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Abstract
Functional magnetic resonance imaging of mice requires that the physiology of the mouse

(body temperature, respiration and heart rates, blood pH level) be maintained in order to

prevent changes affecting the outcomes of functional scanning, namely blood oxygenation

level dependent (BOLD) measures and cerebral blood flow (CBF). The anesthetic used to

sedate mice for scanning can have major effects on physiology. While alpha chloralose has

been commonly used for functional imaging of rats, its effects on physiology are not well

characterized in the literature for any species. In this study, we anesthetized or sedated

mice with isoflurane or alpha chloralose for up to two hours, and monitored physiological

parameters and arterial blood gasses. We found that, when normal body temperature is

maintained, breathing rates for both drugs decrease over the course of two hours. In addi-

tion, alpha chloralose causes a substantial drop in heart rate and blood pH with severe

hypercapnia (elevated blood CO2) that is not seen in isoflurane-treated animals. We sug-

gest that alpha chloralose does not maintain normal mouse physiology adequately for func-

tional brain imaging outcome measures.

1. Introduction
Functional magnetic resonance imaging (fMRI) monitors blood flow to the brain as a surrogate
measure of regional brain activation. In humans, physiological changes that can influence
blood flow, such as heart rate, breathing rate, body temperature and blood oxygen saturation
levels, can be continuously and non-invasively measured. However, when scanning rodents for
basic pre-clinical research, these measures can be challenging to monitor, and less amenable to
correction. In particular, blood oxygenation and carbon dioxide levels are particularly impor-
tant to monitor, as these can directly affect cerebral blood flow (CBF), and hence the outcome
measures used in functional scanning [1–4].

In the rat, there have been a number of successful studies of rat brain activation using fMRI
in both anesthetized [5–7] and awake [8–11] rats. For accurate fMRI results it is imperative to
maintain normal physiology to minimize any potential effects on regional changes in CBF and
blood oxygen level dependent (BOLD) contrast. A decrease in blood gas partial pressures of
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oxygen (hypoxemia) [12] or an increase in blood gas partial pressures of carbon dioxide
(hypercapnia) will both increase cerebral blood flow [13]. Blood gas levels can be indirectly
monitored by end tidal carbon dioxide measurement (capnography) in the rat, or by insertion
of an arterial catheter for periodic blood gas sampling in anesthetized animals. Variations in
acid-base status can have severe consequences for functional scanning because sustained devia-
tions in pH can cause a cascade of metabolic effects, including changes in oxygen binding
capacities [14]. Systemically, wide divergence of pH can have severe to life-threatening conse-
quences including lethargy and coma (if blood becomes too acidic), or muscle twitching, tet-
any, and seizures (if blood becomes too basic).

The advent of genetic knockout technologies in mice has led to a window of opportunity
in rodent scanning, where important information can be gleaned about brain processing in
genetically modified mice. Functional MR scanning of these mice, combined with genetic
and behavioral approaches, could powerfully combine to provide better translational animal
models for basic and preclinical research. However, the physiological monitoring and
homeostatic maintenance of mice under anesthesia is technically challenging. End tidal CO2

of the mouse cannot generally be measured accurately with standard available equipment, as
the lung capacity of the mouse is too small (1.2–1.8 ml)[15]. Arterial catheters are invasive
and challenging to implant in the mouse, and the volume of blood that can be taken safely is
extremely limited. While volumes up to 150μl of blood can be taken from a 200g rat every 24
hours [16] (and NIH ARAC guidelines, http://oacu.od.nih.gov/ARAC/documents/Rodent_
Bleeding.pdf), the entire circulating blood volume of a 20g mouse may only be 1.4 ml, and
therefore taking even a small sample can result in significant changes in blood pressure and,
hence, functional outcome measures [17–19].

