing sparse GPs [34]. Specifically,
we use the FITC method, with inducing points selected randomly from the set of potential
measurements. Since the number of inducing points is typically set to be much smaller than the
number of potential measurements, sparse GPs incur into an enormous reduction of complexity [34].

7.4. Summary

To finalize, we summarize in Table 1 the complexity of the three algorithm variants that
we proposed in this section. Let us point out that ms, ns in Table 1 are the number of potential
measurements, and actual measurements, respectively, which result after applying sparse GPs and
locality approximations. Moreover, we analyzed in Table 2 the computation time of one algorithm
run for a set of fix parameters that is representative of the simulations we carried out in the paper.
In addition, we varied a set of parameters to account for several degrees of complexity reduction.
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Motivated by a lower computational complexity and an equivalent performance, compared to
other alternatives, we decided to employ our proposed variant ClusterSimplified in our simulations
and experiments.

Table 1. Evaluation of algorithm’s complexity. For clarification, let us add that typically ms << m,
kskt << Np, and ns << n.

NoCluster Cluster ClusterSimplified

Path planner O(Np log Np) O(Np log Np) O(Np log Np)
Clustering method - O(Npksktdcic) O(Npksktdcic)
Max-sum O(m3N|NC |

p ) O(m3(kskt)
|NC |) O(m3

s (kskt)
|NC |)

Updating GPs O(n3iG) O(n3iG) O(n3
s iG)

Table 2. Computational time required to execute one algorithm run. For the calculations, we used a set
of fix parameters that is representative of the simulations we carried out in the paper. These parameters
are as follows: Np = 1000, dc = 20, ic = 10, iG = 10, m = 2500, |NC| = 7. In addition,
we varied parameters ms, kskt, ns to account for several degrees of complexity reduction. In particular,
we considered: [ms, kskt, ns] = [m, Np, n]/10, [m, Np, n]/50, [m, Np, n]/100, [m, Np, n]/200. The set of
parameters used for our simulations corresponds to the ClusterSimplified with a reduction factor of
100. Execution time for this set of parameters is approximately 6 s.

NoCluster Cluster ClusterSimplified

/10 /50 /100 /10 /50 /100 /200

Computational time [s] 3 × 1020 3 × 1013 4× 108 3× 106 3× 1010 3075 6 3

8. Simulations and Discussion of Results

8.1. Simulations Setup

8.1.1. Generation of the Process for Exploration

We validate our algorithm in simulations in an exploration task that consists of mapping the
vertical component of a wind field (see Figure 7a (By Dake (Self-made illustration) [CC BY 2.5 (http:
//creativecommons.org/licenses/by/2.5)], via Wikimedia Commons.)) with multiple robots. The
wind field is simulated using the model proposed in [36]. The model used in [36] is an statistical
model that employs data gathered from balloon and surface measurements to characterize thermals.
Furthermore we added a sinusoidal component in both x and y directions to increase the complexity
of the IG task. Similar modifications were done in [3]. Figure 7b depicts the resulting wind field.
This corresponds to a 500 × 500 m2 two dimensional slice at 300 m of a three dimensional wind
field. We would like to remark that the validation of our algorithm in a 2D environment (instead of
in a 3D one) is motivated by two main reasons: (i) to reduce the computational complexity, and to
subsequently reduce the running time of the validation in simulations, and (ii) to ease the visualization
and interpretability of simulations results. The algorithm proposed in this paper is independent of the
dimensionality of the environment. Therefore a 2D environment allows us to properly assess, without
loss of generality, the capabilities of our algorithm to carry out an IG task.

http://creativecommons.org/licenses/by/2.5
http://creativecommons.org/licenses/by/2.5
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(b) Wind field.
Figure 7. Illustration of a thermal (a) and the two dimensional wind field to be explored (b).

