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Abstract

Epigenetic processes - including DNA methylation - are increasingly seen as having a fundamental role in chronic diseases
like cancer. It is well known that methylation levels at particular genes or loci differ between normal and diseased tissue.
Here we investigate whether the intra-gene methylation architecture is corrupted in cancer and whether the variability of
levels of methylation of individual CpGs within a defined gene is able to discriminate cancerous from normal tissue, and is
associated with heterogeneous tumour phenotype, as defined by gene expression. We analysed 270985 CpGs annotated to
18272 genes, in 3284 cancerous and 681 normal samples, corresponding to 14 different cancer types. In doing so, we found
novel differences in intra-gene methylation pattern across phenotypes, particularly in those genes which are crucial for stem
cell biology; our measures of intra-gene methylation architecture are a better determinant of phenotype than measures
based on mean methylation level alone (K-S test pv10{3 in all 14 diseases tested). These per-gene methylation measures
also represent a considerable reduction in complexity, compared to conventional per-CpG beta-values. Our findings
strongly support the view that intra-gene methylation architecture has great clinical potential for the development of DNA-
based cancer biomarkers.
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Introduction

Epigenetic information is stored in the genome in the form of

heritable modifications to the chemical structure of DNA, such as

methylation of particular bases, as well a variety of chemical

modifications of the histone proteins which package the DNA.

Epigenetic information can be modulated during the lifetime of an

organism by environmental cues [1–3] and these changes persist in

subsequent mitoses, leading to an acquired change of phenotype.

DNA methylation is an epigenetic mark consisting almost

entirely of the methylation of CpG dinucleotides [4], and it is

possible for one, both, or neither alleles at a particular genomic

locus to be methylated [5]. Hypermethylation of CpGs in the gene

promoter (the region close to the transcriptional start site, TSS) are

incontrovertibly associated with silencing of the corresponding

gene, and this effect is particularly important in cancer, where

aberrant gene silencing is associated with functional changes

important in every stage of tumour progression [6].

It has been found previously that variability of methylation at

specific genomic locations is important in the development of

cancer [7]. It has been noted in particular that there is an increase

in stochastic methylation variability in regions which are already

known to have altered levels of methylation in cancers, leading to

aberrant and varying gene expression, and providing an epigenetic

mechanism for tumour heterogeneity [8]. It has also been shown

recently that statistics based on differential variability of methyl-

ation can lead to improved detection of risk markers in pre-

cancerous growths [9,10].

Polycomb group proteins (PcG) play a fundamental role in

developmental processes, maintaining a class of genes known as

polycomb group targets (PCGTs) in a repressed state in ES

(embryonic stem) cells, to maintain pluripotency, and ‘poised for

activation’ during differentiation [11]. The link between PCGTs

and cancer has been discussed by many authors [12–14]; it was

recently shown that DNA hypermethylation in cancers preferen-

tially targets PCGTs which are developmental regulators [15],

those authors hypothesising that this may contribute to the stem-

like characteristics of cancer; in further support of these ideas it has

been noted that tumours which are particularly poorly differen-

tiated tend to display expression patterns which are similar to ES

cells, including repression of PCGTs [16].

Polycomb group proteins maintain the repressed state of genes

via chromatin (the DNA packaging); DNA in its compact state is

wrapped around histone proteins (a main component of chroma-

tin), and PRC2 (polycomb repressive complex 2) is responsible for

the trimethylation of lysine 27 of histone 3 (leading to the
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epigenetic mark H3K27me3), which is associated with this

compact state [17]. Genes occupied by PRC2 in ES cells mostly

carry bivalent chromatin marks [15]; bivalency includes the

histone modification H3K4me3 (trimethylation of lysine 4 on

histone 3), a mark which is associated with activation of the

corresponding gene, in addition to the repressive H3K27me3

mark. It is thought that it is this bivalent state which maintains

stemness, keeping the gene repressed, but poised for activation

upon differentiation. As DNA methylation is also associated with

repression and activation of genes, it is of interest whether the

methylation patterns of genes which carry the chromatin markings

H3K27me3 and/or H3K4me3 in stem cells are altered in cancer,

as such aberrant alteration of gene regulation via DNA

methylation might be associated with a return of or accentuation

of stem-like cell characteristics.

The role of early epigenetic changes in oncogenic transforma-

tion, including disruption of the healthy epigenotype of progenitor

cells, the creation of an epigenetically permissible environment in

which genetic aberrations can have tumorigenic effects, and

phenotypic plasticity leading to tumour adaptation and associated

with intra-tumour heterogeneity, was originally proposed by

Feinberg and colleagues [1]. It is hypothesised that one way in

Figure 1. Per-gene methylation measures. (a) The mean z-score measure is calculated for tumour sample j (shown in red) for gene g (to which n
probes map), from the mean, mi , and standard deviation, si , of the healthy control samples at each probe i (b) The methylation profiles of 586 cancer
(red) and 98 healthy (blue) samples across a gene found as significant according to the mean z-score measure, with probes spaced (unevenly)
according to their genomic loci. Genomic regions are indicated under the gene with the colour code displayed at the bottom of the figure. (c) A
heatmap illustrating the same gene, with probes evenly spaced; b values for each sample and each probe are indicated by the colour code displayed
at the top of the figure. Samples are plotted in order of mean z-score, such that the tumour sample with the smallest mean z-score and the healthy
sample with the smallest mean z-score are adjacent. Genomic regions are indicated under the gene with the colour code displayed at the bottom of
the figure. N.B., this gene has two transcriptional start sites (TSSs) in different locations. (d) The mean derivative measure is calculated, for sample j, as
the mean of the absolute differences in the corresponding b values between consecutive probes, across the whole of gene g. (e) The mean
methylation measure is calculated, for sample j, as the mean of the corresponding b values of the probes annotated to a particular genomic region of
g. (f) The methylation variance measure is calculated, for sample j, as the variance of the corresponding b values of the n’ probes annotated to a
particular genomic region of g. N.B., (d)-(f) are calculated without reference to healthy samples, whereas (a) is calculated with reference to healthy
samples.
doi:10.1371/journal.pone.0068285.g001
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which stochastic dysregulation of stem cell genes and associated

phenotypic heterogeneity might manifest, is in terms of cell to cell

variability of methylation; this would in turn be expected to

correlate with intra-gene variability of methylation, as measured

using aggregated mixtures of heterogenous cells in a microarray

experiment.