To minimize stress in the noisy scanner environment and reduce movement artifact,
rodents are often anesthetized. A variety of anesthetics and sedatives have been used for in-
vivo imaging, including inhalation anesthetics such as isoflurane [20–22], sedatives such as
medetomidine (Domitor1) or alpha chloralose [23–26] often combined with a paralytic such
as pancuronium bromide [27, 28], and dissociative agents such as ketamine in combination
with muscle relaxants such as xylazine [29, 30]. For functional scanning, alpha chloralose has
been recommended as an ideal sedative for rodent studies as it preserves cortical blood flow
signals and a good signal-to-noise ratio (SNR)[31]. However, alpha chloralose is associated
with prolonged and poor recovery [32], so it is not generally allowed for longitudinal studies.
Inhalant anesthetics such as isoflurane can depress cortical activity and can be potent vasodila-
tors, potentially confounding blood flow signals [33–35]. Additionally, dissociative anesthetics
such as ketamine may alter the function of neural signaling, inherently altering the desired out-
come measure for functional imaging [36]. The use of anesthesia introduces many potential
confounds into brain imaging in the rodent, so it is important for researchers to be aware of
the effects of anesthesia regimen upon their experimental animal.

In this study, we investigated the physiological effects of isoflurane anesthesia and alpha
chloralose sedation in the mouse up to 120 minutes post-induction, a time course similar to
that used for functional scanning of the mouse brain. Breathing rate, heart rate and body tem-
perature were monitored. Arterial blood pH, arterial blood oxygen and carbon dioxide partial
pressures (PaO2 and PaCO2) were measured during, and/or at the end of anesthesia. We found
that alpha chloralose causes considerable blood acidosis and cardiopulmonary depression
beginning within 30 minutes after induction, and that isoflurane maintains better homeostasis.
This information can help investigators choose appropriate anesthesia/sedation regimens for
functional scanning.
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2. Materials and Methods

2.1 Animals
C57Bl/6 male mice (Jackson), 28-46g, were used. All mice were housed on a 12-hour light/dark
cycle in AAALAC-accredited NIH animal housing facilities with ad libitum access to food and
water. Studies were approved by the National Institutes of Health National Institute of Neuro-
logical Disorders and Stroke (NINDS) Animal Care and Use Committee (ACUC) under proto-
col #1368–14. All efforts were taken to ameliorate animal suffering.

Anesthesia was induced by isoflurane and sedation by alpha chloralose. Animals were arbi-
trarily chosen to receive isoflurane or alpha chloralose (AC) on experimental days, which were
counterbalanced between groups. Animals undergoing isoflurane anesthesia were not subse-
quently used for the alpha chloralose portion of the experiment. Euthanasia after alpha chloral-
ose administration was performed by cervical dislocation.

2.2 Anesthetics
Mice were anesthetized with either isoflurane (n = 24–36, depending on outcome measure) or
sedated with alpha chloralose (n = 15–17, depending on outcome measure). Isoflurane mice
were induced in a chamber at 4–5% and maintained at 1.5–2% in 60% oxygen-supplemented
air via nosecone [37]. Alpha chloralose mice were first induced with 4–5% isoflurane, and then
given an 114mg/kg i.p. injection of alpha chloralose [38]. Mice were maintained under decreas-
ing doses of isoflurane for approximately 15 minutes until the alpha chloralose took effect. 60%
oxygen-supplemented air was provided via nosecone. Alpha chloralose was dissolved in an
80:20 mixture of 1XPBS (phosphate buffered saline):PEG (polyethylene glycol, Sigma). At 60
minutes, alpha chloralose-sedated mice were given an additional half-dose bolus. All animals
were given 1ml of 0.9% saline i.p. or s.c. before physiological monitoring equipment was
attached to maintain blood pressure, mitigate anticipated respiratory losses, and to aid tail arte-
rial blood sampling.

2.3 Physiological monitoring
Physiological measures were taken every five minutes while the animal was under anesthesia.
Breathing rate (breaths/min) was measured with a pneumatic pillow (SA Instruments, Inc.,
Stony Brook, NY) placed beneath the anesthetized animal. Core body temperature was mea-
sured by rectal probe and maintained between 36–37°C (±0.5°) with a water-heated tempera-
ture feedback system consisting of a polystat PPO Heated Bath and Digi-Sense temperature
controller R/S (Cole-Parmer, Vernon Hills, Illinois). Heart rate was measured using mouse-
specific echocardiogram (ECG) leads (SA Instruments, Inc. Stony Brook, NY). Leads were sub-
cutaneously placed in the two axillary regions and right hind limb with caution to avoid local
arteries or nerves. We chose non-invasive monitoring techniques compatible with MRI
imaging.

