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Abstract

Understanding intra-molecular coevolution helps to elucidate various structural and functional constraints acting on
molecules and might have practical applications in predicting molecular structure and interactions. In this study, we used 5S
rRNA as a template to investigate how selective constraints have shaped the RNA evolution. We have observed the
nonrandom occurrence of paired differences along the phylogenetic trees, the high rate of compensatory evolution, and
the high TIR scores (the ratio of the numbers of terminal to intermediate states), all of which indicate that significant positive
selection has driven the evolution of 5S rRNA. We found three mechanisms of compensatory evolution: Watson-Crick
interaction (the primary one), complex interactions between multiple sites within a stem, and interplay of stems and loops.
Coevolutionary interactions between sites were observed to be highly dependent on the structural and functional
environment in which they occurred. Coevolution occurred mostly in those sites closest to loops or bulges within
structurally or functionally important helices, which may be under weaker selective constraints than other stem positions.
Breaking these pairs would directly increase the size of the adjoining loop or bulge, causing a partial or total structural
rearrangement. In conclusion, our results indicate that sequence coevolution is a direct result of maintaining optimal
structural and functional integrity.
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Introduction

Selective constraints often operate on an entire molecular

system, and require coordinated changes of its components. Such

long-term interactions obviously occur between molecules within a

cell, and between residues within a molecule. Examples of such

interactions include the coordinated changes of amino acid

residues in a protein molecule [1,2,3,4,5], compensatory substitu-

tion in RNA molecules [6,7,8,9], intramolecular interactions

[10,11,12], compensatory trans and cis mutations within a

transcriptional network [13], and the copresence of enzymes in

the same metabolic pathway [14,15].

The secondary structures of rRNAs are remarkably uniform

across taxa. This level of conservation is achieved by a special

pattern of base changes known as compensatory mutations [16].

RNA molecules exhibit strong signs of coevolution, especially

between Watson-Crick pairs of nucleotides within stems. The

deleterious effect of base substitution at a given site can be

suppressed by a compensatory second-site substitution [17,18,19].

Therefore, revealing intra-molecular coevolution is important for

understanding of various structural and functional constraints

acting on RNA molecules, which also has potential use in

predicting molecular interactions and structures [8].

To date, various methods have been used to identify coevolu-

tion of genes. Some studies have measured coevolution by the

similarity in absolute evolutionary rate (ER) or dN/dS (the rate of

nonsynonymous substitution rate divided by the rate of synony-

mous substitution) [20,21,22], correlative ER or dN/dS [23].

Others have applied correlation metrics to detect the covariation

of sequences, such as correlation coefficients [24], mutual

interdependency [25], and mutual information (MI) [26,27,28].

Besides, some model-based methods rely on standard Markov

models of sequence evolution, and take substitution probabilities

among states or the among-site rate variation into account

[29,30,31,32,33].

These studies focused on second-site substitutions that directly

restore the disrupted Watson-Crick interaction (e.g.

GC«GU«AU). Most of these approaches have assumed that

mutations disrupting the base-pairing of a functionally important

RNA stem are deleterious, while the deleterious effect may be

overcome by a second compensatory mutation in the other half of

the stem, which restores the potential for base-pairing [34]. On a

larger evolutionary scale, however, such a mechanism failed to

explain all observed patterns of coevolution. Moreover, the

intricate relations between sequence coevolution and various

selective constraints are worth pursuing at a deeper level.