Intra-gene methylation variability is deemed to be a disruption

of the normal methylation profile, or architecture, of a particular

gene, and such a change may be more generally linked to the

creation of an epigenetically permissible environment for onco-

genic transformation, and to tumourigenesis. Such changes would

be expected to accompany the early stages or even precede the

onset of the disease, and hence identifying reliable indicators of

such changes might provide a valuable lead for the development of

DNA-based cancer biomarkers in bodily fluids, especially as it has

been shown recently that DNA methylation biomarkers related to

stem cell genes are associated with clinical outcome in women’s

cancers [18].

Previous studies [7,9,10] have focussed on the effects of sample

to sample variability of methylation; here for the first time, we

analyse the association of phenotype with intra-gene variability of

methylation. Making use of data derived from the Illumina

Infinium HumanMethylation450 platform, which interrogates

w485000 CpGs genome-wide including w330000 with known

gene annotations (corresponding to on average 17 CpGs per gene),

we have investigated measures of intra-gene methylation archi-

tecture, and their ability to differentiate between healthy and

disease phenotypes. For this we have developed new measures,

and adapted standard ones.

Results

To investigate intra-gene methylation architecture, four gene-

centric measures are considered, as follows:

1. The mean deviation of the sample methylation profile from the

mean methylation profile of healthy phenotype control

samples, for each gene. This mean methylation profile may

fluctuate a lot within each gene, and so it is not the same as the

mean methylation level of a gene. Because this mean deviation

is normalised at every probe by dividing by the probe standard

deviation across the healthy phenotype control samples, it is

called the ‘mean z-score’ measure; this is illustrated in

Figure 1(a). An example of one of the genes found to be most

significant according to this measure is shown in Figure 1(b)

and (c).

2. The mean derivative of the methylation measurements for each

gene. The derivative of the methylation profile for a given gene

and sample is approximated by the differences between the

methylation values measured at consecutive probes mapping to

that gene. The mean of the absolute values of these differences

is then calculated as the ‘mean derivative’ measure; this is the

same as the sum total of all the increases and decreases in

methylation level from one probe to the next across the gene;

this is illustrated in Figure 1(d). This is a self-calibrating

measure of intra-gene methylation variability, because it is

calculated for a given sample from the differences within that

sample, and without reference to any other sample.

3. The mean of the methylation measurements for a particular

genomic region for each gene; this is illustrated in Figure 1(e).

Typical mean methylation levels vary greatly from one

genomic region to another; hence the mean methylation level

for a particular genomic region was used as the ‘mean

methylation measure’ for a gene, and the same region was

used for each gene.

4. The variance for each gene of the methylation measurements

for a particular genomic region; this is illustrated in Figure 1(f).

Because variance is calculated in relation to the mean, this

measure was similarly calculated for each gene using only the

probes mapping to a particular genomic region, again using the

same genomic region for each gene. This is called the

‘methylation variance’ measure; it is another self-calibrating

measure.

These four measures each seek to examine a different

characteristic of intra-gene methylation architecture, and all are

able to classify samples one-by-one, i.e., they are intra-gene or

intra-sample measures, rather than sample to sample measures as

has been investigated previously in the context of methylation

variability.

As the mean z-score is calculated as a mean measure of

methylation difference from the healthy methylation profile,

strictly speaking it is a measure of methylation instability. The

mean derivative and methylation variance measures are both

measures of intra-gene methylation variability; however, the mean

derivative is calculated with reference to the ordering of the probes

(i.e., this measure would return a different number if the order of

the probes was randomised) whereas the methylation variance

would not; the mean derivative additionally considers all probes

mapping to the gene, whereas the methylation variance measure

only considers probes mapping to a particular genomic region.

The mean methylation measure is unique here in that it does not

measure difference in methylation level and instead measures

absolute methylation level; it is included here mainly for

comparison.

The properties of these four measures were initially investigated

in the context of fourteen Illumina Infinium Human Methylation

450 data sets, which were downloaded from The Cancer Genome

Atlas (TCGA) [19]. We applied these four measures to the

fourteen TCGA data sets; in all, we analysed 450 K DNAm data

from 3284 tumour and 681 healthy samples; details of the number

of samples of each phenotype and in each data set are shown in

Table 1 (for data set abbreviations, see ‘Methods and Models’). We

also carried out a meta-analysis of these data which is to our

knowledge the largest meta-analysis performed in any DNA

methylation study.