Arterial samples for blood gas analysis were taken from the tail at various time intervals up
to 120 minutes during anesthesia. The NIH Guideline for survival bleeding of rodents was fol-
lowed (http://oacu.od.nih.gov/ARAC/documents/Rodent_Bleeding.pdf). Before sampling,
depth of anesthesia was checked by gently pinching the hind paw toes and monitoring the
withdrawal reflex. The tail was warmed to increase perfusion, the artery was nicked with a
19-gauge needle or scalpel, and 50–75μl of blood was immediately collected into a 100μl hepa-
rinized capillary tube. Direct pressure and elevation was applied to the tail immediately after
sampling to achieve rapid hemostasis. A drop of cyanoacrylate tissue adhesive was applied to
prevent any further blood loss. Blood pH, partial pressure of oxygen (PaO2), and partial
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pressure of carbon dioxide (PaCO2) were measured immediately using an ABL80 FLEX radi-
ometer (Radiometer Medical ApS, Bronshoj, Denmark). Mice receiving isoflurane were sam-
pled no more than twice (depending on weight) and mice receiving terminal alpha chloralose
were sampled no more than 3 times during the 120 minute observation period, with any fur-
ther samples taken at the terminal time point, or within 10 minutes prior.

All physiologic parameters (except pH and blood gas levels) were noted every 5 minutes for
anesthesia durations up to 120 minutes. Mice were allowed to naturally recover from isoflurane
anesthesia on a heated pad in home cages. Alpha chloralose is not approved for survival proce-
dures; therefore mice were euthanized by cervical dislocation at the end of alpha chloralose
recording periods.

2.4 Statistical analyses
2-way ANOVAs were performed using Prism 6 software, with treatment and time as factors.
2-tailed unpaired t-tests were performed to compare blood O2, CO2 and pH at the 120 minute
time point.

3. Results
In general, alpha chloralose produced a lighter, less stable plane of sedation. Qualitative obser-
vation showed that AC-treated animals showed occasional startle responses to external stimuli
such as loud noises, and variable withdrawal responses to toe pinch, used to check depth of
anesthesia. These reflexes were absent in isoflurane-anesthetized animals.

3.1 Breathing rate under anesthesia or sedation decreases over time
Breathing rates fell over time under both isoflurane anesthesia and alpha chloralose sedation
(F(11,386) = 5.68, p<0.0001, Fig 1), from an initial rate of 97±5 and 94±9 breaths per minute
respectively within the first ten minutes after induction to 84±6 and 78±6, respectively after 30
minutes. By 90 minutes, both groups had dropped to 75 breaths per minute (±5 under isoflur-
ane and ±3 under alpha chloralose). There were no differences between treatment groups in
breathing rate at any time point (F(1,386) = 0.001, p = 0.97, Fig 1).

3.2 Heart rate decreases as anesthesia duration increases, with the
greatest drop under alpha chloralose sedation
Normal heart rate for an awake mouse at rest is 450–500 beats/min, however there is great
variability in the literature [15]. Under isoflurane anesthesia, heart rates remained above 450
beats/min, starting at 463±20 beats/min (0–10 minutes, Fig 2) and ending at 489±20 beats/
min after two hours of anesthesia, and rates were stable throughout with little fluctuation
(Time F(11,384) = 1.26, p = 0.25). In contrast, initial heart rates were lower under alpha chlo-
ralose sedation, beginning at 415±17 beats/min immediately as sedation began, and dropping
quickly to 320–350 beats/min after 20 minutes of sedation, as isoflurane was stopped and
alpha chloralose absorbed. There was a significant difference between treatment groups
(F(1,384) = 516.2,p<0.0001, Fig 2).