8.1.2. Robot Model

We employ a simplified aircraft model that is based on modelling discussed in [37]. We made
further simplifications to adapt it to a two-dimensional environment, and assumed that the wind field
does not affect the aircraft’s motion. These simplifications are still far from a realistic model. However,
they allow us to demonstrate the effectiveness of the proposed IG approach.

Given these assumptions, the aircraft model is defined by the following equations:

x(t + ∆t) = x(t) + vin(t)∆t (8)

ψ(t + ∆t) = ψ(t) + ψ̇(t)∆t, (9)

with x(t) the aircraft’s position, vin(t) the aircraft’s inertial velocity, and ψ the heading angle. For
airspeed V, commanded flight path angle θ, and commanded bank angle φ, the components of the
velocity vin(t) = [vx, vy] and ψ̇(t) are given by: vx = V cos θ cos ψ; vy = V cos θ sin ψ; ψ̇ = g

V tan(φ).
Let us point out that the aircraft is fully controlled by the commanded bank angle φ, and flight
path angle θ. For the simulations we assumed an aircraft defined by the following parameters:
∆t = 0.5 s, V = 15 ms−1, g = 9.8 ms−2, θ = 0 (constant height), φ ∈ [−π/5, π/5] rad.

8.1.3. Algorithm Parameters

We consider a fleet of eight aircrafts to explore the wind field. We define a communication range
rc = 200 m, a safety distance rs = 10 m, and an escape distance re = 20 m. For the simulations we
run RRT for Np = 1000 iterations, and max-sum algorithm for 5 s. For the clustering algorithm, we
consider four temporal horizons at 2, 5, 7, 10 s, and three spatial divisions. This makes 12 clusters in
total for each robot.

We run Monte Carlo simulations to test our approach with a number of robots that ranges between
one and eight. In particular, we considered a maximum of 4 robots for the analysis in Sections 8.2
and 8.3, and a maximum of 8 robots for the analysis in Section 8.4. The robots’ initial positions is
randomly set, under the requirement that the robots network is connected. For each of the algorithms
we average over 100 simulations runs. The algorithm is implemented in Python. Additionally, we use
robot operating system (ROS) [38] to simulate the algorithm in a decentralized fashion.

8.2. Analysis of the Exploration Strategy

First we evaluate the performance of our proposed algorithm for an IG task that is not subject
to constraints from Equation (1). This implies that robots run our algorithm with UC(·) = 0. This
algorithm variant we term it “SBMRE Alg. No Constraints”. With this study we proof the following
two hypothesis:

1. The proposed cooperation procedure, which builds on MI as information metric and max-sum as
decentralized coordination technique, outperforms a benchmark algorithm.
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2. Our proposed algorithm scales as the number of robots in the system increases. That is, as the
number of robots increases the performance gap between a benchmark and our algorithm grows.

To the best of our knowledge there are no algorithms in the literature that solve Equation (1);
even in unconstrained form. Here we selected random walk as benchmark. A random walk have
been shown to offer "surprisingly" good results for IG tasks [1,39]. Note that in this paper a random
walk does not refer to the classic definition of a greedy random walk. Instead, here it refers to the
generation of random trajectories. That is, a random walk implies that robots move independently
following a random path, constrained by the robot motion, generated with RRT. The random walk
neither aims to meet constraints nor to exchange measurements with the rest of the team. Let us remark
that the random walk does not perform any data fusion, which implies that each of the robots only has
measurements taken by itself. So, in order to obtain a fair comparison with our algorithm, which fuses
data online, we perform a data fusion during post processing for the random walk benchmark.