Here, we focus on 5S rRNAs, a class of non-protein coding

RNAs with well-studied structure and function, to investigate how

selective constraints shape RNA evolution. We infer the substitu-

tion histories of 5S rRNA sequences and investigate how selective

constraints might have influenced the rate and pattern of evolution

in different structural regions of 5S rRNA.
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Figure 1. Secondary structure of human 5S rRNA. In all organisms, the structure consists of five double-stranded regions (I–V) and five loops
(A–E). Loop E, which differs between eukaryotic and eubacterial 5S rRNAs, is highlighted in yellow.
doi:10.1371/journal.pone.0044376.g001

Figure 2. The phylogenetic tree constructed by the concatenated sequences of SSU and LSU rRNA based on GTR+G model. Numbers
indicate the bootstrap scores for ML (left) and Bayesian posterior probabilities for Bayesian (right) that supported the indicated node. Taxon names
are color coded according to the taxonomic order designation at NCBI. (A)Animal. Green: chordata, blue: arthropoda, red: nematoda, black: outgroup.
(B) c-proteobacteria. Green: virionales, blue: enterobacteriales, red: alteromonadales, violet: pseudomonadales, black: outgroup.
doi:10.1371/journal.pone.0044376.g002
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Materials and Methods

Sequences and Structure
Aligned small subunit (SSU) and large subunit (LSU) rRNA

sequences were obtained from the SILVA database [35].

Alignments were inspected by eye and slightly modified. All

ambiguous aligned sites were discarded from the analysis. The two

data sets were then concatenated to estimate a common

phylogeny, in an attempt to enhance the ratio of signal to noise

and thus more reliably recover the ‘‘true’’ organismal phylogeny.

The aligned 5S sequences and consensus secondary structure

information were downloaded from the 5S Ribosomal RNA

database [36]. 5S rRNA has a length of ,120 nt and a highly

conserved structure, which consists of five stems (helices I-V), two

hairpin loops (C and D), two internal loops (B and E) and a hinge

region (loop A) forming the three helix junction (Figure 1). A total

of 153 species including 39 bacteria, 31 animals, 37 plants, and 46

fungi were used for our analysis.

Phylogenetic Reconstruction
Nucleotide substitution models and parameters were estimated

using JMODELTEST [37] using default settings. Phylogenetic

tree reconstruction was then constructed by employing the

maximum likelihood (ML) method implemented in PhyML 3.0

[38] and Bayesian approaches in MrBayes3.1 [39]. For PhyML

analysis, the robustness of the statistical support for the tree branch

was evaluated by 100 bootstrap replicates. For MrBayes analysis,

2,000,000 generations were used for 4 simultaneous Markov

chains. Trees were sampled every 100 generations, and the last

10,000 trees (well after the chain reached stationarity) were used

for inferring Bayesian posterior probability.

Ancestral States Reconstruction
Ancestral 5S rRNA sequences of all interior nodes in the

phylogenetic trees were statistically inferred from the present-day

sequences by using the Empirical Bayesian (EB) method under the

best fitting model. The EB analysis was implemented by the

PAML program [40]. Marginal posterior probabilities at each site

were also calculated in this program. The accuracy of the ancestral

state reconstruction might depend on the underlying model used

in the reconstruction. Therefore, besides the GTR model, we also

performed the analysis using 7 other models implemented in the

PAML package to confirm the robustness of our results with

regard to the accuracy of the ancestral state reconstruction.

Estimation of Substitution Rates
We used PAML to estimate the site-specific evolutionary rates,

which we report as an indication of selection of constraint. This

analysis was implemented by the baseml program of PAML, using

the best nucleotide substitution model suggested by JMODELT-

EST. The site-specific rates inferred here are not absolute

evolutionary rates that require knowledge of divergence times,

but rather they represent a comparative quantity.

Measuring Coevolution
Firstly, we used the clustering approach implemented in the