3.3 Blood oxygenation levels do not differ between isoflurane anesthesia
and alpha chloralose sedation
While the methods used to collect arterial blood may have minute levels of contamination
from venous blood from local capillaries during blood collection from the tail artery, anecdotal
evidence (data not published) from venous samples at experimental endpoints in a few mice
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confirmed expected partial pressures of oxygen in the range of PaO2<40mmHg. All partial
pressures of oxygen analyzed as ‘arterial’ were>100 mmHg, confirming arterial blood
collection.

Arterial blood O2 levels were not different between treatment groups over the course of 120
minutes (F(1,81) = 0.6, p = 0.44, Fig 3), but O2 levels spiked in the isoflurane-treated animals in
the 15–30 minute time bin (p = 0.002) before returning to baseline levels (Fig 3a). After 120
minutes, O2 levels between groups were not different (p = 0.67, Fig 3b).

3.4 Carbon dioxide levels in arterial blood rise significantly under alpha
chloralose sedation
Over time, there is a significant overall increase in blood CO2 levels under both treatments
(F(5,82) = 4.06, p = 0.002, Fig 4), but this increase is significantly greater under alpha chloralose
sedation (F(1,82) = 38.06, p<0.0001, Fig 4a). After 120 minutes of sedation, arterial blood car-
bon dioxide levels were significantly higher in alpha chloralose-treated mice than isoflurane-
treated mice (p = 0.002, Fig 4b).

Fig 1. Breathing Rate decreases over time during prolonged anesthesia. There were no group differences between isoflurane
and alpha chloralose-treated mice at any time (F(1,386) = 0.001, p = 0.97), but there was a significant overall drop in breathing rates
for both groups (F(11,386) = 5.68, p<0.0001, n = 7–24 per time point).

doi:10.1371/journal.pone.0154936.g001
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3.5 Alpha chloralose sedation causes blood acidosis over time
During the course of two hours of anesthesia/sedation, blood pH decreases significantly in
both groups (F(5,86) = 8.97, p<0.0001, Fig 5a), coinciding with an increase in blood CO2 levels.
Despite the decrease, pH remains within a narrow and normal physiological range under iso-
flurane (pH 7.2–7.4)[15]. In contrast, alpha chloralose causes a significant drop in arterial
blood pH within the first hour, and it continues to fall over time, showing a clear difference
between treatment groups (F(1,86) = 35.72, p<0.0001, Fig 5a).

At the 120 minute time point, blood is significantly more acidotic in mice under alpha chlo-
ralose sedation (p = 0.0006, Fig 5b). Under isoflurane, 9 of 10 mice still had blood pH levels
within a normal range, but only 1 of 11 did not display acidosis (blood pH<7.2) under alpha
chloralose.

4. Discussion
We have shown that isoflurane and alpha chloralose, both commonly utilized for brain imag-
ing in mice [39, 40], cause differential effects on bodily homeostasis in the mouse. Alpha chlo-
ralose causes unstable physiological effects that could confound the outcome measures upon
which functional brain imaging relies. Isoflurane anesthesia maintained a stable heart rate,
blood pH and carbon dioxide partial pressure (PaCO2) as previously reported [41–43] despite
an overall drop in breathing rate over 120 minutes. In contrast, alpha chloralose sedation

Fig 2. Heart Rate drops under alpha chloralose sedation.Mice retain a steady heart rate under isoflurane anesthesia, ranging
from 463±20 beats/min to 489±20 beats/min. However, under alpha chloralose sedation, heart rate rapidly drops to below 350
beats/min, leading to a significant difference in heart rate between the treatment groups (F(1,384) = 516.2,p<0.0001, n = 9–23 per
time point). The shaded region indicates the normal heart rate for an awake mouse at rest (450–500 beats/min).