Comparison of Intra-gene Methylation Measures
As a preliminary assessment of the relative merits of these four

measures, we looked at their ability to distinguish between tumour

and healthy tissue. The correlation of the tissue sample phenotype

to the four methylation measures was considered in terms of

distributions of per-gene AUCs (area under curve, which is a

measure of prediction accuracy, see ‘Methods and Models’ for

details). These distributions are shown in box-plots in Figure 2. For

every data set, the mean z-score measure is significantly better at

discriminating tumour from healthy tissue using these methylation

data, than the mean derivative measure, the methylation variance

measure, and the mean methylation measure (visual comparison of

Figure 2 was confirmed by Kolmogorov-Smirnov tests, data not

shown); this is because the mean z-score measure is defined

relative to the healthy mean methylation profile. Excluding the

mean z-score measure, the mean methylation measure is

significantly better at discriminating tumour from healthy tissue

than the remaining two measures in ten of the remaining data sets,

with the mean derivative discriminating significantly better in two

data sets (READ and THCA), and inconclusive results for the

Intragene DNA Methylation Variability in Cancer

PLOS ONE | www.plosone.org 3 July 2013 | Volume 8 | Issue 7 | e68285



remaining data sets (KIRC and PAAD, which has unstable results

due to small sample size). Figure S3 shows, in scatter plots,

pairwise comparisons of each of the four methylation measures for

a gene which was among the top 1000 genes with the highest AUC

according to each of these measures.

To directly compare the effectiveness of the mean z-score

measure at predicting phenotype (cancer/healthy) independent of

mean methylation level, a logistic regression model was fitted to

each gene using mean z-score and mean methylation as covariates,

leading to p-values for each gene for each of mean z-score and

mean methylation. In every data set except two, for the large

majority (80–100%) of those genes with at least one of the two

covariates significant, the mean z-score covariate p-value was

more significant than the corresponding mean methylation

covariate p-value. In the remaining two data sets, the mean z-

score covariate p-value was more significant for the majority (50–

80%) of genes with at least one significant covariate (detailed

results not shown). Hence, the mean z-score is a better predictor of

phenotype than the mean methylation, even after adjustment for

mean methylation level.

Meta-analysis and Gene-set Enrichment Analysis
A meta-analysis of the fourteen data sets was carried out. Genes

were assigned significance according to their mean AUC (based on

the mean z-score measure) across all data sets by a permutation

method (see ‘Methods and Models’ for details); this identified over

4000 significant genes which were associated with a consistent

difference between cancer and healthy phenotypes across tissue

types (FDR qƒ0:05). These genes consistently show the biggest

differences between healthy and cancer phenotypes (as the mean

z-score measure is defined relative to healthy control samples), and

as the mean z-score is a measure of methylation instability, they

are termed the most unstable meta-analysis genes. The mean z-

scores for individual tumour and healthy samples for the 50 most

significant of these most unstable meta-analysis genes are displayed

in Figure 3, and details about the 100 most significant of these

genes are shown in Table S1. In particular, Figure 3 shows the

extent to which the instability is consistent (high mean z-score, red)

across cancer patients as compared to healthy patients (low mean

z-score, blue). Genes with a mean AUC close to 0.5 across most

tumour types were also found; these are genes which tend to have

the smallest differences between healthy and cancer phenotypes

across tissue types and hence are marked as least unstable meta-

analysis genes. Over 2800 least unstable meta-analysis genes were

found to be significant by this permutation method (FDR qƒ0:05)

and the 100 most significant of these are shown in Table S2. There

is however less consistency among the least unstable meta-analysis

genes across tumour types, e.g., the 100th placed significant least

unstable meta-analysis gene has an AUC of less than 0.6 for only

10 out of 14 tumour types.

To confirm the biological significance of the findings of this

meta-analysis with reference to genes which are well known to be

important in cancer biology, the most unstable and least unstable

meta-analysis genes were tested for enrichment by genes which in

Table 1. Number of samples in each data set.

healthy cancer total

BRCA 98 586 684

UCEC 36 334 370

THCA 50 357 407

LUAD 32 306 338

BLCA 18 126 144

LUSC 43 227 270

COAD 38 258 296

HNSC 50 310 360

KIRC 160 283 443

LIHC 50 98 148

READ 7 96 103

PRAD 49 176 225

KIRP 44 87 131

PAAD 6 40 46

doi:10.1371/journal.pone.0068285.t001

Figure 2. Distributions of per-gene AUCs calculated from intra-gene methylation measures. Each box displays the values of the AUCs for
the 1000 most significant genes for a particular tumour type and intra-gene methylation measure. The mean z-score predicts phenotype better than
the other three measures in all 14 tumour types. Tumour type abbreviations are as follows: Bladder Urothelial Carcinoma (BLCA), Breast Invasive
Carcinoma (BRCA), Colon Adenocarcinoma (COAD), Head and Neck Squamous Cell Carcinoma (HNSC), Kidney Renal Clear Cell Carcinoma (KIRC),
Kidney Renal Papillary Cell Carcinoma (KIRP), Liver (LIHC), Lung Adenocarcinoma (LUAD), Lung Squamous Cell Carcinoma (LUSC), Pancreatic
Adenocarcinoma (PAAD), Prostate Adenocarcinoma (PRAD), Rectum Adenocarcinoma (READ), Thyroid Carcinoma (THCA), and Uterine Corpus
Endometrioid Carcinoma (UCEC).
doi:10.1371/journal.pone.0068285.g002
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ES cells carry the repressing/activating chromatin marks

H3K27me3 (H3K27 ES genes), H3K4me3 (H3K4 ES genes)

and bivalent (i.e., both H3K27me3 and H3K4me3 marks, Biv ES

genes) and enrichment by PCGTs (ES cell polycomb group

targets). The most unstable meta-analysis genes are highly

enriched by Biv and H3K27 ES genes and PCGTs, and the least

unstable meta-analysis genes are highly enriched by H3K4 ES

genes (Table 2).