CoMap program [41] to detect the coevolution within our 5S

rRNA sequences. This approach searches for ancestral co-

substitution or for compensatory changes by correlating nucleotide

substitution. Coevolution was detected as non-independent

evolution among sites. The degree of correlated evolution was

estimated based on the correlation coefficient of the substitution

vectors. To assess the significance of inferred clusters, a parametric

bootstrap with 10,000 replicates was used to generate the joint null

distribution of minimum site variability together with coevolution

or compensation statistic r, as described by Dutheil and Galtier

[41]. Clusters with p{valueƒ0:05 were considered to be evolving

non-independently. Secondly, we implemented a corrected mutual

information method (MIp) [28] for the coevolution detection. MIp

methods use the phylogenetic signal available to assess the

Figure 3. The accuracy of ancestral states reconstruction. Frequencies of marginal posterior probabilities calculated for the most likely
nucleotide reconstruction at each site of the ancestral 5S rRNA sequence under the GTR+G model.
doi:10.1371/journal.pone.0044376.g003
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significance of coevolution, but do not assume a particular

phylogenetic tree. The MIp computations were implemented in

C++ as a dedicated program named MICA (mutual information

coevolution analysis) [42].

Evolution of Compensatory Mutations
The evolution of RNA molecules can proceed through a

characteristic substitution pattern that maintains the pairing

capability between paired bases. Four kinds of substitution

patterns are possible. The most common is the switch between

an AU and GC pair (AU«GC), through the intermediate state of

AC or GU. The three other types of switch are AU«UA,

GC«CG and AU«CG, with the intermediate states being AA or

UU, GG or CC, and AG or UC, respectively.

Using the inferred phylogenetic trees, we first attempted to show

the nonrandom occurrence of sequence differences that maintain

Table 1. Coevolving positions detected in eukaryotic and eubacterial 5S rRNA.

Species Helix Alignment Positions CoMap MIp

Helix I 7–134 Near a bulge 4.7861024 1.0861022

9–133 Near a bulge 5.0561023 1.8061023

10–132 Other states 1.9561023 8.4161023

11–131 Near loop A 1.8561024 6.4761024

12–130 Near loop A 9.8061023 1.8061023

Helix II 18–75 Near loop A 1.0261023 1.8061023

20–72 Near a bulge 5.0561023 3.6061023

28–67 Near loop B 1.6061022 1.7761022

Helix III 35–62 Near loop B 4.7861024 1.6261023

Eukaryotes 36–61 Near loop B 8.5161025 3.7861023

37–57 Near a bulge 2.5561024 5.0461023

38–56 Near a bulge 9.8061023 3.6061023

39–55 Near loop C 1.0261023 6.2561023

40–54 Near loop C 4.7861024 1.6561023

Helix IV 90–111 Near loop D 4.7861024 1.6261023

92–109 Other states 5.0561023 1.0861022

93–108 Other states 5.0561023 4.3161023

94–107 Near a bulge 2.3261024 1.2661023

97–104 Near loop E 8.5161025 4.2061023

98–103 Near loop E 8.5161025 1.4861023

Helix V 77–127 Near loop A 4.6161024 1.2661023

80–118 Near a bulge 1.0261023 1.6561023

82–117 Near a bulge 4.6361024 6.4961023

Helix I 8–153 near a bulge 5.3861024 4.4261023

14–145 near a bulge 3.0361023 6.2161024

15–144 near a bulge 5.3761023 7.8761023

16–143 other states 5.0061023 2.4761023

17–142 near loop A 1.1261022 1.8561022

18–141 near loop A 8.5161024 2.1361022

Helix II 27–86 near loop A 4.7861023 8.3361023

31–81 near a bulge 2.6261023 3.2361023

Eubacteria 35–79 near a bulge 1.9361023 1.2461023

Helix III 48–66 near loop C 1.7761023 6.2161024

49–65 near loop C 2.6261023 6.2161024

Helix IV 101–124 near loop E 7.0661023 6.2161024

105–121 near a bulge 9.6461025 1.2461023

106–119 other states 1.4761023 1.2461023

107–118 other states 1.5461023 5.8361023

108–117 near loop D 3.6761024 1.2461023

109–116 near loop D 2.7561024 6.2161024

Helix V 90–134 near loop E 6.7561024 2.9261023

doi:10.1371/journal.pone.0044376.t001
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Figure 4. An example of coevolving pairs 8-111 detected in animal 5S rRNA sequences. The disruption of GC pair was compensated by a
G8A substitution that created an AU pair or by a U111C substitution that restored the GC pair. Intermediate states are shown in blue.
doi:10.1371/journal.pone.0044376.g004
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base pairing. Through examination of the changes that occurred

between nodes on these trees, we could observe the behavior of

paired sequence differences. For all cases in which both of the

paired sites change, if the changes are neutral, only one-third of

the second changes would restore base pairing. The difference

between expected and observed distributions was analyzed

statistically using the x2-test.