doi:10.1371/journal.pone.0154936.g002
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Fig 3. Blood oxygenation levels do not differ between isoflurane and alpha chloralose. A) Over the
course of 120 minutes of sedation/anesthesia, there were no group differences in blood oxygenation levels
(F(1,81) = 0.6, p = 0.44, n = 4–19 per time point), but there was a significant effect of time in the isoflurane
group, where blood oxygenation levels spiked between 15 and 30 minutes (F(5,82) = 4.06, p = 0.002), then
returned to baseline levels. B) Blood oxygenation is not different between isoflurane and alpha chloralose
after 120 minutes of anesthesia/sedation (p = 0.67).

doi:10.1371/journal.pone.0154936.g003
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Fig 4. Blood carbon dioxide levels increase significantly under alpha chloralose sedation over the
course of 120 minutes. A) Carbon dioxide levels in arterial blood were significantly higher under alpha
chloralose sedation (F(1,82) = 38.06, p<0.0001, n = 4–19 per time point). Although there was an overall effect
of time (F(5,82) = 4.06, p = 0.002), reflecting increasing CO2 levels over time, these levels did not differ
significantly from baseline over the course of 120 minutes under isoflurane anesthesia (p>0.05). B) After 120
minutes, carbon dioxide levels are significantly higher in alpha chloralose-sedated animals (p = 0.002).

doi:10.1371/journal.pone.0154936.g004
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Fig 5. Alpha chloralose sedation causes clear blood acidosis. A) While pH drops under both types of
anesthesia (F(5,86) = 8.97, p<0.0001, n = 3–19 per time point), the drop is much more pronounced under
alpha chloralose sedation (F(1,86) = 35.72, p<0.0001), dropping from a normal reading of pH 7.39±0.05 during
the first 15 minutes, to 7.13±0.07 by 120 minutes. In contrast, blood pH under isoflurane drops from 7.34
±0.04 to 7.27±0.06 after two hours, which is still within a normal physiological range for the mouse. The
shaded region indicates non-acidotic blood pH for the mouse (15). B) Blood is acidotic after 120 minutes of
alpha chloralose sedation (p = 0.0006).

doi:10.1371/journal.pone.0154936.g005
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caused a significant drop in breathing rates, a much-decreased but stable heart rate, and an
increase in blood carbon dioxide levels (PaCO2) with a severe drop in arterial pH over time.
Mice from both groups had no difference in blood oxygenation (PaO2).

Anesthesia is known to affect major organs, especially the cardiopulmonary systems. Anes-
thetized animals typically do not breathe as deeply as awake animals. Decreased tidal volumes
coupled with decreased respiratory rates can result in hypoventilation and a build up of circu-
lating CO2. Thus, respiratory acidosis (low pH and high PaCO2) is not uncommon in anesthe-
tized animals. Rao and Verkman [44] suggest a normal mouse partial CO2 pressure (PaCO2) of
34–35 mmHg. As CO2 levels increase under normal circumstances, central chemoreceptors
sensitive to arterial CO2 tension cause a compensatory increase in respiration and the excess
CO2 is exhaled to maintain normal blood gasses and pH [45]. Various drugs (including anes-
thetics) suppress the neurorespiratory center’s response to hypercapnia and are a common
cause of respiratory acidosis. We found an increase in PaCO2 in both groups over time, but
while the CO2 increase in isoflurane mice did not differ significantly from baseline values, the
mice sedated with alpha chloralose showed a steady and significant rise in PaCO2. We suggest
that the hypercapnia is most likely the result of the decreased respiratory rate exacerbating the
anesthetic hypoventilation. These effects upon respiration could be prevented by artificially
ventilating the animal, although the suitability of this invasive procedure will depend upon the
experimental outcome measures under investigation.

While the mouse appears to have a wide range of normal pH in the literature [15, 41–44],
acidosis in a human is diagnosed when pH falls below 7.36 [41]. Our data show that mice
under isoflurane maintained a normal arterial pH for up to 2 hours under anesthesia. In con-
trast, the alpha chloralose mice were acidotic after only 30 minutes and pH steadily declined
over time. The drop in pH was inversely related to a rise in PaCO2. We diagnose an acute pri-
mary respiratory acidosis by the low pH and high PaCO2. However, we cannot rule out a mod-
est metabolic component to the degree of acidosis seen, as other metabolic changes secondary
to anesthesia (lactate, insulin, glucose, free fatty acids, interleukin-6 and TNF-α levels) were
not measured and others have seen elevated lactate in the anesthetized mouse [41, 46, 47].