A more general gene-set enrichment analysis (GSEA) was also

carried out, testing enrichment of the most unstable and least

unstable meta-analysis genes by members of over 6000 gene sets

(see ‘Methods and Models’ section for details). The 100 most

significantly enriched of these gene sets by the most unstable and

least unstable meta-analysis genes appear in tables S3 and S4

respectively. In particular Table S3 (gene sets enriched by most

unstable meta-analysis genes) shows many developmental and cell

signalling gene sets.

Figure 3. Heatmap of the mean z-score for the top 50 genes found by the meta-analysis. Mean z-scores for tumour (T) and healthy (H)
samples are displayed in a heatmap according to the colour code for the top 50 meta-analysis genes (top 50 most consistently unstable genes). The
heatmap shows the extent to which the instability is consistent (high mean z-score, red) across cancer patients as compared to healthy patients (low
mean z-score, blue). For each tissue type healthy samples appear to the right of tumour samples; where no space is available the (H) label is omitted.
Abbreviations: R (READ), B (BLCA), K(KIRP), P (PAAD).
doi:10.1371/journal.pone.0068285.g003
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The most unstable meta-analysis genes are associated with

generally higher methylation levels than genes which are not

significant according to the meta-analysis (i.e., genes which are

neither most unstable or least unstable meta-analysis genes) for

both tumour and healthy samples, for these genomic regions

located closer to the promoter across all tissue types, however the

most unstable meta-analysis genes are also associated with a large

variability of methylation levels (Figure S4). The least unstable

meta-analysis genes conversely are associated with consistently

very low levels of methylation in both tumour and healthy samples

for these genomic regions, and particularly for TSS200, 59UTR

and 1stExon, suggesting that the low methylation instability of

these genes is associated with a lack of methylation in the most

functionally important genomic regions in both diseased and

normal tissues, and therefore that regulation of these genes is by

mechanisms other than those involving DNA methylation, in

particular the availability of transcription factors.

Correlation of Tumour Gene Expression with Intra-gene
Methylation Architecture

In order to investigate the effect of intra-gene methylation

architecture on gene expression, the 217 BRCA tumour samples

with matched gene expression and methylation data available

from TCGA were considered in more detail. For each gene a non-

linear multivariate regression analysis was performed (see ‘Meth-

ods and Models’) of gene expression to intra-gene methylation

architecture, for these matched tumour samples, taking gene

expression as the response, and taking one of mean z-score, mean

derivative and methylation variance as one covariate predictor,

together with mean methylation as a second covariate predictor.

The relative proportions of genes found as significant or not, and

significant according to one covariate or the other, or both, are

shown in Figure 4; in particular there are many genes with

expression not significantly predicted by mean methylation but

significantly predicted by mean z-score, mean derivative, or

methylation variance.

Enrichment by stem cell genes of genes with expression

significantly predicted by only one covariate was again tested to

confirm the biological significance of findings with reference to

genes which are well known to be important in cancer biology. It

was found that genes with expression predicted by only the mean

z-score covariate were significantly enriched by Biv ES genes and

PCGTs (p~1:3|10{3 and p~5:0|10{3 respectively, Fisher’s

exact test), a result which is consistent with the findings here that

Biv ES genes are enriched among the most unstable meta-analysis

genes, i.e., those genes which are most consistently associated with

the biggest difference in methylation pattern between cancer and

healthy phenotypes. It was also found that, correspondingly, genes

with expression predicted by only the mean methylation covariate

in the multivariate regression with the mean z-score covariate were

significantly enriched (p~9:0|10{4, Fisher’s exact test) by H3K4

ES genes, a result which is consistent with our findings that H3K4

ES genes are enriched among least unstable meta-analysis genes,

i.e., those genes which have consistently least difference in

methylation pattern between cancer and healthy phenotypes.

Similarly, it was found that genes with expression predicted by

only the mean derivative covariate were significantly enriched by

Biv ES genes and PCGTs (p~9:5|10{4 and p~8:4|10{4

respectively, Fisher’s exact test) and that genes with expression

predicted only by the mean methylation covariate in the same

Table 2. Enrichment of MUs and LUs genes by stem cell
genes.

H3K27 H3K4 Biv PCGT

MUs 1.43610–28 1 5.19610–278 1.77610–234

LUs 1 4.33610–70 1 1

P-values (one-sided Fisher’s exact test) show enrichment of most unstable
meta-analysis genes (MUs) and enrichment of least unstable meta-analysis
genes (LUs) by genes in various SC categories. This confirms the biological
significance of the findings of the meta-analysis with reference to these genes
which are well known to be important in cancer biology.
doi:10.1371/journal.pone.0068285.t002

Figure 4. Correlation of expression to intra-gene methylation
architecture, for matched BRCA samples. Expression was taken as
the response variable, with one of mean z-score, mean derivative and
methylation variance as one covariate predictor, together with mean
methylation as a second covariate predictor. (a) The proportion of
genes with at least one covariate significant (FDR qƒ0:05), and the
proportion of genes with neither covariate significant. (b) The
proportion of significant genes (i.e., the proportion of the genes
represented by the left of each pair of bars in a) which are significant
due to one, or the other, or both covariates. For the genes which are
significant due to only one covariate predictor, the proportions of these
genes for which the significance is due to positive or negative
correlation are indicated on the bars with/and \ respectively. There are
many genes with expression not significantly predicted by mean
methylation but significantly predicted by mean z-score, mean
derivative, or methylation variance.
doi:10.1371/journal.pone.0068285.g004

Intragene DNA Methylation Variability in Cancer

PLOS ONE | www.plosone.org 6 July 2013 | Volume 8 | Issue 7 | e68285



multivariate regression were significantly enriched by H3K4 ES

genes (p~3:1|10{4, Fisher’s exact test).