Here we study our exploration strategy by evaluating the reduction of the root mean squared
error (RMSE) after a 300 s exploration run. That is RMSE Reduction[%] = 100 RMSE(t=0)−RMSE(t=300)

RMSE(t=0) .
We compute the RMSE with respect to a set of nG points VX f ree ∈ X f ree that correspond to nodes of
an overlaid lattice graph with a spatial resolution of 10 m. We use these nG points to compare the
difference between our estimate µ∗, which is the result of GPs regression given z, X, and ground truth
yG(XG), with XG := VX f ree . This yields the following expression for the RMSE:

RMSE =

√√√√∑nG
i=1 (µ

[i]
∗ − y[i]

G )
2

nG
. (10)

We depict in Figure 8a the RMSE reduction for one, two, three and four robots. First fact that we
observe is that our algorithm offers an increase of performance with respect to a random walk of a
6% with one robot, and increases up to a 20% with four robots. Next fact is that the gap between our
algorithm’s performance and a random walk increases as we add more robots to the team. According
to results from Figure 8a we can confirm our two hypothesis.
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Figure 8. Root Mean Squared Error (RMSE) reduction and network connectivity. (a) RMSE reduction
during an exploration task as we increase the number of robots in the system. (b) Percentage of
iterations in which the network fulfills a periodic connectivity constraint.

8.3. Analysis of the Multi-Robot Coordination Strategy

We demonstrated our algorithm’s cooperation capabilities to gather information. Next we analyze
our algorithm’s coordination capabilities to meet problem specific constraints from Equation (1).
Therefore, here we proof two hypothesis, which correspond to the inter-robot constraints considered
in this work. These are the following:

1. Our algorithm meets the collision avoidance constraint, and outputs collision-free trajectories.
2. The network connectivity constraint is fulfilled, and our algorithm guarantees a higher

connectivity than a random walk benchmark.
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8.3.1. Collision Avoidance

This section evaluates the collision avoidance capabilities of our algorithm. In particular, we
calculate the percentage of time that the constraint is not met during all simulation runs, which we
obtained by evaluating the distance between each pair of robots for each iteration. In Figure 9 we
depict one example of the inter-robot distances during one algorithm execution. Figure 9 helps us
to understand how robots coordinate to avoid collisions. Moreover it illustrates a potential collision
between robots around iteration number 210 and 220, as the inter-robot distance is smaller than the
safety distance rs = 10 m.
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Figure 9. Inter-robot distance during one illustrative execution of our algorithm. Each color represents
the distance between a different pair (6 different pairs) of robots for a 4-robot team.

For all simulation runs, the percentage of time that the collision avoidance constraint is not met is
0.16%. Let us remark here that a low percentage is still possible as the escape distance could be violated.
In this sense, local safety measures and obstacle avoidance mechanisms [40] could be employed to
solve such conflicts. Specifically, in [40] the authors present a collision avoidance algorithm for multiple
aerial vehicle systems than functions in real-time. The proposed algorithm is based on the 3D-Optimal
Reciprocal Collision Avoidance (ORCA) algorithm, and considers dynamic constraints of the UAV
model and static obstacles.

A fundamental feature of our algorithm is that the violation of the collision avoidance constraint
can be detected in advance by evaluating the robot individual utility function. In case of a potential
collision, an algorithm like the one proposed in [40] could be executed. In contrast, a random walk has
no means to anticipate a future possible collision without an external collision avoidance system.

8.3.2. Network Connectivity

Next we evaluate the fulfillment of the network connectivity constraint. To this end, we calculate
the percentage of iterations in which the network is not connected at the end of robots’ paths (during
max-sum execution) for all simulation runs. This means that there are robots or subsets of robots that
cannot communicate with the rest of the team, and therefore they violate the periodic connectivity
constraint (constraint 7 in Section 3). As pointed out before, non-connectivity is an undesirable
characteristic for most applications [23,41].

Figure 8b shows the network connectivity for our algorithm and a random walk. Our proposed
algorithm achieves a network connectivity that ranges between 91% and 98%. In contrast, the random
walk achieves a connectivity that ranges between 42% and 60%.

8.4. Analysis of the Algorithm’s Scalability with an Increasing Number of Robots

A fundamental aspect of any multi-robot algorithm is its scalability as the number of robots
increases. In this section we analyze the scalability in terms of the computational load that each robot
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must deal with. As stated in Section 7, the computational load is determined by the calculation of
utilities in max-sum. Specifically, computational load scales exponentially with |NC| – number of
neighboring robots with which each individual robot must cooperate.