The severe respiratory acidosis of alpha chloralose mice, demonstrated by the marked drop
in pH, approached life-threatening levels. When pH drops below 7.2, metabolic enzymes may
not function, hemoglobin’s binding affinity for oxygen is decreased, and cardiac arrhythmias
may occur due to decreased cardiac contractility [19, 48]. These life-threatening conditions
could have severe effects on CBF and BOLD outcome measures, thus interfering with func-
tional imaging. Although the respiratory rate also decreased with isoflurane over time similar
to alpha chloralose, we did not witness the same severity of PaCO2 elevation and the end drop
in pH still remained within acceptable mouse limits.

The partial pressure of oxygen was high in both groups. Constantinides et al [43] found that
the ideal level of inspired oxygen for maintenance of stable cardiovascular physiology in the
mouse was above 50%. When breathing room air (~20% O2) the expected PaO2 is 95–100
mmHg with hemoglobin 95–98% saturated. With supplemental oxygen of 60% as in our study,
the expected PaO2 is 250–300 mmHg [14] as shown in our results.

One major drawback with anesthetized rodents for functional brain scanning is that anes-
thesia significantly decreases cortical activation levels [33], which is the outcome that CBF and
BOLD indirectly measures. However, lower levels of isoflurane anesthesia (0.75–1.5%) have
proven to produce reliable cortical activation in the mouse [20, 22, 49]. Due to its limited
effects on physiological measures, we therefore suggest that isoflurane is a more appropriate
tool than alpha chloralose for mouse brain functional scanning.

Alpha chloralose, along with the muscle paralytic pancuronium bromide, has been utilized
as an acceptable anesthetic for rat and mouse brain imaging [7, 27, 28, 40]. In both rats and
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mice, alpha chloralose cannot be reversed after administration, therefore correct initial dosages
are critical, but still not guaranteed to produce similar results in all animals. Alpha chloralose
has effects associated with respiratory complications, seizures and prolonged recovery in mam-
mals (including dogs, swine and rodents)[32], and so it is not permitted by most animal care
and use committees to be used for recovery experiments [50, 51].

While isoflurane is a known vasodilator [33], it has been recommended as a valuable alter-
native to alpha chloralose [52, 53]. We have also shown that it is capable of keeping a mouse
physiologically stable over long periods of time. In particular, we show here that heart rate,
PaO2, PaCO2 and blood pH is well maintained under isoflurane. This is a good indication of a
well-functioning cardiopulmonary system and normal basal physiology.

The purpose of anesthesia is to provide restraint with minimal stress, pain or adverse side
effects, and cause amnesia of painful procedures. Adequate agents work because they interfere
with the brain’s conscious recognition of pain or stress. Therein lies the challenge of functional
imaging of animals, because distress must be prevented while maintaining neural pathways of
interest. Additionally, anesthetics cause secondary effects on other organs to various degrees,
namely the cardiopulmonary systems. Alternative anesthetic and sedative agents have been
successfully used for rodent functional imaging and include halothane [54], ketamine [55] and
medetomidine [25, 56], although isoflurane and alpha chloralose remain the most utilized in
the literature. However, all anesthetics contain caveats for brain imaging; for example, Schro-
eter et al [57] compared isoflurane, medetomidine sedation, propofol and urethane on BOLD
and cerebral blood volume (CBV) imaging and saw that in the mouse, fMRI responses are
influenced by stimulus-induced cardiac changes (an arousal response), potentially masking
stimulus-evoked signals. Researchers must therefore carefully consider anesthetic choices
based on the research question. We have shown that isoflurane does not interfere with some
physiological measures that influence BOLD and CBF outcome measures. As it maintains
physiological stability up to two hours, we suggest it is more suitable than alpha chloralose for
functional imaging studies.

Supporting Information
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