We then investigated the evolutionary interdependence of two

substitutions involved in a Watson-Crick switch. We recorded a

Watson-Crick switch when two lineages harbored different

Watson-Crick pairs of nucleotides at a pair of interacting sites

and the switch between them was caused by exactly two

substitutions, as judged from the reconstructed ancestral states. If

two substitutions are selectively neutral, they are expected to occur

independently, without clustering on the phylogenetic tree. The

extent of clustering can be characterized by the ratio of the

numbers of terminal to intermediate states (the terminal-to-

intermediate ratio, TIR) in the last common ancestor (LCA) of

the species [43].The LCA state separated by a Watson-Crick

substitution can either be identical to the terminal state (AU or

GC), or coincide with the intermediate state (e.g. AC or GU). If all

substitutions are selectively neutral, the TIR is expected to be 1:1.

A TIR with more frequent LCA terminal states may indicate

clustering of the two substitutions involved in a Watson-Crick

substitution and positive selection is involved in the evolution of

interacting pairs.

Simulation of 5S rRNA Sequence Evolution along the
Phylogenetic Trees

We tested the methods in this paper on randomly generated

sequence data. Simulated data sets of nucleotide sequences were

generated along the ML trees 1000 times (the null hypothesis). We

simulated the data using the ML parameters of the substitution

model inferred from the real sequences using the Seq-Gen

program [44]. We then extended our methods on the resulting

simulated data sets. For each of these simulated sequences, we also

predicted the structure using the program RNAfold [45,46]. Seq-

Table 2. Number of compensatory switches in 5S rRNAs.

Species compensatory switches Ancestral state(Terminal) Ancestral state(intermediate) Multiple changes

Eubacteria AU«GC AU GC GU AC

6 32 13 0 2

AU«CG AU CG AG UC

5 0 0 2 0

AU«UA AU UA UU AA

0 0 0 0 1

GC«CG CG GC CC GG

0 0 0 0 1

Fungi AU«GC AU GC GU AC

27 33 5 5 1

AU«CG AU CG AG UC

4 6 0 0 2

AU«UA AU UA UU AA

8 4 0 0 2

GC«CG CG GC CC GG

12 9 1 4 0

Plants AU«GC AU GC GU AC

7 31 5 0 0

AU«CG AU CG AG UC

2 0 0 0 1

AU«UA AU UA UU AA

0 0 0 0 0

GC«CG CG GC CC GG

4 10 0 1 0

Animals AU«GC AU GC GU AC

6 21 8 0 2

AU«CG AU CG AG UC

4 3 0 0 0

AU«UA AU UA UU AA

7 1 0 0 0

GC«CG CG GC CC GG

6 7 0 0 0

doi:10.1371/journal.pone.0044376.t002
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Gen, although widely used, does not take into consideration the

base pairing in the RNA structure. To this end, we used

PHASE2.0 [47], which allows the labeling of RNA secondary

structure into classes. RNA7D model was used for the simulation

of stem regions. RNA7D model, which groups all noncanonical

bases into a single mismatch class, offers a reasonable trade-off

between the generality and numbers of parameters suitable for the

size of data sets used in this study. 1000 repetitive simulations were

performed by the PHASE program following the phylogenetic tree

inferred from the real sequences. These simulated sequences were

also used to rule out the possibility of an artifact due to model

misspecification.