Therefore, we analyze |NC| as we increase the number of robots in the system from 2 to 8 robots.
We compare our algorithm against a system that requires full connectivity of the network, or in another
words, a system that is centralized. We depict in Figure 10 simulation results.

We can conclude according to Figure 10 that, in a fully connected/centralized system, |NC|
increases linearly, which results in an exponential increase of the computational load per robot (see
Table 1). In contrast, our distributed algorithm only presents a slight increase in |NC| as we increase
the number of robots. This results in an slight increase of the computational load per robot.

To summarize: we can conclude that our algorithm scales with the number of robots as the
computational load per robot only increases slightly.
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0
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7 Our distributed algorithm
Fully connected system

Figure 10. Algorithm’s scalability for an increasing number of robots. Scalability is measured
in terms of the computational load per robot, which is exponential in |NC|. We compare a fully
connected/centralized system against our distributed solution.

8.5. Analysis of the Clustering Procedure

The evaluation of the exploration and coordination strategies illustrate the effectiveness of
our approach to solve problem (1): performing an IG task with multiple robots while fulfilling
problem specific constraints. In this section we evaluate the algorithm’s sensitivity to changes in
parameters values. In particular, we focus the study on the two most relevant parameters: number of
spatial-temporal clusters, and communication radius. For these two parameters we analyze: (i) the
resulting RMSE between estimation and ground truth after three iterations of the algorithm, and (ii) the
solution feasibility; i.e., how often the algorithm is able to find a solution that meets the constraints
imposed in Equation (1).

We carry out the analysis for an environment that measures 1000× 1000 square meters, with a
wind field that is similar to the one shown in Figure 7b but it contains two thermals. For that scenario,
we run 5000 Monte Carlo simulations with randomly chosen parameters. Specifically, the number of
clusters ranges from 1 to 36, and we consider a communication radius of 200, 300, 400, 500 and 2000 m.
Let us also add that we let max-sum run for 180 seconds each algorithm iteration in order to being able
to calculate all utilities for up to 25 clusters.

Figure 11 depicts the results of the parameters analysis. The depicted curves are the result of a
quadratic curve fitting done on the original data. From Figure 11 we can extract four main conclusions:

1. The softer the constraints, i.e., a larger communication radius, the better the algorithm’s
performance both in terms of RMSE and solution feasibility.

2. Our algorithm’s performance increases, i.e., lower RMSE and higher solution feasibility are
achieved, as we increase the number of clusters up to approximately 18 clusters. This demonstrates
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that the larger the number of clusters, the better we represent the original RRT, which translates
into a more efficient multi-robot cooperation.

3. The performance of the algorithm remains approximately constant for a number of clusters
that ranges between 18 and 25. In another words: adding new clusters does not improve the
representability of the original RRT, since clusters start containing paths that are very similar.
This property leads to an enormous reduction of the algorithm’s computational complexity as
indicated in Section 7.

4. Performance of the algorithm decreases with a number of clusters greater tham 25, for our
particular setup. It is essentially due to an insufficient running time for max-sum to converge,
which results in a suboptimal solution. This result emphasizes the importance of point 3, since
according to Figure 11 with a number of clusters equal to approximately 18, for our setup, we
obtain the best performance both in terms of RMSE and solution feasibility.

This section concludes the analysis of the algorithm in simulations. Next we present
experimental results.
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Figure 11. Algorithm’s performance as we vary the two most relevant parameters: number of
spatial-temporal clusters, and communication radius. For these two parameters we analyze: (a) the
resulting RMSE, calculated with (10), after three iterations of the algorithm, and (b) the solution
feasibility; i.e. how often the algorithm finds a solution that meets constraints from Equation (1).