These findings extend to heterogeneous tumour phenotype, as

defined by gene expression, the idea that differences in methyl-

ation patterns in stem cell genes are a hallmark of cancer, and

shows that this can be measured by intra-gene methylation

architecture in the form of intra-gene methylation variability

(according to the mean derivative and methylation variance

measures) and instability (according to the mean z-score measure)

more accurately than by mean methylation level alone.

Association of Genome-wide Mean z-score with Breast
Cancer Intrinsic Subtypes

Differences in intra-gene methylation architecture between

heterogenous tumour phenotypes (as defined by gene expression)

was further explored, in the context of breast cancer intrinsic

subtypes. The same 217 BRCA samples with matched gene

expression and methylation data available were each uniquely

assigned to one of these disease subtypes, according to established

molecular definitions, using the PAM50 classifier [20]. This was

done by correlating the gene expression profile (Spearman

correlation) for each sample to the PAM50 classifier canonical

gene expression profiles for 5 different intrinsic subtypes, and for

each sample choosing the subtype with the largest correlation

coefficient, leading to 42 samples classified as Basal, 24 as Her2, 81

Luminal A, 54 Luminal B, and 16 classified as Normal. For each

of these samples, a genome-wide mean z-score was also calculated,

as a per-sample genome-wide measure of intra-gene methylation

architecture. The distributions of these genome-wide mean z-

scores for each intrinsic subtype are shown in Figure 5; there are

clear differences in the means and distributions between each of

the subtypes. A Kruskal-Wallis test was carried out to check the

significance of these differences, with a very significant result,

p~1:4|10{12. Removing the samples classified as Luminal B

and Normal (as the distributions of genome-wide mean-z scores

have larger and smaller variances, respectively, for these subtypes

than the others), still resulted in a significant result in the Kruskal-

Wallis test, p~0:023. This ability to distinguish between

heterogenous tumour phenotypes, in the context of established

molecular definitions of disease subtypes, indicates that it may be

possible to use intra-gene methylation architecture to develop new

molecular classifiers of cancer, or make established ones more

robust. This is particularly interesting, since methylation levels are

typically more stable than gene expression levels.

Discussion

We have shown that the reorganisation of intra-gene methyl-

ation architecture is a fundamental characteristic of cancer cells,

and that there are many ways to assess these differences, which can

provide complimentary information. We have developed measures

to detect some of these differences, including the first investigation

of intra-gene variability of methylation (as opposed to sample to

sample variability of methylation). We have shown that our mean

z-score measure is consistently more effective at predicting cancer

compared to healthy phenotype than mean methylation, even

after adjustment for the mean methylation level.

We have carried out what is, to our knowledge, the largest meta-

analysis performed in any DNA methylation study. In particular,

over 4000 genes were found to be significantly associated with a

consistent difference between cancer and healthy phenotypes,

demonstrating that, as a method for distinguishing cancer from

healthy tissue, our mean z-score measure is robust to differences

between tumour types. The 100 most significant genes according

to this meta-analysis (Table S1) can be considered as particularly

characteristic of a generalised and non tissue-specific cancer

phenotype. These least unstable meta-analysis genes are also

significantly enriched (Table 2) by genes carrying H3K27 and

bivalent chromatin marks in ES cells and by PCGTs, consistent

with the idea that the tumour phenotype is associated with the

acquisition of stem-like cell characteristics [15]. In this meta-

analysis, over 2800 genes were also found to be significantly

associated with an absence of difference in methylation pattern

from healthy to cancer, and these are significantly enriched by

genes carrying the activating H3K4 chromatin mark in ES cells

(Table 2).

There is a particularly big contrast in the effectiveness of these

methods with respect to endocrine cancers. On the one hand,

these methods are particularly insensitive to PRAD and THCA

(Figure 2), and furthermore, the genes identified as being most

significant in the meta-analysis do not seem to show the same

pattern of instability in these cancers (Figure 3). This suggests the

possibility that epigenetic mechanisms may, in general, be less

relevant to oncogenic processes in THCA and PRAD. On the

other hand, These methods are very effective at determining

differences in epigenetic patterns with respect to both BRCA and

UCEC (Figure 2), and these cancers show significant patterns of

instability in a large proportion of the genes identified as being

most significant in the meta-analysis (Figure 3).

The correlation for tumour samples of gene expression to intra-

gene methylation architecture (Figure 4) shows that there are a

substantial number of genes for which mean methylation is not

significantly predictive of gene expression but other measures of

intra-gene methylation architecture are. In particular, in the case

of our mean z-score and mean derivative measures, genes with

Figure 5. Distributions of genome-wide mean z-score, for
breast cancer intrinsic subtypes. The mean across all genes of the
mean z-scores was calculated for the 217 BRCA samples with matched
expression and methylation data available. These samples were
independently classified by correlation of their gene expression profiles
(Spearman correlation) with those of the PAM50 breast cancer intrinsic
subtype classifier [20]. The distributions of these genome-wide mean z-
scores, for each intrinsic subtype, are shown in the boxplots. Indicated
significance was calculated using the Kruskal-Wallis test.
doi:10.1371/journal.pone.0068285.g005
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expression predicted by these measures and not by mean

methylation are enriched by Biv ES genes and PCGTs, suggesting

that the intra-gene methylation instability and variability are able

to provide important information about heterogeneous tumour

phenotype (as measured by gene expression), particularly in

relation to stem-like cell characteristics, which is beyond the reach

of measures based on mean methylation level alone.