Figure 5. Evolutionary secondary structure maps of 5S rRNA. (A) Cenancestor 5S rRNA structure. (B) Human 5S rRNA secondary structure.
Compensatory substitutions that restored Watson-Crick pairs were shown in yellow. Coevolutionary interactions of multiple stem pairs were shown in
violet and interactions of stem and loop structures were shown in green.
doi:10.1371/journal.pone.0044376.g005
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RNA Secondary Structure Prediction
The secondary structures of Escherichia coli [48] and Homo sapiens

[49] 5S rRNA sequences were used as references for the

determination of prokaryotic and eukaryotic structural pairs,

respectively. To trace the evolution of 5S rRNA structure, we

predicted the ancestral structures of all interior nodes in the

phylogenetic trees using RNAfold (Vienna RNA package 1.8.5)

[45,46], with the consensus secondary structures as the constraints.

Results

Phylogenetic Reconstruction
The GTR (general time reversible)+G (gamma distribution)

evolutionary model [50] was selected as the optimal nucleotide

substitution model. Phylogenetic tree reconstruction was per-

formed using both ML and Bayesian methods with the GTR+G

model. Both the ML and the Bayesian analyses converged on

nearly identical topologies with proportionately similar support

levels (Figure 2, Figure S1). Our results are consistent with those of

some previous phylogenetic studies [51,52].

The Accuracy of Ancestral State Reconstruction
The EB method produced accurate reconstructions, with an

average accuracy rate of 97.562.41% (Mean6SEM of the

accuracies of the ensemble of reconstructions) of all nodes at all

sites correctly reconstructed. Across all reconstructed sites,

marginal posterior probabilities tended to be above 0.9 for the

EB analysis under the GTR+G model (Figure 3). For all tested

models used by ML analysis, reconstructions of the ancestral 5S

rRNAs were found to be in agreement at .98% of nucleotide

sites, suggesting the robustness of ancestral inference (Table S1).

Compensatory Evolution in 5S rRNA Sequences
Using CoMap methods, we detected 24 and 27 two-site groups

of coevolving sites for eubacteria and eukaryota, respectively

(Table S2). At least 91.6% of them were located within the known

structural regions. Moreover, a total of 23 and 35 of significant

coevolving sites pairs were detected by MIp methods for

eubacteria and eukaryota, respectively (Table S2), almost 88.6%

of which were already known structure pairs. In our analyses, only

pairs that were retrieved by both the CoMap and MIp methods

were considered as true ‘‘coevolving pairs’’ (Table 1). In eukaryota,

most of compensatory changes occurred in the helix I, helix III

and helix IV adjoining the loops or bulges (Table 1). The result

was slightly different in bacteria as many compensatory changes

were found to have occurred in helix I and helix IV, but few in

helix III.

We observed the pattern of paired sequence differences through

examination of the changes that occurred between nodes

(branching points) on the phylogenetic trees. Figure 4 shows an

example of coevolving site pairs in animal sequences. The closely

related species allowed us to detect most of the intermediate states

(e.g. GU). We observed 299 compensatory substitutions of all four

types, with 66.6% of them belonging to the AU«GC type (199

cases, Table 2) and 27.6% belonging to the GC«CG type. The

other two compensatory switches were very scarce with few

intermediate states, as shown in Table 2. The prevalence of errors

caused by multiple substitutions at each sites in our results must be

low, as only 4% of switches involved multiple substitutions.

For each deleterious mutation in a stem, we observed more than

two potential patterns of compensation, one involving restoration

of the Watson-Crick interaction (available for almost all mutations)

and, more than one indirect change (Figure 5). We observed three

patterns of compensation altogether. Beside the second-site

substitutions that directly restore the disrupted Watson-Crick

interaction, we noted several indirect mechanisms of coevolution.

First, multiple changes could compensate for one deleterious

mutation. As shown in Figure 5, the loss of an A24U pair in helix

III was compensated by the mutations A27RG and U52RC that

Table 3. Observed and Expected Substitutions in 5S rRNAs.