9. Experiments and Discussion of Results

To validate the algorithm we carried out a field experiment with flying robots. Specifically,
we explored a simulated two-dimensional wind field with quadcopters emulating a fixed-wing
aircraft’s dynamics.

In this experiment we aim to proof the following statements:

1. Our system is able to perform active IG online, according to the measured values.
2. Our system is robust against inaccuracies in robots’ position.

Next we describe in detail the experimental setup and results.

9.1. Experimental Setup

9.1.1. Wind Field model

We simulated a wind field, instead of measuring an actual field in order to simplify the overall
experiment. This allows us to abstract ourselves from the particular sensor characteristics, and evaluate
the algorithm’s performance in a real scenario.

The wind field corresponds to a scaled down version of the one described in Section 8.1 (see
Figure 7). Specifically, we reduced the size of the environment by a factor 10. This results in a wind
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field over an area of 50× 50 square meters. Here we set ∆t = 0.2, rc = 20 m, rs = 5 m and re = 3 m
to account for a smaller environment. For the rest of parameters, we employ the same values as in
Section 8.1.

9.1.2. System Architecture

To explore the afore-described wind field, we propose a system architecture that is composed
of the following main elements: (i) quadcopters, (ii) a central computer, and (iii) a Real-Time
Kinematic navigation for global positioning systems (GPS-RTK). Next we provide details of each
of the components.

Quadcopters. We use three quadcopters that emulate the dynamics of a simple fixed-wing
aircraft. In particular, we employ Equation (8) to plan the quadcopters trajectories. A trajectory can be
represented as a set of waypoints that the quadcopters can follow using their onboard controllers. This
way, quadcopters will perform a flight path that is close to the one performed by a fixed-wing aircraft.
It is true that this solution does not fully emulate the dynamics of a fixed-wing aircraft. Nevertheless it
is a first step towards the validation of our algorithm in a field experiment.

Figure 12a shows one of the quadcopters used for the experiment. Quadcopters are a modified
version of an AscTec Hummingbird from Ascending Technologies. We equipped them with a Raspberry
Pi 2 Model B that sends commands to the quadcopter’s onboard controller. Note that the core of
the algorithm runs in a central computer due to the insufficient computational capabilities of a
Raspberry Pi.

Central computer. A laptop situated outside the exploration area monitors the complete system,
and runs the core of the algorithm. Specifically, it executes the algorithm that coordinates robots,
and then sends waypoints to quacopters. Communication between quadcopters and the central
computer is realized using Wi-Fi. Quadcopters will then fly to the commanded waypoints, using the
onboard controller that runs in the Raspberry Pi. It is important to remark that the algorithm runs in a
distributed fashion where each quadcopter runs in a separate software module—ROS node.

GPS-RTK. Quadcopters are also equipped with a GPS-RTK [42]. Specifically, we mounted the
Piksi 1 modules from Swift Navigation. GPS-RTK allows us to achieve a sub-meter-level accuracy in
the position.

9.2. Experimental Results

Here our goal is to evaluate: (i) the robots’ trajectories, (ii) the process reconstruction and the
remaining uncertainty after the exploration task, and (iii) the RMSE between the process reconstruction
and ground truth. For the last one we compare runs with one and three quadcopters to highlight the
benefits of a multi-robot system.

9.2.1. Robots Trajectories

First, we depict in Figure 12 the trajectories that quadcopters flew during the exploration run.
Figure 12b corresponds to robots’ nominal position. We can observe that the shape of the trajectories
resembles those of a simple fixed-wing aircraft. Moreover, robots cover the complete exploration area;
except the bottom right corner. This was due to battery life constraints, which did not let robots to
complete the exploration task.