The differences in the genome-wide mean z-scores across breast

cancer intrinsic subtypes (Figure 5) highlight the potential of intra-

gene methylation architecture to distinguish between heterogenous

tumour phenotypes in the context of established gene expression

based definitions of distinct subtypes of this disease. This indicates

that it may be possible to use intra-gene methylation architecture

to develop new molecular classifiers of cancer, or make established

ones more robust.

Further improvements in classification by our methods will be

gained by the inclusion of complementary epigenetic data, in

particular those which measure patterns of histone modification.

As discussed, it is well established how crucial genes which carry

important histone markings in stem cells are to understanding

cancer biology. By extending the view of the epigenetic landscape

beyond DNA methylation to consider also histone markings not

just in stem cells but also in mature healthy cells and cancer cells,

we will gain mechanistic insights into the interaction between

intra-gene methylation architecture and histone modifications.

In summary, we have shown for the first time that generalised

differences in intra-gene methylation architecture are a better

predictor of phenotype than mean methylation level alone, and we

have developed novel measures of these differences, which offer a

considerable reduction in complexity from per CpG methylation

measures (hundreds of thousands of features) to per gene

methylation measures (tens of thousands of features). We have

shown that there are many genes with expression predicted by

measures of intra-gene methylation architecture other than mean

methylation level, and therefore that more general measures of

intra-gene methylation architecture offer novel information about

heterogeneous tumour phenotype (as defined by gene expression).

We have also shown that intra-gene methylation architecture is

able to distinguish between established molecular definitions of

heterogenous cancer subtypes. Because it has been shown

previously that differences in methylation pattern occur prior to

the onset of disease [18], we anticipate that our measures of intra-

gene methylation architecture might also be able to efficiently find

pre-disease methylation patterns. We therefore believe that our

measures of intra-gene methylation architecture have potential for

further development as DNA based cancer biomarkers.

Methods and Models

Data Source and Preprocessing
Methylation data, collected via the Illumina Infinium Human-

Methylation450 platform, were downloaded from The Cancer

Genome Atlas (TCGA) project [19] at level 3. These data were

obtained from fourteen different tumour types, as follows: Bladder

Urothelial Carcinoma (BLCA), Breast Invasive Carcinoma

(BRCA), Colon Adenocarcinoma (COAD), Head and Neck

Squamous Cell Carcinoma (HNSC), Kidney Renal Clear Cell

Carcinoma (KIRC), Kidney Renal Papillary Cell Carcinoma

(KIRP), Liver (LIHC), Lung Adenocarcinoma (LUAD), Lung

Squamous Cell Carcinoma (LUSC), Pancreatic Adenocarcinoma

(PAAD), Prostate Adenocarcinoma (PRAD), Rectum Adenocarci-

noma (READ), Thyroid Carcinoma (THCA), and Uterine Corpus

Endometrioid Carcinoma (UCEC).

These data were pre-processed by first removing probes with

non-unique mappings and which map to SNPs (as identified in the

TCGA level 3 data); probes mapping to sex chromosomes were

also removed; in total 98384 probes were removed in this way

from all data sets. After removal of these probes, 270985 probes

with known gene annotations remained. Individually for each data

set, probes were then removed if they had less than 95% coverage

across samples; probe values were also replaced if they had

corresponding detection p-value greater than 5%, by KNN (k
nearest neighbour) imputation (k~5).

Matched gene expression data were also downloaded for 217

samples for the BRCA data set, and were quantile normalised.

Intra-gene Methylation Measures
Four methylation measures were considered, and were calcu-

lated separately for each sample, for each gene:

N ‘Mean z-score’: the mean of the z-scores calculated from the

methylation values for the probes mapping to the gene, with

population parameters for each probe calculated from healthy

control samples

N ‘Mean derivative’: the mean absolute derivative of the

methylation profile across the gene

N ‘Methylation variance’: the variance of the methylation values

for probes mapping to one genomic region of the gene

N ‘Mean methylation’: the mean of the methylation values for

probes mapping to one genomic region of the gene

To calculate the mean of the z-scores for each gene, the R [21]/

Bioconductor [22] package ‘IlluminaHumanMethylation450k’

[23] was used to identify the probes mapping to each gene. Then

for each probe, the mean and standard deviation of the

methylation values for that probe were found from healthy tissue

samples, allowing a z-score zi,j for each probe i, and for each

sample j, to be calculated according to equation 1. By taking the

mean of the absolute zi,j for all probes i mapping to gene g, a

single intra-gene methylation predictor value xj(g) was then

calculated for each gene g, for each sample j, according to

equation 2. A regularisation parameter, j, was added to each

probe standard deviation when calculating probe z-scores to

prevent very large values from occurring; j was chosen to be 0.01

after considering the distribution of probe standard deviations

(Figure S5).

zi,j~
Dbi,j{m(h)

i D

s(h)
i zj

~
di,j

s(h)
i zj

ð1Þ

xj(g)~
1

n(g)

X

i[P(g)

zi,j ð2Þ

where bi,j is the methylation value for probe i and sample j, m
(h)
i

and s
(h)
i are the mean and standard deviation of the methylation

values corresponding to the relevant healthy tissue samples for

probe i, n(g) denotes the number of probes mapping to gene g and

P(g) is the set of probes mapping to gene g.

To calculate the ‘mean derivative’ methylation measure, the

‘IlluminaHumanMethylation450k’ package was again used to find

the probes mapping to each gene. Ordering the probes

P(g)~fi(1),:::,i n(g)ð Þg mapping to gene g as they are positioned

along the DNA, the derivative of the methylation profile for gene g
and sample j is estimated as the differences between the beta
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values at consecutive probes; hence the mean derivative for this

gene and sample is estimated according to equation 3.

xj gð Þ~ 1

n(g){1

X

1ƒkvn(g)

Dbi(kz1),j{bi(k),j D ð3Þ

In this way, a single intra-gene methylation predictor value

xj(g) was calculated for each gene g, for each sample j.