Data site and
substitutions Differences x2-test

Paired Unpaired

Eubacteria Observed 20 5 6.2961024

Expected 8 17

Fungi Observed 38 15 9.9761025

Expected 18 35

Plants Observed 15 1 2.6161024

Expected 5 11

Animals Observed 19 8 6.4661023

Expected 9 18

doi:10.1371/journal.pone.0044376.t003

Figure 6. Compensatory substitutions that maintain base pairing contribute significantly to the stabilization of RNA structure. (A)
Changes in unpaired bases within stems during the evolution of 5S rRNA. (B) Evolutionary secondary structure from ancestor to human 5S rRNA. (C)
Changes in paired bases within stems of native and simulated 5S rRNA sequences.
doi:10.1371/journal.pone.0044376.g006
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created a GC pair in the same helix. Second, compensation could

occur by creating new Watson-Crick pairs. For example, the

mutation C69RU in the helix V that disrupted a GC pair was

compensated by a C103RA substitution that created an extra AU

pair in the same stem, thus reversing the loss of free energy.

Another mechanism of compensation may involve the interaction

of neighboring pairs within a stem or the interactions of stem and

loop structures. For example, the compensatory changes that

created an extra Watson-Crick pair in helix V also eliminated loop

E. Our results indicated that compensatory evolution might

involve complex interactions between multiple sites.

Positive Selection through the Evolution of 5S rRNA
As shown in Table 3, analysis of the 5S rRNA sequences

demonstrated that there was a significant (p,0.01) excess of base-

paired differences in the observed distributions over that expected

by chance. In general, the observed value of paired differences was

two or three-fold larger than that predicted by the neutral model.

As shown in figure 6A, there was a decrease in unpaired bases

within stems during the evolution of 5S rRNA, which may lead to

an increase in RNA stability. The phylogenetic tracing of

structural transformation confirmed that 5S rRNA molecules

evolved to attain high conformational order (Figure 6B). This

Table 4. Stability of animal 5S rRNA secondary structures.

Species Real DG Mean DG p-valuea Species Real DG Mean DG p-value

A.domesticus 253.90 239.865.52 0.004 G.gallus 253.90 238.865.48 0.003

A.pernyi 253.90 239.665.59 0.006 H.sapiens 247.00 238.565.66 0.001

A.salina 253.50 240.665.61 0.005 H.contortus 252.32 238.765.56 0.010

B.xylophilus 241.90 237.665.61 0.022 L.polyphemus 252.32 240.565.44 0.002

B.mori 259.60 239.765.66 0.011 M.artiellia 243.20 238.165.82 0.019

B.taurus 248.12 238.565.65 0.001 M.musculus 253.90 238.565.69 0.001

C.elegans 238.50 238.065.63 0.046 M.edulis 250.16 240.265.62 0.005

C.briggsae 241.80 238.065.61 0.024 M.arenaria 244.20 238.065.55 0.014

C.cohnii 245.80 243.965.17 0.000 O.cuniculus 253.90 238.565.66 0.001

D.sechellia 240.26 237.965.67 0.001 R.norvegicus 253.90 238.565.73 0.001

D.yakuba 257.40 237.765.57 0.001 S.nova 244.80 246.865.00 0.065

D.erecta 256.20 237.265.76 0.001 S.kowalevskii 252.50 238.965.62 0.000

D.melanogaster 252.32 237.365.71 0.004 T.molitor 255.22 240.765.75 0.001

D.immitis 249.80 238.865.69 0.008 X.tropicalis 252.32 239.165.60 0.001

D.simulans 248.90 237.965.61 0.001 X.borealis 252.60 239.065.58 0.001

Means6SEM are shown.
aThe proportion of native 5S rRNAs less stable than simulated sequences.
doi:10.1371/journal.pone.0044376.t004