Figure 12c depicts quadcopters positions as output from the GPS-RTK system. Trajectories are
similar to the nominal ones. However, we observe inaccuracies in the position solution. For example,
we could concentrate in Figure 12c on a large concentration of dots at coordinates x = 15, y = 45 m.
These dots correspond to a single commanded waypoint where a quadcopter tries to stay at. Ideally,
we would like quadcopters to hold their position. However, this is not possible due to the combined
effect of innacuracies in the robot’s controller, which relies on external sensors to calculate its position,
and the GPS-RTK solution. Nevertheless, let us emphasize that these inaccuracies in position do not
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result in an inaccurate estimation of the wind field for the chosen size of the environment, as we will
show next.
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Figure 12. Nominal position and actual position of the quadcopters during the exploration task. Each of
the three quadcopters is represented with a different color. (a) Quadcopters during the experiment.
(b) Nominal position. (c) Actual position.

9.2.2. Wind Field Estimation

We illustrate in Figure 13b the estimated wind field. It corresponds to the mean prediction of the
GPs at each of the positions of the environment given the collected measurements. The estimated wind
field can be compared to the ground truth (depicted in Figure 7b). First, we observe that estimation
and ground truth are almost identical, and we can easily identify the thermal. This exemplifies the
algorithm robustness to uncertainty in robot’s position. Second, we notice that the estimation is worse
at those areas that were not covered during the exploration run; i.e., bottom right corner (also noticeable
in Figure 13a). However, even on that area the algorithm achieves a decent reconstruction accuracy.
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Figure 13. (a,b) Process entropy and reconstruction after performing an exploration run. (c) RMSE
between estimate and ground truth for one and three quadcopters.

9.2.3. Error between Estimate and Ground Truth

We show in Figure 13c an evaluation of the RMSE between estimate and ground truth resulting
from the field experiment. We show curves for one and three robots running the algorithm proposed
in this work. As we showed in simulations, the system with three robots achieves a much lower RMSE
compared to one robot. Specifically, three robots achieve a three-fold improvement compared to one
robot. This confirms the benefits, in terms of efficiency, of a multi-robot system.

10. Conclusions and Future Work

The paper presents an approach for multi-robot information gathering. It considers GPs as
underlying model of the process to explore, information utilities for active perception, and the max-sum
algorithm for multi-robot cooperation. The approach extends the state of the art by accounting for
the motion constraints of the robots. This is realized through the use of motion planners such as
RRT, which are able to handle such constraints. The method is able as well to handle mission team
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constraints such as network connectivity and collision avoidance restrictions. We achieved this by
including additional terms into the utility functions in max-sum.

The whole approach is distributed, not requiring a central entity for processing. All the
decision-making is decentralized, and, in our current implementation, only the data fusion component
requires a broadcast mechanism at the network level (even though the system can work if the network
connectivity is not fulfilled). As future work, we will consider decentralized data fusion approaches
for GPs, as in [13,14], for a fully decentralized system.

The approach has been validated in simulation for the exploration of a wind field. We have also
tested the methods in experiments with robots for the same application. The results show how the
cooperation allows for a more efficient exploration, more evident when the number of robots grow.
Furthermore, the results show how the approach can handle constraints that are relevant for real
scenarios, in particular maintaining the network connectivity in the fleet.

One of the limitations of the presented application is the use of a fixed chain network topology,
which constraints the ability of the fleet to explore. More dynamic and flexible network topologies
would definitely allow for better information gathering efficiency. Furthermore, the connectivity model
is a simplification, and more details regarding the actual physical layer and communication technology
would be needed to model the communication constraints. Please notice that this is not a restriction of
the decision making method itself.

The vehicle models employed in this work are a simplified version of a fixed-wing aircraft.
We plan to extend those models to full 3D models that consider also aerodynamic effects, as a next
step to apply the approach for the autonomous soaring of gliders. We will consider exploration in 3D,
and combining the exploration techniques presented with the exploitation of the wind information
for longer endurance of the flight. Exploitation terms can be easily included into our utility functions.
The analysis of different combinations and weighting of the terms that compose the utility function is
also a venue for future work. One additional aspect to consider will be the effect of the uncertainties
in the wind field over the finally executed paths, and how to include this also into the constraints of
the system.
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