To calculate the ‘methylation variance’ and ‘mean methylation’

measures, first the most effective genomic region, for each of these

measures, across which to calculate these measures for each gene,

was selected. For this, annotation information for the probes used

by the Illumina Infinium platform was obtained from Gene

Expression Omnibus (GEO) [24]. This annotation information

details which probes map to one of six genomic regions for each

gene, as follows: (1) TSS1500; probes annotated to distances

greater than 200 bp and less than 1500 bp upstream from the TSS

(transcriptional start site) of the gene. (2) TSS200; probes

annotated to within 200 bp upstream of the TSS of the gene. (3)

59UTR; probes annotated to the 5-prime untranslated region of

the gene. (4) 1stExon; probes annotated to the first exon of the

gene. (5) Body; other probes annotated to the gene body. (6)

39UTR; probes annotated to the 3-prime untranslated region of

the gene.

Separately for each of these genomic regions, the variance of

methylation levels for each gene for probes mapping to the

genomic region in question was calculated. Then the effectiveness

of each genomic region at discriminating between healthy and

tumour tissue was compared, by considering the correlation of the

tissue sample phenotype to the methylation variance measure in

terms of distributions of per-gene AUCs; the ‘Body’ (gene body)

genomic region was chosen for the methylation variance measure,

as it performed best in 13 out of 14 data sets (Figure S1). This

methylation variance was calculated for each gene for which there

was ‘Body’ annotation information available, to give a single intra-

gene methylation predictor value xj(g), for each gene g, for each

sample j.

It should be noted, however, that in general for each gene there

were far more probes annotated as ‘Body’ than for other genomic

regions (Table 3), leading to better estimates of the methylation

variance for this region. Therefore, the relative greater effective-

ness of this genomic region in this comparison does not necessarily

imply biological significance. The minimum number of probes to

be able to calculate the methylation variance for a given gene and

genomic region was set to be 3, and the methylation variance was

not calculated for any gene with any fewer annotated probes than

this for a given genomic region. As there were more genes with at

least 3 probes annotated to the ‘Body’ region (Table 3), it would be

expected that there would be more genes which significantly

associate with phenotype when this genomic region is used, which

is likely to be another reason it performs better, without relevance

to biological significance.

To choose which region to use to calculate the mean

methylation measure, the same procedure was followed as for

the methylation variance measure; the ‘Body’ genomic region was

similarly chosen as this region correlated best with cancer/healthy

phenotype in 10 out of 14 data sets (Figure S2). This mean

methylation measure was calculated for each gene for which there

was ‘Body’ annotation information available, to give a single intra-

gene methylation predictor value xj(g), for each gene g, for each

sample j. It is again worth noting that it is likely to be be due to the

greater number of probes per gene annotated to ‘Body’, and the

corresponding increase in accuracy of the calculated estimates of

the mean methylation, which leads to this genomic region being

more effective in this comparison, rather than there being any

biological significance to this finding. In the case of mean

methylation, it was only required that there be one probe

annotated to a genomic region to allow a mean methylation level

to be represented for that genomic region for that gene, as

methylation levels of neighbouring CpGs within the same genomic

region are expected to be highly correlated; again, there were

more genes with at least one probe annotated to the ‘Body’ region

than the other regions (Table 3), similarly suggesting a reason for

its better performance other than biological significance.

Comparison of Intra-gene Methylation Measures
Methylation measures were assessed according to the distribu-

tions of their per-gene AUCs. The AUC is the ROC (receiver-

operator characteristic) ‘area under curve’ and is defined as the

probability that a randomly chosen item from the ‘positive’ class

will be scored higher than a randomly chosen item from the

‘negative’ class [25].

The same procedure was used for the main comparison of intra-

gene methylation measures, for the choice of genomic region used

in the methylation variance measure, and for the choice of

genomic region used in the mean methylation measure. In this

procedure, each data set was split half and half into a training and

test set, maintaining the same proportion of cancer and healthy

samples in both sets. Using only the training set, AUCs were

calculated for all genes, and the top 1000 genes were selected as

those with the best AUC. Then using the test set, an AUC was

calculated for each of these top 1000 genes identified in the

training set. For the mean z-score measure, the mean healthy

methylation profiles and healthy methylation standard deviations

calculated from the training set were used to calculate the z-scores

for both the cancer and healthy samples in the test set. The

distributions of these test-set AUCs were compared in distribution

density plots and using the Kolmogorov-Smirnov test (Figure 2

and Figures S1 and S2).

Meta-analysis and Gene-set Enrichment Analysis
A meta-analysis of the fourteen data sets was carried out. The

mean across all data sets of the per-gene AUCs generated from

Table 3. Number of probes per genomic region and gene, of
18272 annotated genes.

TSS1500 TSS200 59UTR 1stExon Body 39UTR

Mean no.
probes

2.7 2.4 2.5 1.5 7 0.82

Median no.
probes

2 2 1 1 3 1

No. probes,
95% CI

(0–10) (0–7) (0–13) (0–6) (0–39) (0–4)

No. genes
with min
3 probes

8512 7570 5258 3734 10029 958

No. genes
with min
1 probe

14259 12979 11408 12194 15858 10291

No. genes
with 0
probes

4013 5293 6864 6078 2414 7981

doi:10.1371/journal.pone.0068285.t003
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the mean z-score measure was calculated for each gene.