Figure 7. Overall rates of evolution for different stem regions.
doi:10.1371/journal.pone.0044376.g007
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observation was significant different from the data sets simulated

by both Seq-Gen and PHASE (Figure 6C, p,0.002 for Seq-Gen

and p,0.01 for PHASE). We found that all but one (S.nova)

simulated sequences were less stable than native 5S rRNAs

(Table 4). Taken together, our findings suggest that compensatory

evolution results, somewhat indirectly, from natural selection in

favor of thermodynamically stable RNA structures. Our structural

analysis showed that natural selection occurred early in the

evolutionary history of 5S rRNA. Besides, we found a significant

difference in substitution rates between the coevolving pairs and

other stem pairs, demonstrating distinct evolutionary constraints

(Figure 7). We observed 255 cases of compensatory changes in

which LCA states were identical to the terminal states and 44 cases

in which the LCA states were identical to an intermediate states

(Table 2), resulting in a TIR of 5.8:1. For the sequences simulated

by Seq-Gen, we observed a TIR of 1:1.17 (98,135 terminal LCA

state: 114,545 intermediate states). The TIR at interacting sites

was about 7 times that of our simulated data, and the difference

was statistically significant (p,0.001, Fisher’s t-test). The nonran-

dom occurrence of paired differences, the high rate of compen-

satory evolution, and the high TIR scores together indicate that

positive selection was involved in the evolution of 5S rRNA

sequences.

Discussion

In this paper, we provide a novel perspective about the effect of

selective constraints on the evolution of RNAs. Previous studies

have shown that base pairing constraints are the main driving

force of evolution in stem regions of RNA molecules [43,53]. We

provide new evidence that sequence sequence coevolutionary

interactions are highly dependent on secondary structure, and

demonstrate that the compensatory evolution results from natural

selection in favor of thermodynamically stable structure.

Compensatory substitutions often occurred within helices that

were crucial for the function of RNAs. Helix I and helix IV of 5S

rRNA are necessary factors for its mitochondrial targeting. Thus,

mutations that maintain base pairing in helix IV will improve 5S

rRNA import efficiency, while destabilizing mutations in this

region not only affect the structure but also decrease import

efficiency [54]. Although disruption of helix I only slightly changes

5S rRNA importability, mutations that interrupt stacking inside

the helix will decrease the rate of re-association of ribosomal

subunits [54]. Helix II and helix III are important for protein

binding and RNA interactions, so destabilizing mutations in these

regions strongly affect the translation accuracy and may even be

lethal [55,56].

The occurrence of wobble pairs and mismatch-pairs in the

helices indicates that the strength of selection may vary

substantially among base pairs. The rate of compensatory changes

also depends on the structural features of the molecule, as pairs

adjoining loops or bulges may be under different selective

constraints compared to internal pairings [57,58]. The only

coevolving positions that were not near a loop or bulge were in

helices I and IV in both Eukaryotes and Eubacteria. The likely

explanation for this observation is that helices I and IV are longer

than other helices, and selective constraints might be relaxed in

long helices [59]. Besides, these positions in both helix I and helix

IV are adjacent to uncompensated GU pairs, which are known

essential for RNA-RNA or RNA-protein interaction [54,55]. In

general, compensatory pairs evolve faster than other stem pairs

and may thus be under weaker selective constraints. However,

breaking these pairs will directly increase the size of the adjoining

loop or bulge, causing a partial or total structural rearrangement.

Our results show that most compensatory evolution in 5S rRNAs

occur through complex, indirect mechanisms, indicating that

previous studies that considered only compensation that restores

Watson-Crick pairs were oversimplified.

Our results provide a better understanding of the mechanisms

of intra-molecular coevolution in RNAs by incorporating selective

constraints of interactions with structural and evolutionary

information. Such large-scale analyses should take us towards a

general understanding of the coevolutionary processes in RNAs

and may even be useful to understand the functional and

structural interaction of complex molecules.
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