Significance was then assigned to each of these per-gene mean

AUCs by similarly calculating null mean AUCs after permuting

AUCs within data sets. This resulted in 4267 significant

unstable meta-analysis genes with FDR q-value [26] less than

5%, i.e., those genes corresponding to the upper tail of the null

mean AUC distribution, which are associated with a consistent

difference between cancer and healthy phenotypes across tissue

types; the top 100 most significant of these unstable genes

appear in Table S1. This permutation method also resulted in

2818 significant (FDR qƒ0:05) significant least unstable meta-

analysis genes, i.e., those genes corresponding to the lower tail

of the null mean AUC distribution, which were associated with

least difference from healthy to cancer phenotype across tissue

types the top 100 most significant of these least unstable genes

appear in Table S2.

To confirm the biological significance of the findings of this

meta-analysis with reference to genes which are well known to

be important in cancer biology, the least unstable and least

unstable meta-analysis genes were tested for enrichment by

genes which in ES cells carry the repressing/activating

chromatin marks H3K27me3 (H3K27 ES genes), H3K4me3

(H3K4 ES genes) and bivalent (i.e., both H3K27me3 and

H3K4me3 marks, Biv ES genes) and enrichment by PCGTs

(ES cell polycomb group target genes) using the one-tailed

Fisher’s exact test. A more general gene-set enrichment analysis

(GSEA) was also carried out both on the least unstable and least

unstable meta-analysis genes; 6811 gene set definitions were

downloaded from the Broad Institute Molecular Signatures

Database (http://www.broadinstitute.org/), and each gene set

was tested separately for enrichment among the significant

genes. Enrichment was again tested using the one-sided Fisher’s

exact test, finding 1048 and 778 gene sets significantly (FDR

qƒ0:05) enriched by least unstable and least unstable meta-

analysis genes respectively. The top 100 of these gene sets are

shown in tables S3 and S4 respectively.

Correlation of Tumour Gene Expression with Intra-gene
Methylation Architecture

For the 217 BRCA tumour samples for which matched gene

expression and methylation data were available, for each gene a

multivariate regression analysis of gene expression and intra-gene

methylation architecture was carried out. Gene expression was

used as the response, with one of mean z-score, mean derivative

and methylation variance as one covariate predictor, and with

mean methylation as a second covariate predictor. As it was

expected that this relationship would be non-linear, and as for a

non-specified non-linear monotonic function the ranks of data

points in response and predictor variables are linearly related if

there is a good association between these variables, the ranks of

each of the variables across the samples were correlated to one

another, as follows.

Defining for gene g the ranks of the samples according to the

expression data as r(e)(g), the ranks of the samples according to the

mean z-score, mean derivative or methylation variance as r(x)(g),
and the ranks of the samples according to the mean methylation as

r(m)(g), the data were modelled according to equation 4:

r(e)(g)~a(g)r(x)(g)zc(g)r(m)(g)zm(g)z[ ð4Þ

where m(g) is the intercept term for gene g, and is the model error.

Where r(e)(g) is well-correlated with r(x)(g), similar integer entries

in these vectors (corresponding to similar ranks) will appear in

similar positions in these vectors (N.B., these vectors are not

themselves ordered). This will then be reflected as a small p-value

for this comparison (calculated from the corresponding t-statistic

for the linear model a(g) coefficient), and similarly for r(m)(g) (and

corresponding c(g) coefficient), if it is well-correlated with r(e)(g).
This linear model was applied to the data for each gene present

in the matched expression and methylation data for the BRCA

dataset. ‘Body’ annotated probes were again used to calculate the

methylation variance and mean methylation measures as used in

this model, because probes annotated to this genomic region

produced, in both cases, the greatest number of significant p-

values (for the respective covariate), as compared to using probes

annotated to each of the other genomic regions.

Supporting Information

Figure S1 Distributions of per-gene AUCs calculated
from genomic feature methylation variance measures.
P-values shown are for Kolmogorov-Smirnov tests comparing the

distributions of the most effective and second most effective

measures.

(PDF)

Figure S2 Distributions of per-gene AUCs calculated
from genomic feature mean methylation measures. P-

values shown are for Kolmogorov-Smirnov tests comparing the

distributions of the most effective and second most effective

measures.

(PDF)

Figure S3 Scatter plots showing pairwise comparisons
of each of the four methylation measures, for the
ONECUT3 gene. ONECUT3 was among the top 1000 genes

with the highest AUC according to each of the four methylation

measures. There is one point in each scatter plot for each of the 98

healthy and 586 cancer samples in the BRCA data set.

(PDF)

Figure S4 Genomic feature mean methylation levels for
healthy and tumour samples. (1) significant consistently most

unstable genes in the meta-analysis (sig MUs) (2) genes not

significant in the meta-analysis, (3) significant consistently least

unstable genes in the meta-analysis (sig LUs).

(PDF)

Figure S5 Distributions of probe standard deviations.
For each tumour type, the standard deviation of the beta values for

each probe is found for cancer and for healthy samples; then

estimates of the density distributions of the standard deviations for

all probes are plotted for cancer and healthy samples for each

tumour type. Locations of the modal standard deviation of each

density distribution estimate are indicated with dashed lines, and

are stated on each plot; where the distribution is multimodal the

modal standard deviation corresponding to the greatest density is

used.

(PDF)

Table S1 Meta-analysis: 100 most significant most
unstable genes.
(PDF)

Table S2 Meta-analysis: 100 most significant least
unstable genes.
(PDF)

Table S3 Meta-analysis GSEA: most unstable genes, 100
most significant gene-sets.
(PDF)
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Table S4 Meta-analysis GSEA: least unstable genes, 100
most significant gene-sets.

(PDF)
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